Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for California (CASTHPI) from Q1 1975 to Q3 2025 about appraisers, CA, HPI, housing, price index, indexes, price, and USA.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The California House Price Prediction system utilizes advanced data analytics to forecast housing prices in the dynamic California real estate market. Drawing from a diverse range of reputable sources including real estate listings, property databases, and government records, this system ensures a robust foundation for analysis. Through meticulous data collection, cleaning, and feature engineering processes, relevant attributes such as property specifications, historical sales data, and neighborhood characteristics are carefully curated to enhance predictive accuracy. Powered by machine learning algorithms, the system provides stakeholders with invaluable insights, empowering them to make informed decisions regarding buying, selling, or investing in California real estate. Whether navigating fluctuating market trends or evaluating property investments, this predictive tool serves as a trusted resource for individuals and professionals alike, facilitating strategic and informed housing decisions.
Facebook
TwitterThe U.S. housing market continues to evolve, with the median price for existing homes forecast to fall to ******* U.S. dollars by 2027. This projection comes after a period of significant growth and recent fluctuations, reflecting the complex interplay of economic factors affecting the real estate sector. The rising costs have not only impacted home prices but also down payments, with the median down payment more than doubling since 2012. Regional variations in housing costs Home prices and down payments vary dramatically across the United States. While the national median down payment stood at approximately ****** U.S. dollars in early 2024, homebuyers in states like California, Massachusetts, and Hawaii faced down payments exceeding ****** U.S. dollars. This disparity highlights the challenges of homeownership in high-cost markets and underscores the importance of location in determining housing affordability. Market dynamics and future outlook The housing market has shown signs of cooling after years of rapid growth, with a modest price increase of *** percent in 2024. This slowdown can be attributed in part to rising mortgage rates, which have tempered demand. Despite these challenges, most states continued to see year-over-year price growth in 2025, with Rhode Island and West Virginia leading the packby home appreciation. As the market adjusts to new economic realities, potential homebuyers and investors alike will be watching closely for signs of stabilization or renewed growth in the coming years.
Facebook
Twitterhttps://www.ycharts.com/termshttps://www.ycharts.com/terms
View quarterly updates and historical trends for California House Price Index. Source: Federal Housing Finance Agency. Track economic data with YCharts an…
Facebook
TwitterThe number of U.S. home sales in the United States declined in 2024, after soaring in 2021. A total of four million transactions of existing homes, including single-family, condo, and co-ops, were completed in 2024, down from 6.12 million in 2021. According to the forecast, the housing market is forecast to head for recovery in 2025, despite transaction volumes expected to remain below the long-term average. Why have home sales declined? The housing boom during the coronavirus pandemic has demonstrated that being a homeowner is still an integral part of the American dream. Nevertheless, sentiment declined in the second half of 2022 and Americans across all generations agreed that the time was not right to buy a home. A combination of factors has led to house prices rocketing and making homeownership unaffordable for the average buyer. A survey among owners and renters found that the high home prices and unfavorable economic conditions were the two main barriers to making a home purchase. People who would like to purchase their own home need to save up a deposit, have a good credit score, and a steady and sufficient income to be approved for a mortgage. In 2022, mortgage rates experienced the most aggressive increase in history, making the total cost of homeownership substantially higher. Are U.S. home prices expected to fall? The median sales price of existing homes stood at 413,000 U.S. dollars in 2024 and was forecast to increase slightly until 2026. The development of the S&P/Case Shiller U.S. National Home Price Index shows that home prices experienced seven consecutive months of decline between June 2022 and January 2023, but this trend reversed in the following months. Despite mild fluctuations throughout the year, home prices in many metros are forecast to continue to grow, albeit at a much slower rate.
Facebook
TwitterThis dataset was created by RahulRajML
Facebook
Twitterhttps://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The US Office Real Estate Market Report is Segmented by Building Grade (Grade A, Grade B, and More), by Transaction Type (Rental and Sales), by End Use (Information Technology (IT & ITES), BFSI (Banking, Financial Services and Insurance), and More) and by States (Texas, California, Florida and More). The Report Offers Market Size and Forecasts in Value (USD) for all the Above Segments.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for Los Angeles County, CA (ATNHPIUS06037A) from 1975 to 2024 about Los Angeles County, CA; Los Angeles; CA; HPI; housing; price index; indexes; price; and USA.
Facebook
TwitterThe median house price of residential real estate in California has increased notably since 2012. After a brief correction in property prices in 2022, the median price reached ******* U.S. dollars in December 2023.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created by Kunal025
Released under Apache 2.0
Facebook
TwitterThis is a regression problem to predict california housing prices.
The dataset contains 20640 entries and 10 variables.
Longitude Latitude Housing Median Age Total Rooms Total Bedrooms Population Households Median Income Median House Value Ocean Proximity Median House Value is to be predicted in this problem.
I have done this project in two parts. First part contains data analysis and cleaning as explained in EDA. Second is training of machine learning models explained in Training Machine Learning Algorithm.
Facebook
Twitterhttps://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/
The Housing Developers industry in California is expected to grow an annualized x% to $x.x billion over the five years to 2025, while the national industry will likely grow at x.x% during the same period. Industry establishments decreased an annualized -x.x% to x,xxx locations. Industry employment has decreased an annualized -x.x% to x,xxx workers, while industry wages have increased an annualized x.x% to $x.x billion.
Facebook
Twitterhttps://www.ycharts.com/termshttps://www.ycharts.com/terms
View quarterly updates and historical trends for California House Price All-Transactions Index. Source: Federal Housing Finance Agency. Track economic dat…
Facebook
Twitterhttps://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The United States Real Estate Services Market Report is Segmented by Property Type (Residential, Commercial), by Service (Brokerage Services, Property Management Services, Valuation Services and More), by Client Type (Individuals/Households, Corporates & SMEs and More), and by States (Texas, California, Florida, New York, Illinois, Rest of US). The Market Forecasts are Provided in Terms of Value (USD).
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
San Francisco Bay Region housing production accelerated in 2014, reflecting an ongoing recovery of the region’s housing market. Yet this recovery remains uneven, according to an Metropolitan Transportation Commission analysis of California Department of Finance data.In order to get a sense of how actual city housing production compares to the Plan Bay Area forecasts, this map was developed to indicate the year a city would be expected to reach its 2040 housing unit projection in the Plan – assuming that the city’s 2014 housing production rate continues unabated over the coming years. Notably, the region’s two largest cities, San Jose and San Francisco, are on track to produce the level of housing envisioned in Plan Bay Area – if their relatively rapid year 2014 housing production rate continues in the years to come. The results are more mixed in the East Bay. Communities such as Dublin, Brentwood, and Antioch producing housing much faster than envisioned in the Plan; in stark contrast, inner East Bay communities like Oakland and Fremont would not meet their 2040 housing forecast until the mid-to-late-2100s at their current rate of production.
Facebook
TwitterVITAL SIGNS INDICATOR
Home Prices (EC7)
FULL MEASURE NAME
Home Prices
LAST UPDATED
December 2022
DESCRIPTION
Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.
DATA SOURCE
Zillow: Zillow Home Value Index (ZHVI) - http://www.zillow.com/research/data/
2000-2021
California Department of Finance: E-4 Historical Population Estimates for Cities, Counties, and the State - https://dof.ca.gov/forecasting/demographics/estimates/
2000-2021
US Census Population and Housing Unit Estimates - https://www.census.gov/programs-surveys/popest.html
2000-2021
Bureau of Labor Statistics: Consumer Price Index - http://data.bls.gov
2000-2021
US Census ZIP Code Tabulation Areas (ZCTAs) - https://www.census.gov/programs-surveys/geography/guidance/geo-areas/zctas.html
2020 Census Blocks
CONTACT INFORMATION
vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator)
Housing price estimates at the regional-, county-, city- and zip code-level come from analysis of individual home sales by Zillow based upon transaction records. Zillow Home Value Index (ZHVI) is a smoothed, seasonally adjusted measure of the typical home value and market changes across a given region and housing type. It reflects the typical value for homes in the 35th to 65th percentile range. ZHVI is computed from public record transaction data as reported by counties. All standard real estate transactions are included in this metric, including REO sales and auctions. Zillow makes a substantial effort to remove transactions not typically considered a standard sale. Examples of these include bank takeovers of foreclosed properties, title transfers after a death or divorce and non arms-length transactions. Zillow defines all homes as single-family residential, condominium and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that can be owned in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums in that the homeowners own shares in the corporation that owns the building, not the actual units themselves.
For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Data is adjusted for inflation using Bureau of Labor Statistics metropolitan statistical area (MSA)-specific series. Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index (CPI) does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of the CPI itself.
Facebook
TwitterAll the following text is copied directly from the original dataset used: https://www.kaggle.com/datasets/fedesoriano/the-boston-houseprice-data
The only difference is that features 12 and 13 have been removed for simplicity. See original link for a version with those features in place.
Gender Pay Gap Dataset: https://www.kaggle.com/fedesoriano/gender-pay-gap-dataset
California Housing Prices Data (5 new features!): https://www.kaggle.com/fedesoriano/california-housing-prices-data-extra-features
Company Bankruptcy Prediction: https://www.kaggle.com/fedesoriano/company-bankruptcy-prediction
Spanish Wine Quality Dataset: https://www.kaggle.com/datasets/fedesoriano/spanish-wine-quality-dataset
The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978.
Input features in order:
1) CRIM: per capita crime rate by town
2) ZN: proportion of residential land zoned for lots over 25,000 sq.ft.
3) INDUS: proportion of non-retail business acres per town
4) CHAS: Charles River dummy variable (1 if tract bounds river; 0 otherwise)
5) NOX: nitric oxides concentration (parts per 10 million) [parts/10M]
6) RM: average number of rooms per dwelling
7) AGE: proportion of owner-occupied units built prior to 1940
8) DIS: weighted distances to five Boston employment centres
9) RAD: index of accessibility to radial highways
10) TAX: full-value property-tax rate per $10,000 [$/10k]
11) PTRATIO: pupil-teacher ratio by town
[Original features 12 and 13 have been deliberately removed from this version of the dataset]
Output variable:
1) MEDV: Median value of owner-occupied homes in $1000's [k$]
StatLib - Carnegie Mellon University
Harrison, David & Rubinfeld, Daniel. (1978). Hedonic housing prices and the demand for clean air. Journal of Environmental Economics and Management. 5. 81-102. 10.1016/0095-0696(78)90006-2. https://www.researchgate.net/profile/Daniel-Rubinfeld/publication/4974606_Hedonic_housing_prices_and_the_demand_for_clean_air/links/5c38ce85458515a4c71e3a64/Hedonic-housing-prices-and-the-demand-for-clean-air.pdf
Belsley, David A. & Kuh, Edwin. & Welsch, Roy E. (1980). Regression diagnostics: identifying influential data and sources of collinearity. New York: Wiley https://www.wiley.com/en-us/Regression+Diagnostics%3A+Identifying+Influential+Data+and+Sources+of+Collinearity-p-9780471691174
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for Orange County, CA (ATNHPIUS06059A) from 1975 to 2024 about Orange County, CA; Los Angeles; CA; HPI; housing; price index; indexes; price; and USA.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for San Diego-Chula Vista-Carlsbad, CA (MSA) (ATNHPIUS41740Q) from Q4 1975 to Q2 2025 about San Diego, appraisers, CA, HPI, housing, price index, indexes, price, and USA.
Facebook
Twitterhttps://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/
The Real Estate Asset Management & Consulting industry in California is expected to grow an annualized x.x% to $x.x billion over the five years to 2025, while the national industry will likely grow at x.x% during the same period. Industry establishments increased an annualized x.x% to x,xxx locations. Industry employment has increased an annualized x.x% to x,xxx workers, while industry wages have decreased an annualized -x.x% to $x.x billion.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for California (CASTHPI) from Q1 1975 to Q3 2025 about appraisers, CA, HPI, housing, price index, indexes, price, and USA.