Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Building Climates Zones of California Climate Zone Descriptions for New Buildings - California is divided into 16 climatic boundaries or climate zones, which is incorporated into the Energy Efficiency Standards (Energy Code). Each Climate zone has a unique climatic condition that dictates which minimum efficiency requirements are needed for that specific climate zone. The numbers used in the climate zone map don't have a title or legend. The California climate zones shown in this map are not the same as what we commonly call climate areas such as "desert" or "alpine" climates. The climate zones are based on energy use, temperature, weather and other factors.This is explained in the Title 24 energy efficiency standards glossary section:"The Energy Commission established 16 climate zones that represent a geographic area for which an energy budget is established. These energy budgets are the basis for the standards...." "(An) energy budget is the maximum amount of energy that a building, or portion of a building...can be designed to consume per year.""The Energy Commission originally developed weather data for each climate zone by using unmodified (but error-screened) data for a representative city and weather year (representative months from various years). The Energy Commission analyzed weather data from weather stations selected for (1) reliability of data, (2) currency of data, (3) proximity to population centers, and (4) non-duplication of stations within a climate zone."Using this information, they created representative temperature data for each zone. The remainder of the weather data for each zone is still that of the representative city." The representative city for each climate zone (CZ) is:CZ 1: ArcataCZ 2: Santa RosaCZ 3: OaklandCZ 4: San Jose-ReidCZ 5: Santa MariaCZ 6: TorranceCZ 7: San Diego-LindberghCZ 8: FullertonCZ 9: Burbank-GlendaleCZ10: RiversideCZ11: Red BluffCZ12: SacramentoCZ13: FresnoCZ14: PalmdaleCZ15: Palm Spring-IntlCZ16: Blue Canyon
The Energy Commission has developed this app to quickly and accurately show addresses and locations to determine California’s climate regions. We invite builders and building officials to use this app to determine the climate zones applicable to building projects.Please note:Building Climates Zones of California Climate Zone Descriptions for New Buildings - California is divided into 16 climatic boundaries or climate zones, which is incorporated into the Energy Efficiency Standards (Energy Code). Each Climate zone has a unique climatic condition that dictates which minimum efficiency requirements are needed for that specific climate zone. The California climate zones shown in this map are not the same as what we commonly call climate areas such as "desert" or "alpine" climates. The climate zones are based on energy use, temperature, weather and other factors.This is explained in the Title 24 energy efficiency standards glossary section:"The Energy Commission established 16 climate zones that represent a geographic area for which an energy budget is established. These energy budgets are the basis for the standards...." "(An) energy budget is the maximum amount of energy that a building, or portion of a building...can be designed to consume per year.""The Energy Commission originally developed weather data for each climate zone by using unmodified (but error-screened) data for a representative city and weather year (representative months from various years). The Energy Commission analyzed weather data from weather stations selected for (1) reliability of data, (2) currency of data, (3) proximity to population centers, and (4) non-duplication of stations within a climate zone."Using this information, they created representative temperature data for each zone. The remainder of the weather data for each zone is still that of the representative city." The representative city for each climate zone (CZ) is:CZ 1: ArcataCZ 2: Santa RosaCZ 3: OaklandCZ 4: San Jose-ReidCZ 5: Santa MariaCZ 6: TorranceCZ 7: San Diego-LindberghCZ 8: FullertonCZ 9: Burbank-GlendaleCZ10: RiversideCZ11: Red BluffCZ12: SacramentoCZ13: FresnoCZ14: PalmdaleCZ15: Palm Spring-IntlCZ16: Blue CanyonThe original detailed survey definitions of the 16 Climate Zones are found in the 1995 publication, "California Climate Zone Descriptions for New Buildings."
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘California Building Climate Zones’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/4c0d938e-1d8f-432c-b84d-334c796aa6bb on 27 January 2022.
--- Dataset description provided by original source is as follows ---
Building Climates Zones of California Climate Zone Descriptions for New Buildings - California is divided into 16 climatic boundaries or climate zones, which is incorporated into the Energy Efficiency Standards (Energy Code). Each Climate zone has a unique climatic condition that dictates which minimum efficiency requirements are needed for that specific climate zone.
The numbers used in the climate zone map don't have a title or legend. The California climate zones shown in this map are not the same as what we commonly call climate areas such as "desert" or "alpine" climates. The climate zones are based on energy use, temperature, weather and other factors.
This is explained in the Title 24 energy efficiency standards glossary section:
"The Energy Commission established 16 climate zones that represent a geographic area for which an energy budget is established. These energy budgets are the basis for the standards...." "(An) energy budget is the maximum amount of energy that a building, or portion of a building...can be designed to consume per year."
"The Energy Commission originally developed weather data for each climate zone by using unmodified (but error-screened) data for a representative city and weather year (representative months from various years). The Energy Commission analyzed weather data from weather stations selected for (1) reliability of data, (2) currency of data, (3) proximity to population centers, and (4) non-duplication of stations within a climate zone.
"Using this information, they created representative temperature data for each zone. The remainder of the weather data for each zone is still that of the representative city." The representative city for each climate zone (CZ) is:
The original detailed survey definitions of the 16 Climate Zones are found in the 1995 publication, "California Climate Zone Descriptions for New Buildings."
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Please note:Building Climates Zones of California Climate Zone Descriptions for New Buildings - California is divided into 16 climatic boundaries or climate zones, which is incorporated into the Energy Efficiency Standards (Energy Code). Each Climate zone has a unique climatic condition that dictates which minimum efficiency requirements are needed for that specific climate zone. The California climate zones shown in this map are not the same as what we commonly call climate areas such as "desert" or "alpine" climates. The climate zones are based on energy use, temperature, weather and other factors.This is explained in the Title 24 energy efficiency standards glossary section:"The Energy Commission established 16 climate zones that represent a geographic area for which an energy budget is established. These energy budgets are the basis for the standards...." "(An) energy budget is the maximum amount of energy that a building, or portion of a building...can be designed to consume per year."
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The North American Climate Zones map shows the distribution of climate types across Canada, Mexico, and the United States based on the Köppen-Geiger climate classification.This map is derived from the global climate zones presented by Beck et al. (2018), “Present and future Köppen-Geiger climate classification maps at 1-km resolution,” and represents the spatial distribution in vector format of 29 climate zones (out of 30 global climate zones) present in North America.This map was produced by resampling the original input data spatial resolution of 0.0083 degrees to 0.016 degrees and cropping the global data to the North American region. The map was used to meet the needs of the CEC project “Improving the effectiveness of early warning systems for drought” in assessing the effectiveness of available drought indicators and indices in climate zones of North America.Reference:Beck, H., Zimmermann, N., McVicar, T. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5, 180214 (2018). https://doi.org/10.1038/sdata.2018.214Files Download
A plant's performance is governed by the total climate: length of growing season, timing and amount of rainfall, winter lows, summer highs, wind, and humidity.Sunset's climate zone maps take all these factors into account, unlike the familiar hardiness zone maps devised by the U.S. Department of Agriculture, which divides most of North America into zones based strictly on winter lows.ZONE 2A: Cold mountain and intermountain areasAnother snowy winter climate, Zone 2A covers several regions that are considered mild compared with surrounding climates. You’ll find this zone stretched over Colorado’s northeastern plains, a bit of it along the Western Slope and Front Range of the Rockies, as well as mild parts of river drainages like those of the Snake, Okanogan, and the Columbia. It also shows up in western Montana and Nevada and in mountain areas of the Southwest. This is the coldest zone in which sweet cherries and many apples grow. Winter temperatures here usually hover between 10 and 20°F (–12 to –7°C) at night, with drops between –20 and –30°F (–29 and –34°C) every few years. When temperatures drop below that, orchardists can lose even their trees. The growing season is 100 to 150 days.ZONE 3A: Mild areas of mountain and intermountain climatesEast of the Sierra and Cascade ranges, you can hardly find a better gardening climate than Zone 3a.Winter minimum temperatures average from 15 to 25°F (–9 to –4°C), with extremes between –8 and –18°F (–22 and –28°C). Its frost-free growing season runs from 150 to 186 days. The zone tends to occur at lower elevations in the northern states (eastern Oregon and Washington as well as Idaho), but at higher elevations as you move south crossing Utah’s Great Salt Lake and into northern New Mexico and Arizona. Fruits and vegetables that thrive in long, warm summers, such as melons, gourds, and corn, tend to do well here. This is another great zone for all kinds of deciduous fruit trees and ornamental trees and shrubs. Just keep them well watered.ZONE 18: Above and below the thermal belts in Southern CaliforniaZones 18 and 19 are classified as interior climates. This means that the major influence on climate is the continental air mass; the ocean determines the climate no more than 15 percent of the time. Many of the valley floors of Zone 18 were once regions where apricot, peach, apple, and walnut orchards flourished, but the orchards have now given way to homes. Although the climate supplies enough winter chill for some plants that need it, it is not too cold (with a little protection) for many of the hardier sub-tropicals like amaryllis. It is too hot, too cold, and too dry for fuchsias but cold enough for tree peonies and many apple varieties, and mild enough for a number of avocado varieties. Zone 18 never supplied much commercial citrus, but home gardeners who can tolerate occasional minor fruit loss can grow citrus here. Over a 20-year period, winter lows averaged from 22 to 17°F (–6 to –8°F).The all-time lows recorded by different weather stations in Zone 18 ranged from 22 to 7°F (–6 to –14°C).ZONE 19: Thermal belts around Southern California's interior valleysLike that of neighboring Zone 18, the climate in Zone 19 is little influenced by the ocean. Both zones, then, have very poor climates for such plants as fuchsias, rhododendrons, and tuberous begonias. Many sections of Zone 19 have always been prime citrus-growing country—especially for those kinds that need extra summer heat in order to grow sweet fruit. Likewise, macadamia nuts and most avocados can be grown here. The Western Plant Encyclopedia cites many ornamental plants that do well in Zone 19 but are not recommended for its neighbor because of the milder winters in Zone 19. Plants that grow well here, but not in much colder zones, include bougainvillea, bouvardia, calocephalus, Cape chestnut (Calodendrum), flame pea (Chorizema), several kinds of coral tree (Erythrina), livistona palms, Mexican blue and San Jose hesper palms (Brahea armata, B. brandegeei), giant Burmese honeysuckle (Lonicera hildebrandiana), myoporum, several of the more tender pittosporums, and lady palm (Rhapis excelsa). Extreme winter lows over a 20-year period ranged from 28 to 22°F (–2 to –6°C) and the all-time lows at different weather stations range from 23 to 17°F (–5 to –8°C). These are considerably higher than the temperatures in neighboring Zone 18.ZONE 20: Cool winters in Southern CaliforniaIn Zones 20 and 21, the same relative pattern prevails as in Zones 18 and 19. The even-numbered zone is the climate made up of cold-air basins and hilltops, and the odd-numbered one comprises thermal belts. The difference is that Zones 20 and 21 get weather influenced by both maritime air and interior air. In these transitional areas, climate boundaries often move 20 miles in 24 hours with the movements of these air masses. Because of the greater ocean influence, this climate supports a wide variety of plants. You can see the range of them at the Los Angeles County Arboretum in Arcadia. Typical winter lows are 37° to 43°F (3 to 6°C); extreme 20-year lows average from 25 to 22°F (–4 to –6°C).All-time record lows range from 21 to 14°F (–6 to –10°C).ZONE 21: Thermal belts in Southern CaliforniaThe combination of weather influences described for Zone 20 applies to Zone 21 as well. Your garden can be in ocean air or a high fog one day and in a mass of interior air (perhaps a drying Santa Ana wind from the desert) the next day. Because temperatures rarely drop very far below 30°F (–1°C), this is fine citrus growing country. At the same time, Zone 21 is also the mildest zone that gets sufficient winter chilling for most forms of lilacs and certain other chill-loving plants. Extreme lows—the kind you see once every 10 or 20 years—in Zone 21 average 28 to 25°F (–2 to –4°C).All-time record lows in the zone were 27 to 17°F (–3 to –8°C).ZONE 22: Cold-winter portions of Southern CaliforniaAreas falling in Zone 22 have a coastal climate (they are influenced by the ocean approximately 85 percent of the time).When temperatures drop in winter, these cold-air basins or hilltops above the air-drained slopes have lower winter temperatures than those in neighboring Zone 23. Actually, the winters are so mild here that lows seldom fall below freezing. Extreme winter lows (the coldest temperature you can expect in 20 years) average 28 to 25°F (–2 to –4°C). Gardeners who plant under overhangs or tree canopies can grow subtropical plants that would otherwise be burned by a rare frost. Such plants include bananas, tree ferns, and the like. The lack of a pronounced chilling period during the winter limits the use of such deciduous woody plants as flowering cherry and lilac. Many herbaceous perennials from colder regions fail here because the winters are too warm for them to go dormant.ZONE 23: Thermal belts of Southern CaliforniaOne of the most favored areas in North America for growing subtropical plants, Zone 23 has always been Southern California’s best zone for avocados. Frosts don’t amount to much here, because 85 percent of the time, Pacific Ocean weather dominates; interior air rules only 15 percent of the time. A notorious portion of this 15 percent consists of those days when hot, dry Santa Ana winds blow. Zone 23 lacks either the summer heat or the winter cold necessary to grow pears, most apples, and most peaches. But it enjoys considerably more heat than Zone 24—enough to put the sweetness in ‘Valencia’ oranges, for example—but not enough for ‘Washington’ naval oranges, which are grown farther inland. Temperatures are mild here, but severe winters descend at times. Average lows range from 43 to 48°F (6 to 9°C), while extreme lows average from 34 to 27°F (1 to –3°C).ZONE 24: Marine influence along the Southern California coastStretched along Southern California’s beaches, this climate zone is almost completely dominated by the ocean. Where the beach runs along high cliffs or palisades, Zone 24 extends only to that barrier. But where hills are low or nonexistent, it runs inland several miles.This zone has a mild marine climate (milder than Northern California’s maritime Zone 17) because south of Point Conception, the Pacific is comparatively warm. The winters are mild, the summers cool, and the air seldom really dry. On many days in spring and early summer, the sun doesn’t break through the high overcast until afternoon. Tender perennials like geraniums and impatiens rarely go out of bloom here; spathiphyllums and pothos become outdoor plants; and tender palms are safe from killing frosts. In this climate, gardens that include such plants as ornamental figs, rubber trees, and scheffleras can become jungles.Zone 24 is coldest at the mouths of canyons that channel cold air down from the mountains on clear winter nights. Several such canyons between Laguna Beach and San Clemente are visible on the map. Numerous others touch the coast between San Clemente and the Mexican border. Partly because of the unusually low temperatures created by this canyon action, there is a broad range of winter lows in Zone 24. Winter lows average from 42°F (5°C) in Santa Barbara to 48°F (9°C) in San Diego. Extreme cold averages from 35° to 28°F (2 to –2°C), with all-time lows in the coldest stations at about 20°F (–6°C).The all-time high temperatures aren’t greatly significant in terms of plant growth. The average all-time high of weather stations in Zone 24 is 105°F (41°C). Record heat usually comes in early October, carried to the coast by Santa Ana winds. The wind’s power and dryness usually causes more problems than the heat itself—but you can ameliorate scorching with frequent sprinkling.
Regional boundaries for use by CA Nature to support activities related to Executive Order N-82-20. These include California's 30x30 effort, Climate Smart Land Strategies, and equitable access to open space. This layer is derived from the 4th California Climate Assessment regions, and enhanced using the California County Boundaries dataset (version 19.1) maintained by the California Department of Forestry and Fire Protection's Fire Resource Assessment Program, and the 3 Nautical Mile marine boundary for California sourced from the California Department of Fish and Wildlife.
Local climate zones have been developed in the climatology field to characterize the landscape surrounding climate monitoring stations, toward adjusting for local landscape influences on measured temperature trends. For example, a station surrounded by tall buildings may be influenced by the urban heat island effect compared to a station in an agricultural area. The local climate zone classification system was developed by Iain Stewart and Tim Oke at the University of British Columbia. The classification scheme has been adopted by the World Urban Database Access and Tools Portal (WUDAPT) project, which aims to produce local climate zone maps for the entire world at a scale of ~ 100m. Local climate zones take building and vegetation type and height into account, and therefore serve as indicators of urban form, from dense urban (high building with little vegetation) to industrial/commercial (large lowrise buildings with paved areas) and natural (dense trees, low plants, water). How local climate zones are related to human health is a new area of research.CANUE staff and students worked in collaboratation with WUDAPT researchers to map local climate zones for Canada, using scripts developed in Google Earth Engine and applied to LandSat imagery for key time periods. Each postal code has been assigned to one of 14 local climate zone classes. In adition, seven groups have been created by aggregating similar local climate zones, and the percentage of group in the neighbourhood (1km2) around each postal code has been calculated.
The California State Energy Commission established climate zones that represent an area for which an energy budget is established. An energy budget is the maximum amount of energy that a building, or portion of a building can be designed to consume per year.
The United States Geological Survey has published "An assessment of the representation of ecosystems in global protected areas using new maps of World Climate Regions and World Ecosystems" in Global Ecology and Conservation Journal. This work was produced by a team led by Roger Sayre, Ph.D., Senior Scientist for Ecosytems at the USGS Land Change Science Program with the support from The Nature Conservancy and Esri. We described this work using two introduction story maps, Introduction to World Ecosystems Map and Introduction to World Climate Regions Map. This story map is an introduction for World Climate Regions Map. You can have more information by accessing the published paper and you can access the dataset by downloading the pro package.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The HOT2000 software contains monthly and annual climate data for 403 locations in Canada. Boundary lines for HOT2000 climate zones were defined through spatial interpolation of the annual Celsius heating degree-days for each weather station. In a number of instances, the positions of boundary lines may not be representative of the local climate conditions due to lack of appropriate climate data. Each HOT2000 climate zone contains one weather station to be used for all locations within the zone. Climate data represent 20-year averaged data from 1998 to 2017 for locations south of 58° latitude and 13-year averaged data from 2005 to 2017 for locations north of 58° latitude. Note that Whistler, BC uses 13 years of data. The following information is available in the climate map:
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Contained within 3rd Edition (1957) of the Atlas of Canada is a map that shows the division of Canada into climatic regions according to the classification of the climates of the world developed by W. Koppen. Koppen first divided the world into five major divisions to which he assigned the letters A, B, C, D, and E. The letters represent the range of divisions from tropical climate (A) to polar climate (E). There are no A climates in Canada. The descriptions of the four remaining major divisions are given in the map legend. Koppen then divided the large divisions into a number of climatic types in accordance with temperature differences and variations in the amounts and distribution of precipitation, on the basis of which he added certain letters to the initial letter denoting the major division. The definitions of the additional letters which apply in Canada are also given when they first appear in the map legend. Thus b is defined under Csb and the definition is, therefore, not repeated under Cfb, Dfb or Dsb. For this map, the temperature and precipitation criteria established by Koppen have been applied to Canadian data for a standard thirty year period (1921 to 1950 inclusive).
https://www.durham.ca/en/regional-government/resources/Documents/OpenDataLicenceAgreement.pdfhttps://www.durham.ca/en/regional-government/resources/Documents/OpenDataLicenceAgreement.pdf
This dataset represents future climate change projections for Durham Region developed as part of the Guide to Conducting a Climate Change Analysis: Lessons Learned in Durham Region (2020). The dataset includes summary information for 52 climate parameters under the RCP8.5 (business-as-usual or high emissions) and RCP4.5 (moderate) emissions scenario for the short (2011-2040), medium (2041-2070) and long-term (2071-2100) future using an ensemble of climate models. For more information, visit https://www.durham.ca/en/living-here/climateenergyandresilience.aspx?_mid_=32210. A copy of the Guide can be made available upon request.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These boundaries define the regions used in by CA Nature to support activities related to Executive Order N-82-20. These include California's 30x30 effort, Climate Smart Land Strategies, and equitable access to open space. This layer is derived from the 4th California Climate Assessment regions, and enhanced using the California County Boundaries dataset (version 19.1) maintained by the California Department of Forestry and Fire Protection's Fire Resource Assessment Program, and the 3 Nautical Mile marine boundary for California sourced from the National Oceanographic and Atmospheric Administration.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Contained within the 5th Edition (1978 to 1995) of the National Atlas of Canada is a map that shows the distribution for the two moisture aspects of Thornthwaite's climate classification system. The moisture regions are shown as coloured areas representing six moist and three dry climates; and seasonal variation of effective moisture shown as linework indicating dry periods in moist climates and moist periods in dry climates.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Municipalities with established populations of Ixodes scapularis ticks (blacklegged ticks) are municipalities where tick populations reproduce and survive from one year to the next. This indicator makes it possible to identify municipalities where their presence suggests a higher risk of tick bites and the transmission of diseases, such as Lyme disease, anaplasmosis or babesiosis. In other municipalities without an established population, the presence of ticks is possible, as ticks can be carried there by birds or terrestrial mammals. The data used to build this indicator come from passive and active acarological surveillance. Active and passive surveillance data were accumulated and then aggregated by municipality and by year. This made it possible to determine whether an established tick population is identified by the indicator at least 1 year over the study period. The climate zone favorable to the establishment of ticks Ixodes scapularis highlights the areas where the estimated temperature would be favorable to the establishment of tick populations in Quebec. An area where the climate is favorable for the establishment of tick populations is defined by an annual number of degree-days above 0°C (DJ0). This indicator was calculated for the historical surveys 2009-2017 (current distribution) and for the horizons of 2030, 2050 and 2080 according to the climate scenarios SSP2-4.5 and SSP3-7.0 (future distribution). The DJ0 are calculated by calculating the difference between the daily mean temperature and the 0°C reference temperature used in this situation, then interpolating on a 10km x 10km grid. The final DJ0 value used is the 50th percentile. For more information on municipalities with established populations of ticks Ixodes scapularis or the climatic zones favorable to their establishment, you can consult the * Methodological Report * OR the * INSPQ Web site, Current and future distribution maps of zoonoses in Quebec .This third party metadata element was translated using an automated translation tool (Amazon Translate).*
PRC 4201 - 4204 and Govt. Code 51175-89 direct the California Department of Forestry and Fire Protection (CAL FIRE) to map areas of significant fire hazards based on fuels, terrain, weather, and other relevant factors. These zones, referred to as Fire Hazard Severity Zones (FHSZ), define the application of various mitigation strategies to reduce risk associated with wildland fires. CAL FIRE is remapping Fire Hazard Severity Zones (FHSZ) for State Responsibility Areas (SRA) and Very High Fire Hazard Severity Zones (VHFHSZ) recommendations in Local Responsibility Areas (LRA) to provide updated map zones, based on new data, science, and technology. This specific dataset is used to create the offical "Maps of Fire Hazard Severity Zones in the State Responsibility Area of California" as required by Public Resources Code 4201-4204 and entitled in the California Code of Regulation, Title 14, Section 1280 Fire Hazard Severity Zones, and as adopted by CAL FIRE on November 7, 2007 Maps of the adopted zones in SRA are available at: http://frap.cdf.ca.gov/projects/hazard/fhz.html More information about the project can be found at: http://frap.cdf.ca.gov/projects/hazard/hazard.html
The Fire Hazard Severity Zone maps are developed using a science-based and field-tested model that assigns a hazard score based on the factors that influence fire likelihood and fire behavior. Many factors are considered such as fire history, existing and potential fuel (natural vegetation), predicted flame length, blowing embers, terrain, and typical fire weather for the area. There are three levels of hazard in the State Responsibility Areas: moderate, high and very high. Urban and wildland areas are treated differently in the model, but the model does recognize the influence of burning embers traveling into urban areas, which is a major cause of fire spread.CAL FIRE adopted Fire Hazard Severity Zone maps for State Responsibility Areas in November 2007. The maps and related regulations were approved by the Office of Administrative Law.Source: https://osfm.fire.ca.gov/divisions/wildfire-planning-engineering/wildland-hazards-building-codes/fire-hazard-severity-zones-maps/
This is the Web Map Server of DWD.:The German Meteorological Service (DWD) manages the Regional Climate Centre (RCC) for the region RA IV (Europe) as part of the activities of the World Meteorological Organisation (WMO). One of the tasks of the DWD is to support the national weather services in setting up the Climate Watch service. In this context, observations of extreme events are to be collected, which are to be used as supplementary information in the development of long-term forecasts and serve as a basis for the assessment of potential damage.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically