The 2023 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the California Township, Michigan population pyramid, which represents the California township population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey 5-Year estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for California township Population by Age. You can refer the same here
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
U.S. Census Bureau QuickFacts statistics for Gridley city, California. QuickFacts data are derived from: Population Estimates, American Community Survey, Census of Population and Housing, Current Population Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Malibu, CA population pyramid, which represents the Malibu population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Malibu Population by Age. You can refer the same here
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
U.S. Census Bureau QuickFacts statistics for Bloomington CDP, California. QuickFacts data are derived from: Population Estimates, American Community Survey, Census of Population and Housing, Current Population Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Siskiyou County population by age. The dataset can be utilized to understand the age distribution and demographics of Siskiyou County.
The dataset constitues the following three datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
U.S. Census Bureau QuickFacts statistics for Taft city, California. QuickFacts data are derived from: Population Estimates, American Community Survey, Census of Population and Housing, Current Population Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits.
In 2023, about 14.6 percent of the population of California was between the ages of 25 and 34 years old. A further 14 percent of the population was between the ages of 35 and 44 years old in that same year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Calabasas population by gender and age. The dataset can be utilized to understand the gender distribution and demographics of Calabasas.
The dataset constitues the following two datasets across these two themes
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
U.S. Census Bureau QuickFacts statistics for Eucalyptus Hills CDP, California. QuickFacts data are derived from: Population Estimates, American Community Survey, Census of Population and Housing, Current Population Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits.
In 2023, the number of Hispanic and Latino residents in California had surpassed the number of White residents, with about 15.76 million Hispanics compared to 12.96 million white residents. California’s residents California has always held a special place in the American imagination as a place where people can start a new life and increase their personal fortunes. Perhaps due partly to this, California is the most populous state in the United States, with over 39 million residents, which is a significant increase from the number of residents in 1960. California is also the U.S. state with the largest population of foreign born residents. The Californian economy The Californian economy is particularly strong and continually contributes a significant amount to the gross domestic product (GDP) of the United States. Its per-capita GDP is also high, which indicates a high standard of living for its residents. Additionally, the median household income in California has more than doubled from 1990 levels.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Escalon population by age. The dataset can be utilized to understand the age distribution and demographics of Escalon.
The dataset constitues the following three datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is intended for researchers, students, and policy makers for reference and mapping purposes, and may be used for basic applications such as viewing, querying, and map output production, or to provide a basemap to support graphical overlays and analysis with other spatial data.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Resident Population in Los Angeles-Long Beach-Anaheim, CA (MSA) (LNAPOP) from 2010 to 2024 about Los Angeles, residents, CA, population, and USA.
This polygon shapefile displays landmark features throughout the San Francisco Bay Area in California. "Landmark" is the general name given to a cartographic (or locational) landmark, a land-use area, and a key geographic location (KGL). A cartographic landmark is identified for use by an enumerator while working in the field. A land-use area is identified in order to minimize enumeration efforts in uninhabited areas or areas where human access is restricted. A key geographic location is identified in order to more accurately geocode and enumerate a place of work or residence. The predominant feature classes represented in this layer include airports or airfields, cemeteries, fraternities or sororities, state or local parks or forests, golf courses, lookout towers, educational and religious institutions. Other possible landmark features could include military installations, multi-household or transient quarters, custodial facilities, other types of transportation facilities or terminals, employment centers, open space and other special landmark designations for post offices, police stations and firehouses. The Census Bureau includes landmarks in the Census TIGER data base for locating special features and to help enumerators during field operations. The Census Bureau added landmark features on an as-needed-basis and made no attempt to ensure that all instances of a particular feature were included. The absence of a landmark does not mean that the living quarters, e.g., hospitals and group quarters associated with the landmark were excluded from the 1990 enumeration. A census feature class code (CFCC) is used to identify the most noticeable characteristic of a feature. The CFCC is applied only once to a chain or landmark with preference given to classifications that cover features that are visible to an observer and a part of the ground transportation network. Thus, a road that also is the boundary of a town would have a CFCC describing its road characteristics, not its boundary characteristics. The CFCC, as used in the TIGER/Line files, is a three-character code. The first character is a letter describing the feature class; the second character is a number describing the major category; and the third character is a number describing the minor category. Landmark (Feature Class D) is the general name given to a cartographic (or locational) landmark, a land-use area, and a key geographic location. This layer is part of the Bay Area Metropolitan Transportation Commission (MTC) GIS Maps and Data collection.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the distribution of median household income among distinct age brackets of householders in Marin County. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in Marin County. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.
Key observations: Insights from 2023
In terms of income distribution across age cohorts, in Marin County, householders within the 45 to 64 years age group have the highest median household income at $181,005, followed by those in the 25 to 44 years age group with an income of $169,985. Meanwhile householders within the 65 years and over age group report the second lowest median household income of $104,436. Notably, householders within the under 25 years age group, had the lowest median household income at $65,344.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Age groups classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Marin County median household income by age. You can refer the same here
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Resident Population in San Diego-Carlsbad, CA (MSA) (SDIPOP) from 2000 to 2023 about San Diego, residents, CA, population, and USA.
In 2023, the resident population of California was 38.97 million. This is a slight decrease from the previous year, with 39.03 million people in 2022. This makes it the most populous state in the U.S. Californian demographics Along with an increase in population, California’s gross domestic product (GDP) has also been increasing, from 1.7 trillion U.S. dollars in 2000 to 3.23 trillion U.S. dollars in 2023. In the same time period, the per-capita personal income has almost doubled, from 33,403 U.S. dollars in 2000 to 77,339 U.S. dollars in 2022. In 2023, the majority of California’s resident population was Hispanic or Latino, although the number of white residents followed as a close second, with Asian residents making up the third largest demographic in the state. The dark side of the Golden State While California is one of the most well-known states in the U.S., is home to Silicon Valley, and one of the states where personal income has been increasing over the past 20 years, not everyone in California is so lucky: In 2023, the poverty rate in California was about 12 percent, and the state had the fifth-highest rate of homelessness in the country during that same year, with an estimated 46 homeless people per 10,000 of the population.
National Risk Index Version: March 2023 (1.19.0)The National Risk Index Census Tracts feature layer contains Census tract-level data for the Risk Index, Expected Annual Loss, Social Vulnerability, and Community Resilience.The National Risk Index is a dataset and online tool that helps to illustrate the communities most at risk for 18 natural hazards across the United States and territories: Avalanche, Coastal Flooding, Cold Wave, Drought, Earthquake, Hail, Heat Wave, Hurricane, Ice Storm, Landslide, Lightning, Riverine Flooding, Strong Wind, Tornado, Tsunami, Volcanic Activity, Wildfire, and Winter Weather. The National Risk Index provides Risk Index values, scores and ratings based on data for Expected Annual Loss due to natural hazards, Social Vulnerability, and Community Resilience. Separate values, scores and ratings are also provided for Expected Annual Loss, Social Vulnerability, and Community Resilience. For the Risk Index and Expected Annual Loss, values, scores and ratings can be viewed as a composite score for all hazards or individually for each of the 18 hazard types.Sources for Expected Annual Loss data include: Alaska Department of Natural Resources, Arizona State University’s (ASU) Center for Emergency Management and Homeland Security (CEMHS), California Department of Conservation, California Office of Emergency Services California Geological Survey, Colorado Avalanche Information Center, CoreLogic’s Flood Services, Federal Emergency Management Agency (FEMA) National Flood Insurance Program, Humanitarian Data Exchange (HDX), Iowa State University's Iowa Environmental Mesonet, Multi-Resolution Land Characteristics (MLRC) Consortium, National Aeronautics and Space Administration’s (NASA) Cooperative Open Online Landslide Repository (COOLR), National Earthquake Hazards Reduction Program (NEHRP), National Oceanic and Atmospheric Administration’s National Centers for Environmental Information (NCEI), National Oceanic and Atmospheric Administration's National Hurricane Center, National Oceanic and Atmospheric Administration's National Weather Service (NWS), National Oceanic and Atmospheric Administration's Office for Coastal Management, National Oceanic and Atmospheric Administration's National Geophysical Data Center, National Oceanic and Atmospheric Administration's Storm Prediction Center, Oregon Department of Geology and Mineral Industries, Pacific Islands Ocean Observing System, Puerto Rico Seismic Network, Smithsonian Institution's Global Volcanism Program, State of Hawaii’s Office of Planning’s Statewide GIS Program, U.S. Army Corps of Engineers’ Cold Regions Research and Engineering Laboratory (CRREL), U.S. Census Bureau, U.S. Department of Agriculture's (USDA) National Agricultural Statistics Service (NASS), U.S. Forest Service's Fire Modeling Institute's Missoula Fire Sciences Lab, U.S. Forest Service's National Avalanche Center (NAC), U.S. Geological Survey (USGS), U.S. Geological Survey's Landslide Hazards Program, United Nations Office for Disaster Risk Reduction (UNDRR), University of Alaska – Fairbanks' Alaska Earthquake Center, University of Nebraska-Lincoln's National Drought Mitigation Center (NDMC), University of Southern California's Tsunami Research Center, and Washington State Department of Natural Resources.Data for Social Vulnerability are provided by the Centers for Disease Control (CDC) Agency for Toxic Substances and Disease Registry (ATSDR) Social Vulnerability Index, and data for Community Resilience are provided by University of South Carolina's Hazards and Vulnerability Research Institute’s (HVRI) 2020 Baseline Resilience Indicators for Communities.The source of the boundaries for counties and Census tracts are based on the U.S. Census Bureau’s 2021 TIGER/Line shapefiles. Building value and population exposures for communities are based on FEMA’s Hazus 6.0. Agriculture values are based on the USDA 2017 Census of Agriculture.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Estimate, Total, Not Hispanic or Latino, Black or African American Alone (5-year estimate) in Imperial County, CA (B03002004E006025) from 2009 to 2023 about Imperial County, CA; El Centro; African-American; CA; non-hispanic; estimate; persons; 5-year; population; and USA.
The 2023 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.