39 datasets found
  1. Vital Signs: Population – by county

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Oct 31, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Finance (2019). Vital Signs: Population – by county [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Population-by-county/53v3-ss53
    Explore at:
    xml, csv, xlsxAvailable download formats
    Dataset updated
    Oct 31, 2019
    Dataset authored and provided by
    California Department of Financehttps://dof.ca.gov/
    Description

    VITAL SIGNS INDICATOR Population (LU1)

    FULL MEASURE NAME Population estimates

    LAST UPDATED October 2019

    DESCRIPTION Population is a measurement of the number of residents that live in a given geographical area, be it a neighborhood, city, county or region.

    DATA SOURCES U.S Census Bureau: Decennial Census No link available (1960-1990) http://factfinder.census.gov (2000-2010)

    California Department of Finance: Population and Housing Estimates Table E-6: County Population Estimates (1961-1969) Table E-4: Population Estimates for Counties and State (1971-1989) Table E-8: Historical Population and Housing Estimates (2001-2018) Table E-5: Population and Housing Estimates (2011-2019) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/

    U.S. Census Bureau: Decennial Census - via Longitudinal Tract Database Spatial Structures in the Social Sciences, Brown University Population Estimates (1970 - 2010) http://www.s4.brown.edu/us2010/index.htm

    U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2011-2017) http://factfinder.census.gov

    U.S. Census Bureau: Intercensal Estimates Estimates of the Intercensal Population of Counties (1970-1979) Intercensal Estimates of the Resident Population (1980-1989) Population Estimates (1990-1999) Annual Estimates of the Population (2000-2009) Annual Estimates of the Population (2010-2017) No link available (1970-1989) http://www.census.gov/popest/data/metro/totals/1990s/tables/MA-99-03b.txt http://www.census.gov/popest/data/historical/2000s/vintage_2009/metro.html https://www.census.gov/data/datasets/time-series/demo/popest/2010s-total-metro-and-micro-statistical-areas.html

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) All legal boundaries and names for Census geography (metropolitan statistical area, county, city, and tract) are as of January 1, 2010, released beginning November 30, 2010, by the U.S. Census Bureau. A Priority Development Area (PDA) is a locally-designated area with frequent transit service, where a jurisdiction has decided to concentrate most of its housing and jobs growth for development in the foreseeable future. PDA boundaries are current as of August 2019. For more information on PDA designation see http://gis.abag.ca.gov/website/PDAShowcase/.

    Population estimates for Bay Area counties and cities are from the California Department of Finance, which are as of January 1st of each year. Population estimates for non-Bay Area regions are from the U.S. Census Bureau. Decennial Census years reflect population as of April 1st of each year whereas population estimates for intercensal estimates are as of July 1st of each year. Population estimates for Bay Area tracts are from the decennial Census (1970 -2010) and the American Community Survey (2008-2012 5-year rolling average; 2010-2014 5-year rolling average; 2013-2017 5-year rolling average). Estimates of population density for tracts use gross acres as the denominator.

    Population estimates for Bay Area PDAs are from the decennial Census (1970 - 2010) and the American Community Survey (2006-2010 5 year rolling average; 2010-2014 5-year rolling average; 2013-2017 5-year rolling average). Population estimates for PDAs are derived from Census population counts at the tract level for 1970-1990 and at the block group level for 2000-2017. Population from either tracts or block groups are allocated to a PDA using an area ratio. For example, if a quarter of a Census block group lies with in a PDA, a quarter of its population will be allocated to that PDA. Tract-to-PDA and block group-to-PDA area ratios are calculated using gross acres. Estimates of population density for PDAs use gross acres as the denominator.

    Annual population estimates for metropolitan areas outside the Bay Area are from the Census and are benchmarked to each decennial Census. The annual estimates in the 1990s were not updated to match the 2000 benchmark.

    The following is a list of cities and towns by geographical area: Big Three: San Jose, San Francisco, Oakland Bayside: Alameda, Albany, Atherton, Belmont, Belvedere, Berkeley, Brisbane, Burlingame, Campbell, Colma, Corte Madera, Cupertino, Daly City, East Palo Alto, El Cerrito, Emeryville, Fairfax, Foster City, Fremont, Hayward, Hercules, Hillsborough, Larkspur, Los Altos, Los Altos Hills, Los Gatos, Menlo Park, Mill Valley, Millbrae, Milpitas, Monte Sereno, Mountain View, Newark, Pacifica, Palo Alto, Piedmont, Pinole, Portola Valley, Redwood City, Richmond, Ross, San Anselmo, San Bruno, San Carlos, San Leandro, San Mateo, San Pablo, San Rafael, Santa Clara, Saratoga, Sausalito, South San Francisco, Sunnyvale, Tiburon, Union City, Vallejo, Woodside Inland, Delta and Coastal: American Canyon, Antioch, Benicia, Brentwood, Calistoga, Clayton, Cloverdale, Concord, Cotati, Danville, Dixon, Dublin, Fairfield, Gilroy, Half Moon Bay, Healdsburg, Lafayette, Livermore, Martinez, Moraga, Morgan Hill, Napa, Novato, Oakley, Orinda, Petaluma, Pittsburg, Pleasant Hill, Pleasanton, Rio Vista, Rohnert Park, San Ramon, Santa Rosa, Sebastopol, Sonoma, St. Helena, Suisun City, Vacaville, Walnut Creek, Windsor, Yountville Unincorporated: all unincorporated towns

  2. d

    TIGER/Line Shapefile, 2019, state, California, Current Census Tract...

    • catalog.data.gov
    Updated Oct 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). TIGER/Line Shapefile, 2019, state, California, Current Census Tract State-based [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2019-state-california-current-census-tract-state-based
    Explore at:
    Dataset updated
    Oct 12, 2021
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  3. S

    Vital Signs: Population – Bay Area (2022)

    • splitgraph.com
    • data.bayareametro.gov
    Updated Jun 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    bayareametro-gov (2023). Vital Signs: Population – Bay Area (2022) [Dataset]. https://www.splitgraph.com/bayareametro-gov/vital-signs-population-bay-area-2022-3hev-d86w/
    Explore at:
    application/openapi+json, json, application/vnd.splitgraph.imageAvailable download formats
    Dataset updated
    Jun 20, 2023
    Authors
    bayareametro-gov
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR

    Population (LU1)

    FULL MEASURE NAME

    Population estimates

    LAST UPDATED

    February 2023

    DESCRIPTION

    Population is a measurement of the number of residents that live in a given geographical area, be it a neighborhood, city, county or region.

    DATA SOURCE

    California Department of Finance: Population and Housing Estimates - http://www.dof.ca.gov/Forecasting/Demographics/Estimates/

    Table E-6: County Population Estimates (1960-1970)

    Table E-4: Population Estimates for Counties and State (1970-2021)

    Table E-8: Historical Population and Housing Estimates (1990-2010)

    Table E-5: Population and Housing Estimates (2010-2021)

    Bay Area Jurisdiction Centroids (2020) - https://data.bayareametro.gov/Boundaries/Bay-Area-Jurisdiction-Centroids-2020-/56ar-t6bs

    Computed using 2020 US Census TIGER boundaries

    U.S. Census Bureau: Decennial Census Population Estimates - http://www.s4.brown.edu/us2010/index.htm- via Longitudinal Tract Database Spatial Structures in the Social Sciences, Brown University

    1970-2020

    U.S. Census Bureau: American Community Survey (5-year rolling average; tract) - https://data.census.gov/

    2011-2021

    Form B01003

    Priority Development Areas (Plan Bay Area 2050) - https://opendata.mtc.ca.gov/datasets/MTC::priority-development-areas-plan-bay-area-2050/about

    CONTACT INFORMATION

    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)

    All historical data reported for Census geographies (metropolitan areas, county, city and tract) use current legal boundaries and names. A Priority Development Area (PDA) is a locally-designated area with frequent transit service, where a jurisdiction has decided to concentrate most of its housing and jobs growth for development in the foreseeable future. PDA boundaries are current as of December 2022.

    Population estimates for Bay Area counties and cities are from the California Department of Finance, which are as of January 1st of each year. Population estimates for non-Bay Area regions are from the U.S. Census Bureau. Decennial Census years reflect population as of April 1st of each year whereas population estimates for intercensal estimates are as of July 1st of each year. Population estimates for Bay Area tracts are from the decennial Census (1970-2020) and the American Community Survey (2011-2021 5-year rolling average). Estimates of population density for tracts use gross acres as the denominator.

    Population estimates for Bay Area tracts and PDAs are from the decennial Census (1970-2020) and the American Community Survey (2011-2021 5-year rolling average). Population estimates for PDAs are allocated from tract-level Census population counts using an area ratio. For example, if a quarter of a Census tract lies with in a PDA, a quarter of its population will be allocated to that PDA. Estimates of population density for PDAs use gross acres as the denominator. Note that the population densities between PDAs reported in previous iterations of Vital Signs are mostly not comparable due to minor differences and an updated set of PDAs (previous iterations reported Plan Bay Area 2040 PDAs, whereas current iterations report Plan Bay Area 2050 PDAs).

    The following is a list of cities and towns by geographical area:

    Big Three: San Jose, San Francisco, Oakland

    Bayside: Alameda, Albany, Atherton, Belmont, Belvedere, Berkeley, Brisbane, Burlingame, Campbell, Colma, Corte Madera, Cupertino, Daly City, East Palo Alto, El Cerrito, Emeryville, Fairfax, Foster City, Fremont, Hayward, Hercules, Hillsborough, Larkspur, Los Altos, Los Altos Hills, Los Gatos, Menlo Park, Mill Valley, Millbrae, Milpitas, Monte Sereno, Mountain View, Newark, Pacifica, Palo Alto, Piedmont, Pinole, Portola Valley, Redwood City, Richmond, Ross, San Anselmo, San Bruno, San Carlos, San Leandro, San Mateo, San Pablo, San Rafael, Santa Clara, Saratoga, Sausalito, South San Francisco, Sunnyvale, Tiburon, Union City, Vallejo, Woodside

    Inland, Delta and

    Splitgraph serves as an HTTP API that lets you run SQL queries directly on this data to power Web applications. For example:

    See the Splitgraph documentation for more information.

  4. a

    OCACS 2021 Census Tract Population Density

    • hub.arcgis.com
    • data-ocpw.opendata.arcgis.com
    Updated Sep 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OC Public Works (2023). OCACS 2021 Census Tract Population Density [Dataset]. https://hub.arcgis.com/maps/OCPW::ocacs-2021-census-tract-population-density
    Explore at:
    Dataset updated
    Sep 5, 2023
    Dataset authored and provided by
    OC Public Works
    Area covered
    Description

    US Census American Community Survey (ACS) 2021, 5-year estimates of the key demographic characteristics of Census Tracts geographic level in Orange County, California. The data contains 105 fields for the variable groups D01: Sex and age (universe: total population, table X1, 49 fields); D02: Median age by sex and race (universe: total population, table X1, 12 fields); D03: Race (universe: total population, table X2, 8 fields); D04: Race alone or in combination with one or more other races (universe: total population, table X2, 7 fields); D05: Hispanic or Latino and race (universe: total population, table X3, 21 fields), and; D06: Citizen voting age population (universe: citizen, 18 and over, table X5, 8 fields). The US Census geodemographic data are based on the 2021 TigerLines across multiple geographies. The spatial geographies were merged with ACS data tables. See full documentation at the OCACS project GitHub page (https://github.com/ktalexan/OCACS-Geodemographics).

  5. d

    MCNA - Population Points with T/D Standards

    • catalog.data.gov
    • healthdata.gov
    • +7more
    Updated Aug 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Health Care Services (2025). MCNA - Population Points with T/D Standards [Dataset]. https://catalog.data.gov/dataset/mcna-population-points-with-t-d-standards-53349
    Explore at:
    Dataset updated
    Aug 23, 2025
    Dataset provided by
    California Department of Health Care Services
    Description

    Updated 10/6/2022: In the Time/Distance analysis process, points that were found to have been included initially, but with no significant or year-round population were removed. The layer of removed points is also available for viewing. MCNA - Removed Population PointsThe Network Adequacy Standards Representative Population Points feature layer contains 97,694 points spread across California that were created from USPS postal delivery route data and US Census data. Each population point also contains the variables for Time and Distance Standards for the County that the point is within. These standards differ by County due to the County "type" which is based on the population density of the county. There are 5 county categories within California: Rural (<50 people/sq mile), Small (51-200 people/sq mile), Medium (201-599 people/sq mile), and Dense (>600 people/sq mile). The Time and Distance data is divided out by Provider Type, Adult and Pediatric separately, so that the Time or Distance analysis can be performed with greater detail. HospitalsOB/GYN SpecialtyAdult Cardiology/Interventional CardiologyAdult DermatologyAdult EndocrinologyAdult ENT/OtolaryngologyAdult GastroenterologyAdult General SurgeryAdult HematologyAdult HIV/AIDS/Infectious DiseaseAdult Mental Health Outpatient ServicesAdult NephrologyAdult NeurologyAdult OncologyAdult OphthalmologyAdult Orthopedic SurgeryAdult PCPAdult Physical Medicine and RehabilitationAdult PsychiatryAdult PulmonologyPediatric Cardiology/Interventional CardiologyPediatric DermatologyPediatric EndocrinologyPediatric ENT/OtolaryngologyPediatric GastroenterologyPediatric General SurgeryPediatric HematologyPediatric HIV/AIDS/Infectious DiseasePediatric Mental Health Outpatient ServicesPediatric NephrologyPediatric NeurologyPediatric OncologyPediatric OphthalmologyPediatric Orthopedic SurgeryPediatric PCPPediatric Physical Medicine and RehabilitationPediatric PsychiatryPediatric Pulmonology

  6. C

    California Urban Area Delineations

    • data.ca.gov
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Finance (2025). California Urban Area Delineations [Dataset]. https://data.ca.gov/dataset/california-urban-area-delineations
    Explore at:
    arcgis geoservices rest api, htmlAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset provided by
    Calif. Dept. of Finance Demographic Research Unit
    Authors
    California Department of Finance
    Area covered
    California
    Description

    The Census Bureau released revised delineations for urban areas on December 29, 2022. The new criteria (contained in this Federal Register Notice) is based primarily on housing unit density measured at the census block level. The minimum qualifying threshold for inclusion as an urban area is an area that contains at least 2,000 housing units or has a population of at least 5,000 persons. It also eliminates the classification of areas as “urban clusters/urbanized areas”. This represents a change from 2010, where urban areas were defined as areas consisting of 50,000 people or more and urban clusters consisted of at least 2,500 people but less than 50,000 people with at least 1,500 people living outside of group quarters. Due to the new population thresholds for urban areas, 36 urban clusters in California are no longer considered urban areas, leaving California with 193 urban areas after the new criteria was implemented.

    The State of California experienced an increase of 1,885,884 in the total urban population, or 5.3%. However, the total urban area population as a percentage of the California total population went down from 95% to 94.2%. For more information about the mapped data, download the Excel spreadsheet here.

    Please note that some of the 2020 urban areas have different names or additional place names as a result of the inclusion of housing unit counts as secondary naming criteria.

    Please note there are four urban areas that cross state boundaries in Arizona and Nevada. For 2010, only the parts within California are displayed on the map; however, the population and housing estimates represent the entirety of the urban areas. For 2020, the population and housing unit estimates pertains to the areas within California only.

    Data for this web application was derived from the 2010 and 2020 Censuses (2010 and 2020 Census Blocks, 2020 Urban Areas, and Counties) and the 2016-2020 American Community Survey (2010 -Urban Areas) and can be found at data.census.gov.

    For more information about the urban area delineations, visit the Census Bureau's Urban and Rural webpage and FAQ.

    To view more data from the State of California Department of Finance, visit the Demographic Research Unit Data Hub.

  7. Population density in the U.S. 2023, by state

    • statista.com
    • akomarchitects.com
    Updated Sep 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population density in the U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/183588/population-density-in-the-federal-states-of-the-us/
    Explore at:
    Dataset updated
    Sep 21, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.

  8. MCNA - T/D Standards by County

    • catalog.data.gov
    • data.chhs.ca.gov
    • +7more
    Updated Aug 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Health Care Services (2025). MCNA - T/D Standards by County [Dataset]. https://catalog.data.gov/dataset/mcna-t-d-standards-by-county-079e4
    Explore at:
    Dataset updated
    Aug 23, 2025
    Dataset provided by
    California Department of Health Care Serviceshttp://www.dhcs.ca.gov/
    Description

    The Network Adequacy Standards data is divided out by Provider Type, Adult and Pediatric separately, so that the Time or Distance analysis can be performed with greater detail. These standards differ by County due to the County "type" which is based on the population density of the county. There are 5 county categories within California; Rural (<50 people/sq mile), Small (51-200 people/sq mile), Medium (201-599 people/sq mile), and Dense (>600 people/sq mile).HospitalsOB/GYN SpecialtyAdult Cardiology/Interventional CardiologyAdult DermatologyAdult EndocrinologyAdult ENT/OtolaryngologyAdult GastroenterologyAdult General SurgeryAdult HematologyAdult HIV/AIDS/Infectious DiseaseAdult Mental Health Outpatient ServicesAdult NephrologyAdult NeurologyAdult OncologyAdult OphthalmologyAdult Orthopedic SurgeryAdult PCPAdult Physical Medicine and RehabilitationAdult PsychiatryAdult PulmonologyPediatric Cardiology/Interventional CardiologyPediatric DermatologyPediatric EndocrinologyPediatric ENT/OtolaryngologyPediatric GastroenterologyPediatric General SurgeryPediatric HematologyPediatric HIV/AIDS/Infectious DiseasePediatric Mental Health Outpatient ServicesPediatric NephrologyPediatric NeurologyPediatric OncologyPediatric OphthalmologyPediatric Orthopedic SurgeryPediatric PCPPediatric Physical Medicine and RehabilitationPediatric PsychiatryPediatric Pulmonology

  9. Census of Population and Housing, 2000 [United States]: 1998 Dress...

    • icpsr.umich.edu
    ascii
    Updated Jan 12, 2006
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States. Bureau of the Census (2006). Census of Population and Housing, 2000 [United States]: 1998 Dress Rehearsal, P.L. 94-171 Redistricting Data, Geographic Files for 11 Counties in South Carolina, Sacramento, California, and Menominee County, Wisconsin [Dataset]. http://doi.org/10.3886/ICPSR02913.v1
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Jan 12, 2006
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States. Bureau of the Census
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/2913/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/2913/terms

    Time period covered
    1998
    Area covered
    Columbia, South Carolina, Sacramento, Wisconsin, United States, South Carolina, California
    Description

    The 1998 Dress Rehearsal was conducted as a prelude to the United States Census of Population and Housing, 2000, in the following locations: (1) Columbia, South Carolina, and surrounding areas, including the town of Irmo and the counties of Chester, Chesterfield, Darlington, Fairfield, Kershaw, Lancaster, Lee, Marlboro, Newberry, Richland, and Union, (2) Sacramento, California, and (3) Menominee County, Wisconsin, including the Menominee American Indian Reservation. This collection contains map files showing various levels of geography (in the form of Census Tract Outline Maps, Voting District/State Legislative District Outline Maps, and County Block Maps), TIGER/Line digital files, and Corner Point files for the Census 2000 Dress Rehearsal sites. The Corner Point data files contain the bounding latitude and longitude coordinates for each individual map sheet of the 1998 Dress Rehearsal Public Law (P.L.) 94-171 map products. These files include a sheet identifier, minimum and maximum longitude, minimum and maximum latitude, and the map scale (integer value) for each map sheet. The latitude and longitude coordinates are in decimal degrees and expressed as integer values with six implied decimal places. There is a separate Corner Point File for each of the three map types: County Block Map, Census Tract Outline Map, and Voting District/State Legislative District Outline Map. Each of the three map file types is provided in two formats: Portable Document Format (PDF), for viewing, and Hewlett-Packard Graphics Language (HP-GL) format, for plotting. The County Block Maps show the greatest detail and the most complete set of geographic information of all the maps. These large-scale maps depict the smallest geographic entities for which the Census Bureau presents data -- the census blocks -- by displaying the features that delineate them and the numbers that identify them. These maps show the boundaries, names, and codes for American Indian/Alaska Native areas, county subdivisions, places, census tracts, and, for this series, the geographic entities that the states delineated in Phase 2, Voting District Project, of the Redistricting Data Program. The HP-GL version of the County Block Maps is broken down into index maps and map sheets. The map sheets cover a small area, and the index maps are composed of multiple map sheets, showing the entire area. The intent of the County Block Map series is to provide a map for each county on the smallest possible number of map sheets at the maximum practical scale, dependent on the area size of the county and the density of the block pattern. The latter affects the display of block numbers and feature identifiers. The Census Tract Outline Maps show the boundaries and numbers of census tracts, and name the features underlying the boundaries. These maps also show the boundaries and names of counties, county subdivisions, and places. They identify census tracts in relation to governmental unit boundaries. The mapping unit is the county. These large-format maps are produced to support the P.L. 94-171 program and all other 1998 Dress Rehearsal data tabulations. The Voting District/State Legislative District Outline Maps show the boundaries and codes for voting districts as delineated by the states in Phase 2, Voting District Project, of the Redistricting Data Program. The features underlying the voting district boundaries are shown, as well as the names of these features. Additionally, for states that submit the information, these maps show the boundaries and codes for state legislative districts and their underlying features. These maps also show the boundaries of and names of American Indian/Alaska Native areas, counties, county subdivisions, and places. The scale of the district maps is optimized to keep the number of map sheets for each area to a minimum, but the scale and number of map sheets will vary by the area size of the county and the voting districts and state legislative districts delineated by the states. The Census 2000 Dress Rehearsal TIGER/Line Files consist of line segments representing physical features and governmental and statistical boundaries. The files contain information distributed over a series of record types for the spatial objects of a county. These TIGER/Line Files are an extract of selected geographic and cartographic information from the Census TIGER (Topological

  10. Data from: California Current Ecosystem site, station Orange County, CA...

    • search.dataone.org
    • portal.edirepository.org
    Updated Mar 10, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inter-University Consortium for Political and Social Research; U.S. Bureau of the Census; EcoTrends Project (2015). California Current Ecosystem site, station Orange County, CA (FIPS 6059), study of human population density in units of numberPerKilometerSquared on a yearly timescale [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fecotrends%2F977%2F2
    Explore at:
    Dataset updated
    Mar 10, 2015
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Inter-University Consortium for Political and Social Research; U.S. Bureau of the Census; EcoTrends Project
    Time period covered
    Jan 1, 1900 - Jan 1, 2000
    Area covered
    Variables measured
    YEAR, S_DEV, S_ERR, ID_OBS, N_TRACE, N_INVALID, N_MISSING, N_EXPECTED, N_OBSERVED, N_ESTIMATED, and 3 more
    Description

    The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from California Current Ecosystem (CCE) contains human population density measurements in numberPerKilometerSquared units and were aggregated to a yearly timescale.

  11. d

    2015 Cartographic Boundary File, Urban Area-State-County for California,...

    • catalog.data.gov
    Updated Jan 13, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). 2015 Cartographic Boundary File, Urban Area-State-County for California, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2015-cartographic-boundary-file-urban-area-state-county-for-california-1-5000001
    Explore at:
    Dataset updated
    Jan 13, 2021
    Area covered
    California
    Description

    The 2015 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The records in this file allow users to map the parts of Urban Areas that overlap a particular county. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the "urban footprint." There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The boundaries for counties and equivalent entities are as of January 1, 2010.

  12. Hospital Readmission Rates in California

    • kaggle.com
    zip
    Updated Jan 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Josh Haber (2025). Hospital Readmission Rates in California [Dataset]. https://www.kaggle.com/datasets/joshhaber/hospital-readmission-rates-in-california
    Explore at:
    zip(27207 bytes)Available download formats
    Dataset updated
    Jan 3, 2025
    Authors
    Josh Haber
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    California
    Description

    California offers a uniquely diverse case study for analyzing hospital readmission rates due to its population diversity and socioeconomic disparities. As the most populous state in the United States, with over 39 million residents, it encompasses urban hubs like Los Angeles and San Francisco, rural farming regions in the Central Valley, and varied coastal and mountainous communities. This diversity in population density, income, and healthcare access mirrors the broader challenges of the U.S. healthcare system.

  13. e

    Data from: California Current Ecosystem site, station Los Angeles County, CA...

    • portal.edirepository.org
    • search.dataone.org
    csv
    Updated 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    EDI (2013). California Current Ecosystem site, station Los Angeles County, CA (FIPS 6037), study of human population density in units of numberPerKilometerSquared on a yearly timescale [Dataset]. http://doi.org/10.6073/pasta/e6525b5de9fdc676e14759616ac878de
    Explore at:
    csvAvailable download formats
    Dataset updated
    2013
    Dataset provided by
    EDI
    Time period covered
    1880 - 2000
    Area covered
    Variables measured
    YEAR, S_DEV, S_ERR, ID_OBS, N_TRACE, N_INVALID, N_MISSING, N_EXPECTED, N_OBSERVED, N_ESTIMATED, and 3 more
    Description

    The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities.

    Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office.

    The following dataset from California Current Ecosystem (CCE) contains human population density measurements in numberPerKilometerSquared units and were aggregated to a yearly timescale.

  14. TIGER/Line Shapefile, 2022, State, California, CA, Census Tract

    • catalog.data.gov
    Updated Jan 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (Point of Contact) (2024). TIGER/Line Shapefile, 2022, State, California, CA, Census Tract [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2022-state-california-ca-census-tract
    Explore at:
    Dataset updated
    Jan 28, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    California
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  15. TIGER/Line Shapefile, 2021, State, California, Census Tracts

    • catalog.data.gov
    • datasets.ai
    Updated Nov 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (Publisher) (2022). TIGER/Line Shapefile, 2021, State, California, Census Tracts [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2021-state-california-census-tracts
    Explore at:
    Dataset updated
    Nov 1, 2022
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    California
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  16. Medical Service Study Areas

    • healthdata.gov
    • data.ca.gov
    • +5more
    csv, xlsx, xml
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    chhs.data.ca.gov (2025). Medical Service Study Areas [Dataset]. https://healthdata.gov/State/Medical-Service-Study-Areas/nvx2-hzzm
    Explore at:
    xml, csv, xlsxAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    chhs.data.ca.gov
    Description
    This is the current Medical Service Study Area. California Medical Service Study Areas are created by the California Department of Health Care Access and Information (HCAI).

    Check the Data Dictionary for field descriptions.


    Checkout the California Healthcare Atlas for more Medical Service Study Area information.

    This is an update to the MSSA geometries and demographics to reflect the new 2020 Census tract data. The Medical Service Study Area (MSSA) polygon layer represents the best fit mapping of all new 2020 California census tract boundaries to the original 2010 census tract boundaries used in the construction of the original 2010 MSSA file. Each of the state's new 9,129 census tracts was assigned to one of the previously established medical service study areas (excluding tracts with no land area), as identified in this data layer. The MSSA Census tract data is aggregated by HCAI, to create this MSSA data layer. This represents the final re-mapping of 2020 Census tracts to the original 2010 MSSA geometries. The 2010 MSSA were based on U.S. Census 2010 data and public meetings held throughout California.


    <a href="https://hcai.ca.gov/">https://hcai.ca.gov/</a>

    Source of update: American Community Survey 5-year 2006-2010 data for poverty. For source tables refer to InfoUSA update procedural documentation. The 2010 MSSA Detail layer was developed to update fields affected by population change. The American Community Survey 5-year 2006-2010 population data pertaining to total, in households, race, ethnicity, age, and poverty was used in the update. The 2010 MSSA Census Tract Detail map layer was developed to support geographic information systems (GIS) applications, representing 2010 census tract geography that is the foundation of 2010 medical service study area (MSSA) boundaries. ***This version is the finalized MSSA reconfiguration boundaries based on the US Census Bureau 2010 Census. In 1976 Garamendi Rural Health Services Act, required the development of a geographic framework for determining which parts of the state were rural and which were urban, and for determining which parts of counties and cities had adequate health care resources and which were "medically underserved". Thus, sub-city and sub-county geographic units called "medical service study areas [MSSAs]" were developed, using combinations of census-defined geographic units, established following General Rules promulgated by a statutory commission. After each subsequent census the MSSAs were revised. In the scheduled revisions that followed the 1990 census, community meetings of stakeholders (including county officials, and representatives of hospitals and community health centers) were held in larger metropolitan areas. The meetings were designed to develop consensus as how to draw the sub-city units so as to best display health care disparities. The importance of involving stakeholders was heightened in 1992 when the United States Department of Health and Human Services' Health and Resources Administration entered a formal agreement to recognize the state-determined MSSAs as "rational service areas" for federal recognition of "health professional shortage areas" and "medically underserved areas". After the 2000 census, two innovations transformed the process, and set the stage for GIS to emerge as a major factor in health care resource planning in California. First, the Office of Statewide Health Planning and Development [OSHPD], which organizes the community stakeholder meetings and provides the staff to administer the MSSAs, entered into an Enterprise GIS contract. Second, OSHPD authorized at least one community meeting to be held in each of the 58 counties, a significant number of which were wholly rural or frontier counties. For populous Los Angeles County, 11 community meetings were held. As a result, health resource data in California are collected and organized by 541 geographic units. The boundaries of these units were established by community healthcare experts, with the objective of maximizing their usefulness for needs assessment purposes. The most dramatic consequence was introducing a data simultaneously displayed in a GIS format. A two-person team, incorporating healthcare policy and GIS expertise, conducted the series of meetings, and supervised the development of the 2000-census configuration of the MSSAs.

    MSSA Configuration Guidelines (General Rules):- Each MSSA is composed of one or more complete census tracts.- As a general rule, MSSAs are deemed to be "rational service areas [RSAs]" for purposes of designating health professional shortage areas [HPSAs], medically underserved areas [MUAs] or medically underserved populations [MUPs].- MSSAs will not cross county lines.- To the extent practicable, all census-defined places within the MSSA are within 30 minutes travel time to the largest population center within the MSSA, except in those circumstances where meeting this criterion would require splitting a census tract.- To the extent practicable, areas that, standing alone, would meet both the definition of an MSSA and a Rural MSSA, should not be a part of an Urban MSSA.- Any Urban MSSA whose population exceeds 200,000 shall be divided into two or more Urban MSSA Subdivisions.- Urban MSSA Subdivisions should be within a population range of 75,000 to 125,000, but may not be smaller than five square miles in area. If removing any census tract on the perimeter of the Urban MSSA Subdivision would cause the area to fall below five square miles in area, then the population of the Urban MSSA may exceed 125,000. - To the extent practicable, Urban MSSA Subdivisions should reflect recognized community and neighborhood boundaries and take into account such demographic information as income level and ethnicity. Rural Definitions: A rural MSSA is an MSSA adopted by the Commission, which has a population density of less than 250 persons per square mile, and which has no census defined place within the area with a population in excess of 50,000. Only the population that is located within the MSSA is counted in determining the population of the census defined place. A frontier MSSA is a rural MSSA adopted by the Commission which has a population density of less than 11 persons per square mile. Any MSSA which is not a rural or frontier MSSA is an urban MSSA. Last updated December 6th 2024.
  17. K

    California 2020 Projected Urban Growth

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Oct 13, 2003
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California (2003). California 2020 Projected Urban Growth [Dataset]. https://koordinates.com/layer/670-california-2020-projected-urban-growth/
    Explore at:
    geopackage / sqlite, mapinfo tab, kml, csv, mapinfo mif, geodatabase, dwg, pdf, shapefileAvailable download formats
    Dataset updated
    Oct 13, 2003
    Dataset authored and provided by
    State of California
    License

    https://koordinates.com/license/attribution-3-0/https://koordinates.com/license/attribution-3-0/

    Area covered
    Description

    20 year Projected Urban Growth scenarios. Base year is 2000. Projected year in this dataset is 2020.

    By 2020, most forecasters agree, California will be home to between 43 and 46 million residents-up from 35 million today. Beyond 2020 the size of California's population is less certain. Depending on the composition of the population, and future fertility and migration rates, California's 2050 population could be as little as 50 million or as much as 70 million. One hundred years from now, if present trends continue, California could conceivably have as many as 90 million residents.

    Where these future residents will live and work is unclear. For most of the 20th Century, two-thirds of Californians have lived south of the Tehachapi Mountains and west of the San Jacinto Mountains-in that part of the state commonly referred to as Southern California. Yet most of coastal Southern California is already highly urbanized, and there is relatively little vacant land available for new development. More recently, slow-growth policies in Northern California and declining developable land supplies in Southern California are squeezing ever more of the state's population growth into the San Joaquin Valley.

    How future Californians will occupy the landscape is also unclear. Over the last fifty years, the state's population has grown increasingly urban. Today, nearly 95 percent of Californians live in metropolitan areas, mostly at densities less than ten persons per acre. Recent growth patterns have strongly favored locations near freeways, most of which where built in the 1950s and 1960s. With few new freeways on the planning horizon, how will California's future growth organize itself in space? By national standards, California's large urban areas are already reasonably dense, and economic theory suggests that densities should increase further as California's urban regions continue to grow. In practice, densities have been rising in some urban counties, but falling in others.

    These are important issues as California plans its long-term future. Will California have enough land of the appropriate types and in the right locations to accommodate its projected population growth? Will future population growth consume ever-greater amounts of irreplaceable resource lands and habitat? Will jobs continue decentralizing, pushing out the boundaries of metropolitan areas? Will development densities be sufficient to support mass transit, or will future Californians be stuck in perpetual gridlock? Will urban and resort and recreational growth in the Sierra Nevada and Trinity Mountain regions lead to the over-fragmentation of precious natural habitat? How much water will be needed by California's future industries, farms, and residents, and where will that water be stored? Where should future highway, transit, and high-speed rail facilities and rights-of-way be located? Most of all, how much will all this growth cost, both economically, and in terms of changes in California's quality of life?

    Clearly, the more precise our current understanding of how and where California is likely to grow, the sooner and more inexpensively appropriate lands can be acquired for purposes of conservation, recreation, and future facility siting. Similarly, the more clearly future urbanization patterns can be anticipated, the greater our collective ability to undertake sound city, metropolitan, rural, and bioregional planning.

    Consider two scenarios for the year 2100. In the first, California's population would grow to 80 million persons and would occupy the landscape at an average density of eight persons per acre, the current statewide urban average. Under this scenario, and assuming that 10% percent of California's future population growth would occur through infill-that is, on existing urban land-California's expanding urban population would consume an additional 5.06 million acres of currently undeveloped land. As an alternative, assume the share of infill development were increased to 30%, and that new population were accommodated at a density of about 12 persons per acre-which is the current average density of the City of Los Angeles. Under this second scenario, California's urban population would consume an additional 2.6 million acres of currently undeveloped land. While both scenarios accommodate the same amount of population growth and generate large increments of additional urban development-indeed, some might say even the second scenario allows far too much growth and development-the second scenario is far kinder to California's unique natural landscape.

    This report presents the results of a series of baseline population and urban growth projections for California's 38 urban counties through the year 2100. Presented in map and table form, these projections are based on extrapolations of current population trends and recent urban development trends. The next section, titled Approach, outlines the methodology and data used to develop the various projections. The following section, Baseline Scenario, reviews the projections themselves. A final section, entitled Baseline Impacts, quantitatively assesses the impacts of the baseline projections on wetland, hillside, farmland and habitat loss.

  18. d

    Human Population in the Western United States (1900 - 2000)

    • dataone.org
    • data.wu.ac.at
    Updated Dec 1, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Steven Hanser, USGS-FRESC, Snake River Field Station (2016). Human Population in the Western United States (1900 - 2000) [Dataset]. https://dataone.org/datasets/e4102f83-6264-4903-9105-e7d5e160b98a
    Explore at:
    Dataset updated
    Dec 1, 2016
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Steven Hanser, USGS-FRESC, Snake River Field Station
    Area covered
    Variables measured
    FID, AREA, FIPS, STATE, Shape, COUNTY, STFIPS, PC10-00, PC20-10, PC30-20, and 30 more
    Description

    Map containing historical census data from 1900 - 2000 throughout the western United States at the county level. Data includes total population, population density, and percent population change by decade for each county. Population data was obtained from the US Census Bureau and joined to 1:2,000,000 scale National Atlas counties shapefile.

  19. s

    Population Density Per Acre: San Francisco Bay Area, California, 2000

    • searchworks.stanford.edu
    zip
    Updated May 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Population Density Per Acre: San Francisco Bay Area, California, 2000 [Dataset]. https://searchworks.stanford.edu/view/bf412pw9968
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 4, 2021
    Area covered
    San Francisco Bay Area, California
    Description

    This raster dataset depicts the population denisty of the nine county San Francisco Bay Area Region, California produced with a Dasymetric Mapping Technique, which is used to depict quantitative areal data using boundaries that divide an area into zones of relative homogeneity with the purpose of better portraying the population distribution. The source data was then adjusted in order to get convert the units to persons per acre. This dataset is an accurate representation of population distribution within census boundaries and can be used in a number of ways, including as the Conservation Suitability layer for the Marxan inputs and the watershed integrity analysis.

  20. MCAH Birth File

    • data.napacounty.gov
    csv, xlsx, xml
    Updated Sep 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2023). MCAH Birth File [Dataset]. https://data.napacounty.gov/Health-Outcomes-and-Health-Behaviors/MCAH-Birth-File/fbwd-8yyd/data
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Sep 5, 2023
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    Data Source: CA Department of Public Health, Maternal Child and Adolescent Health Division

    This data biography includes information about who created this data, and how, where, when, and why it was collected. We, the epidemiology team at Napa County Health and Human Services Agency, Public Health Division, created it to help you understand where the data we analyze, and share comes from. If you have any further questions, we can be reached at epidemiology@countyofnapa.org.

    How was the data collected? This data product is the result of the merging of two data files spanning different time periods. The California Birth Statistical Master File from 2007 to 2017 and the California Comprehensive Master Birth File from 2018 to 2021 that replaced the Master File. Additional metrics were included from the calculations off the source datasets. Population Density data from the US Census Bureau American Community Survey 5-year estimates: Poverty States in the past 12 months & Population density data from the California Department of Health Care Access and Information: Healthcare Workforce were included as metrics or to calculate new metrics.

    Who was included and excluded from the data? Birth records from all live births of birthing parent resident of California collected by vital statistics offices throughout the state. Where was the data collected?  Data was collected for all California counties as well as for the state of California. When was the data collected? 2007-2021 Where can I learn more about this data? Data dictionary for the source files used to build the data product can be found here. Detailed definitions assumed for this data product as well as comments on some of the methodologies applied can be found here. For more information overall, please refer to https://www.cdph.ca.gov/Programs/CFH/DMCAH/surveillance/CDPH%20Document%20Library/Data-Dashboards/About-the-Data-Prenatal-Care.pdf.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
California Department of Finance (2019). Vital Signs: Population – by county [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Population-by-county/53v3-ss53
Organization logo

Vital Signs: Population – by county

Explore at:
xml, csv, xlsxAvailable download formats
Dataset updated
Oct 31, 2019
Dataset authored and provided by
California Department of Financehttps://dof.ca.gov/
Description

VITAL SIGNS INDICATOR Population (LU1)

FULL MEASURE NAME Population estimates

LAST UPDATED October 2019

DESCRIPTION Population is a measurement of the number of residents that live in a given geographical area, be it a neighborhood, city, county or region.

DATA SOURCES U.S Census Bureau: Decennial Census No link available (1960-1990) http://factfinder.census.gov (2000-2010)

California Department of Finance: Population and Housing Estimates Table E-6: County Population Estimates (1961-1969) Table E-4: Population Estimates for Counties and State (1971-1989) Table E-8: Historical Population and Housing Estimates (2001-2018) Table E-5: Population and Housing Estimates (2011-2019) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/

U.S. Census Bureau: Decennial Census - via Longitudinal Tract Database Spatial Structures in the Social Sciences, Brown University Population Estimates (1970 - 2010) http://www.s4.brown.edu/us2010/index.htm

U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2011-2017) http://factfinder.census.gov

U.S. Census Bureau: Intercensal Estimates Estimates of the Intercensal Population of Counties (1970-1979) Intercensal Estimates of the Resident Population (1980-1989) Population Estimates (1990-1999) Annual Estimates of the Population (2000-2009) Annual Estimates of the Population (2010-2017) No link available (1970-1989) http://www.census.gov/popest/data/metro/totals/1990s/tables/MA-99-03b.txt http://www.census.gov/popest/data/historical/2000s/vintage_2009/metro.html https://www.census.gov/data/datasets/time-series/demo/popest/2010s-total-metro-and-micro-statistical-areas.html

CONTACT INFORMATION vitalsigns.info@bayareametro.gov

METHODOLOGY NOTES (across all datasets for this indicator) All legal boundaries and names for Census geography (metropolitan statistical area, county, city, and tract) are as of January 1, 2010, released beginning November 30, 2010, by the U.S. Census Bureau. A Priority Development Area (PDA) is a locally-designated area with frequent transit service, where a jurisdiction has decided to concentrate most of its housing and jobs growth for development in the foreseeable future. PDA boundaries are current as of August 2019. For more information on PDA designation see http://gis.abag.ca.gov/website/PDAShowcase/.

Population estimates for Bay Area counties and cities are from the California Department of Finance, which are as of January 1st of each year. Population estimates for non-Bay Area regions are from the U.S. Census Bureau. Decennial Census years reflect population as of April 1st of each year whereas population estimates for intercensal estimates are as of July 1st of each year. Population estimates for Bay Area tracts are from the decennial Census (1970 -2010) and the American Community Survey (2008-2012 5-year rolling average; 2010-2014 5-year rolling average; 2013-2017 5-year rolling average). Estimates of population density for tracts use gross acres as the denominator.

Population estimates for Bay Area PDAs are from the decennial Census (1970 - 2010) and the American Community Survey (2006-2010 5 year rolling average; 2010-2014 5-year rolling average; 2013-2017 5-year rolling average). Population estimates for PDAs are derived from Census population counts at the tract level for 1970-1990 and at the block group level for 2000-2017. Population from either tracts or block groups are allocated to a PDA using an area ratio. For example, if a quarter of a Census block group lies with in a PDA, a quarter of its population will be allocated to that PDA. Tract-to-PDA and block group-to-PDA area ratios are calculated using gross acres. Estimates of population density for PDAs use gross acres as the denominator.

Annual population estimates for metropolitan areas outside the Bay Area are from the Census and are benchmarked to each decennial Census. The annual estimates in the 1990s were not updated to match the 2000 benchmark.

The following is a list of cities and towns by geographical area: Big Three: San Jose, San Francisco, Oakland Bayside: Alameda, Albany, Atherton, Belmont, Belvedere, Berkeley, Brisbane, Burlingame, Campbell, Colma, Corte Madera, Cupertino, Daly City, East Palo Alto, El Cerrito, Emeryville, Fairfax, Foster City, Fremont, Hayward, Hercules, Hillsborough, Larkspur, Los Altos, Los Altos Hills, Los Gatos, Menlo Park, Mill Valley, Millbrae, Milpitas, Monte Sereno, Mountain View, Newark, Pacifica, Palo Alto, Piedmont, Pinole, Portola Valley, Redwood City, Richmond, Ross, San Anselmo, San Bruno, San Carlos, San Leandro, San Mateo, San Pablo, San Rafael, Santa Clara, Saratoga, Sausalito, South San Francisco, Sunnyvale, Tiburon, Union City, Vallejo, Woodside Inland, Delta and Coastal: American Canyon, Antioch, Benicia, Brentwood, Calistoga, Clayton, Cloverdale, Concord, Cotati, Danville, Dixon, Dublin, Fairfield, Gilroy, Half Moon Bay, Healdsburg, Lafayette, Livermore, Martinez, Moraga, Morgan Hill, Napa, Novato, Oakley, Orinda, Petaluma, Pittsburg, Pleasant Hill, Pleasanton, Rio Vista, Rohnert Park, San Ramon, Santa Rosa, Sebastopol, Sonoma, St. Helena, Suisun City, Vacaville, Walnut Creek, Windsor, Yountville Unincorporated: all unincorporated towns

Search
Clear search
Close search
Google apps
Main menu