Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/6712/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/6712/terms
This collection comprises census tract-level data for California from the 1970 Census. The data contain 20-, 15-, and 5-percent sample population and housing characteristics including education, occupation, income, citizenship, vocational training, and household equipment and facilities.
Facebook
TwitterThis is the feature layer. The map image layer is available here.The aquifer risk map is being developed to fulfill requirements of SB-200 and is intended to help prioritize areas where domestic wells and state small water systems may be accessing groundwater that does not meet primary drinking water standards (maximum contaminant level or MCL). In accordance with SB-200, the risk map is to be made available to the public and is to be updated annually starting January 1, 2021. This layer is part of the 2022 Aquifer Risk Map. The Fund Expenditure Plan states the risk map will be used by Water Boards staff to help prioritize areas for available SAFER funding.This layer displays data available at the census block group level. Water quality risk data from the 2022 Aquifer Risk Map is summarized by block group by displaying the number of domestic wells and state small water systems per block group in "high-risk" areas. Drought risk scores for rural/self-supplied communities from the Department of Water Resources are displayed (drought risk scores range from 0-100, with 100 representing the highest drought risk and 0 representing the lowest drought risk). Demographic information including Median Household Income (from 2018 ACS) and race/ethnicity data per block group (B03002 from 2019 ACS five-year survey) is also displayed.
Facebook
TwitterThis resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) System (MTS). The MTS represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined because of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard Census Bureau geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous.
Facebook
TwitterNo description available
Facebook
TwitterThe following data were used for the Department of Water Resources' (DWR) Disadvantaged Communities (DAC) Mapping Tool: https://gis.water.ca.gov/app/dacs/. The data source is from the US Census (American Community Survey), that may include attribute table additions by DWR. The DAC Mapping Tool was designed, and the related datasets made publicly available, to assist in the evaluation of DACs throughout the state, as may relate to the various Grant Programs within the Financial Assistance Branch (FAB) at DWR. The definition of DAC may vary by grant program (within FAB, DWR or grant programs of other public agencies). As such, users should be familiar with the specific requirements for meeting DAC status, based on the particular grant solicitation/program of interest.
For more information related to the Grant Programs within the Financial Assistance Branch, visit: https://water.ca.gov/Work-With-Us/Grants-And-Loans/IRWM-Grant-Programs https://water.ca.gov/Work-With-Us/Grants-And-Loans/Sustainable-Groundwater
Additional questions or requests for information related to the DAC datasets (or the DAC Mapping Tool) should be directed to: dwr_irwm@water.ca.gov.
For more information on DWR's FAB programs, please visit: https://water.ca.gov/Work-With-Us/Grants-And-Loans/IRWM-Grant-Programs
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/6836/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/6836/terms
This data collection constitutes a portion of the historical data collected by the project "Early Indicators of Later Work Levels, Disease, and Death." With the goal of constructing datasets suitable for longitudinal analyses of factors affecting the aging process, the project is collecting military, medical, and socioeconomical data on a sample of white males mustered into the Union Army during the Civil War. The project seeks to examine the influence of environmental and host factors prior to recruitment on the health performance and survival of recruits during military service, to identify and show relationships between socioeconomic and biomedical conditions (including nutritional status) of veterans at early ages and mortality rates from diseases at middle and late ages, and to study the effects of health and pensions on labor force participation rates of veterans at ages 65 and over. This installment of the collection, Version C-3, supersedes all previous collections (Versions C-1 and C-2), and contains data from the censuses of 1850, 1860, 1900, and 1910 on veterans who were originally mustered into the Union Army in Connecticut, Delaware, District of Columbia, Illinois, Iowa, Kansas, Kentucky, Maine, Maryland, Massachusetts, Michigan, Minnesota, Missouri, New Hampshire, New Jersey, New York, Ohio, Pennsylvania, Vermont, and West Virginia. This version of the collection also contains observations from Wisconsin, Indiana, California, and New Mexico. Census Data, Part 1, includes place of residence, relationship to head of household, date and place of birth, number of children, education, disability status, employment status, number of years in the United States, literacy, marital status, occupation, parents' birthplace, and property/home ownership. The variables in Part 2, Linkage Data, indicate which document sources were located for each recruit.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the California population by age. The dataset can be utilized to understand the age distribution and demographics of California.
The dataset constitues the following three datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the California population by gender and age. The dataset can be utilized to understand the gender distribution and demographics of California.
The dataset constitues the following two datasets across these two themes
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
[ARCHIVED] Community Counts data is retained for archival purposes only, such as research, reference and record-keeping. This data has not been maintained or updated. Users looking for the latest information should refer to Statistics Canada’s Census Program (https://www12.statcan.gc.ca/census-recensement/index-eng.cfm?MM=1) for the latest data, including detailed results about Nova Scotia. This table reports the presence of children in private households. This data is sourced from the Census of Population. Geographies available: provinces, counties, communities, municipalities, district health authorities, community health boards, economic regions, police districts, school boards, municipal electoral districts, provincial electoral districts, federal electoral districts, regional development authorities, watersheds
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the California population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for California. The dataset can be utilized to understand the population distribution of California by age. For example, using this dataset, we can identify the largest age group in California.
Key observations
The largest age group in California was for the group of age 30 to 34 years years with a population of 2.98 million (7.61%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in California was the 80 to 84 years years with a population of 680,447 (1.73%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for California Population by Age. You can refer the same here
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/13237/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/13237/terms
Summary File 2 contains 100-percent United States decennial Census data, which is the information compiled from the questions asked of all people and about every housing unit. Population items include sex, age, race, Hispanic or Latino origin, household relationship, and group quarters occupancy. Housing items include occupancy status, vacancy status, and tenure (owner-occupied or renter- occupied). The 100-percent data are presented in 36 population tables ("PCT") and 11 housing tables ("HCT") down to the census tract level. Each table is iterated for 250 population groups: the total population, 132 race groups, 78 American Indian and Alaska Native tribe categories (reflecting 39 individual tribes), and 39 Hispanic or Latino groups. The presentation of tables for any of the 250 population groups is subject to a population threshold of 100 or more people, that is, if there were fewer than 100 people in a specific population group in a specific geographic area, their population and housing characteristics data are not available for that geographic area.
Facebook
TwitterMore than 39 million people and 14.2 million households span more than 163,000 square miles of Californian’s urban, suburban and rural communities. California has the fifth largest economy in the world and is the most populous state in the nation, with nation-leading diversity in race, ethnicity, language and socioeconomic conditions. These characteristics make California amazingly unique amongst all 50 states, but also present significant challenges to counting every person and every household, no matter the census year. A complete and accurate count of a state’s population in a decennial census is essential. The results of the 2020 Census will inform decisions about allocating hundreds of billions of dollars in federal funding to communities across the country for hospitals, fire departments, school lunch programs and other critical programs and services. The data collected by the United States Census Bureau (referred hereafter as U.S. Census Bureau) also determines the number of seats each state has in the U.S. House of Representatives and will be used to redraw State Assembly and Senate boundaries. California launched a comprehensive Complete Count Census 2020 Campaign (referred to hereafter as the Campaign) to support an accurate and complete count of Californians in the 2020 Census. Due to the state’s unique diversity and with insights from past censuses, the Campaign placed special emphasis on the hardest-tocount Californians and those least likely to participate in the census. The California Complete Count – Census 2020 Office (referred to hereafter as the Census Office) coordinated the State’s operations to complement work done nationally by the U.S. Census Bureau to reach those households most likely to be missed because of barriers, operational or motivational, preventing people from filling out the census. The Campaign, which began in 2017, included key phases, titled Educate, Motivate and Activate. Each of these phases were designed to make sure all Californians knew about the census, how to respond, their information was safe and their participation would help their communities for the next 10 years.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Resident Population in California (CAPOP) from 1900 to 2024 about residents, CA, population, and USA.
Facebook
TwitterThis resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) System (MTS). The MTS represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census blocks are statistical areas bounded on all sides by visible features, such as streets, roads, streams, and railroad tracks, and/or by nonvisible boundaries such as city, town, township, and county limits, and short line-of-sight extensions of streets and roads. Census blocks are relatively small in area; for example, a block in a city bounded by streets. However, census blocks in remote areas are often large and irregular and may even be many square miles in area. A common misunderstanding is that census blocks are used geographically to build all other census geographic areas, rather all other census geographic areas are updated and then used as the primary constraints, along with roads and water features, to delineate the tabulation blocks. As a result, all 2020 Census blocks nest within every other 2020 Census geographic area, so that Census Bureau statistical data can be tabulated at the block level and aggregated up to the appropriate geographic areas. Census blocks cover all territory in the United States, Puerto Rico, and the Island Areas (American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands). Blocks are the smallest geographic areas for which the Census Bureau publishes data from the decennial census. A block may consist of one or more faces.
Facebook
TwitterAn app to assist in the evaluation of Group Quarters capture in the 2020 Census. In support of the 2020 Post-Census Group Quarters Review, this app empowers local entities to visualize GQ locations and types within their jurisdiction. Comparison is made available to California Department of Finance, Demographic Research Unit surveyed values where possible, to highlight areas of known miscount.
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation.
Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Facebook
TwitterThe 2023 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Facebook
TwitterThis layer contains block level 2020 Decennial Census redistricting data as reported by the U.S. Census Bureau for the state of California. The attributes come from the 2020 Public Law 94-171 (P.L. 94-171) tables.Data download date: August 12, 2021Census tables: P1, P2, P3, P4, H1, P5, HeaderDownloaded from: Census FTP siteProcessing Notes:Data was downloaded from the U.S. Census Bureau FTP site, imported into SAS format and joined to the 2020 TIGER boundaries. Boundaries are sourced from the 2020 TIGER/Line Geodatabases. Boundaries have been projected into Web Mercator and each attribute has been given a clear descriptive alias name. No alterations have been made to the vertices of the data.Each attribute maintains it's specified name from Census, but also has a descriptive alias name and long description derived from the technical documentation provided by the Census. For a detailed list of the attributes contained in this layer, view the Data tab and select "Fields". The following alterations have been made to the tabular data:Joined all tables to create one wide attribute table:P1 - RaceP2 - Hispanic or Latino, and not Hispanic or Latino by RaceP3 - Race for the Population 18 Years and OverP4 - Hispanic or Latino, and not Hispanic or Latino by Race for the Population 18 Years and OverH1 - Occupancy Status (Housing)P5 - Group Quarters Population by Group Quarters Type (correctional institutions, juvenile facilities, nursing facilities/skilled nursing, college/university student housing, military quarters, etc.)HeaderAfter joining, dropped fields: FILEID, STUSAB, CHARITER, CIFSN, LOGRECNO, GEOVAR, GEOCOMP, LSADC.GEOCOMP was renamed to GEOID and moved be the first column in the table, the original GEOID was dropped.Placeholder fields for future legislative districts have been dropped: CD118, CD119, CD120, CD121, SLDU22, SLDU24, SLDU26, SLDU28, SLDL22, SLDL24 SLDL26, SLDL28.P0020001 was dropped, as it is duplicative of P0010001. Similarly, P0040001 was dropped, as it is duplicative of P0030001.In addition to calculated fields, County_Name and State_Name were added.The following calculated fields have been added (see long field descriptions in the Data tab for formulas used): PCT_P0030001: Percent of Population 18 Years and OverPCT_P0020002: Percent Hispanic or LatinoPCT_P0020005: Percent White alone, not Hispanic or LatinoPCT_P0020006: Percent Black or African American alone, not Hispanic or LatinoPCT_P0020007: Percent American Indian and Alaska Native alone, not Hispanic or LatinoPCT_P0020008: Percent Asian alone, Not Hispanic or LatinoPCT_P0020009: Percent Native Hawaiian and Other Pacific Islander alone, not Hispanic or LatinoPCT_P0020010: Percent Some Other Race alone, not Hispanic or LatinoPCT_P0020011: Percent Population of Two or More Races, not Hispanic or LatinoPCT_H0010002: Percent of Housing Units that are OccupiedPCT_H0010003: Percent of Housing Units that are VacantPlease note these percentages might look strange at the individual block level, since this data has been protected using differential privacy.**To protect the privacy and confidentiality of respondents, data has been protected using differential privacy techniques by the U.S. Census Bureau. This means that some individual blocks will have values that are inconsistent or improbable. However, when aggregated up, these issues become minimized. The pop-up on this layer uses Arcade to display aggregated values for the surrounding area rather than values for the block itself.Additional links:U.S. Census BureauU.S. Census Bureau Decennial CensusAbout the 2020 Census2020 Census2020 Census data qualityDecennial Census P.L. 94-171 Redistricting Data Program
Facebook
TwitterThe U.S. Constitution mandates that the federal government count all persons living in the United States every ten years. The census is critical to states because its results are used to reapportion seats in the U.S. House of Representatives; guide redistricting; and form the basis for allocating federal funds, such as those used for schools, health services, child care, highways, and emergency services.In response to long-standing concerns about the accuracy of census data and about a possible undercount, a group of researchers conducted the California Neighborhoods Count (CNC) — the first-ever independent, survey-based enumeration to directly evaluate the accuracy of the U.S. Census Bureau's population totals for a subset of California census blocks.This 2020 research was intended to produce parallel estimates of the 2020 Census population and housing unit totals at the census block level, employing the same items as the census and using enhanced data collection strategies and exploration of imputation methods. Although the CNC was intended to largely replicate census data collection processes, there were a few methodological differences: For example, much of the address canvassing for the 2020 Census was done in-office, whereas the CNC team undertook a complete in-person address-listing operation that included interviews with residents and door-to-door verification of each structure.In this report, the researchers detail their methodology and present the enumeration results. They compare the 2020 Census counts with the CNC estimates, describe limitations of their data collection effort, and offer considerations for future data collection.
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.