10 datasets found
  1. c

    2011 11: Travel Time and Housing Price Maps: 390 Main Street

    • opendata.mtc.ca.gov
    • hub.arcgis.com
    Updated Nov 16, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MTC/ABAG (2011). 2011 11: Travel Time and Housing Price Maps: 390 Main Street [Dataset]. https://opendata.mtc.ca.gov/documents/8fc4c0f83f484bbc8773d5a902dc261a
    Explore at:
    Dataset updated
    Nov 16, 2011
    Dataset authored and provided by
    MTC/ABAG
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The travel time data on this map is modeled from a 2005 transit network. The home values are as of 2000 and are expressed in year 2000 dollars. The home value estimates were created by the Association of Bay Area Governements by combining ParcelQuest real estate transaction data and real estate tax assessment data. This information can be generated for any address in the region using an interactive mapping tool available under Maps at onebayarea.org/maps.htm (Note - this tool is no longer available).

  2. u

    House Sales in Ontario - Catalogue - Canadian Urban Data Catalogue (CUDC)

    • beta.data.urbandatacentre.ca
    • data.urbandatacentre.ca
    Updated Mar 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). House Sales in Ontario - Catalogue - Canadian Urban Data Catalogue (CUDC) [Dataset]. https://beta.data.urbandatacentre.ca/dataset/house-sales-in-ontario
    Explore at:
    Dataset updated
    Mar 20, 2023
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Ontario
    Description

    This dataset includes the listing prices for the sale of properties (mostly houses) in Ontario. They are obtained for a short period of time in July 2016 and include the following fields: Price in dollars Address of the property Latitude and Longitude of the address obtained by using Google Geocoding service Area Name of the property obtained by using Google Geocoding service This dataset will provide a good starting point for analyzing the inflated housing market in Canada although it does not include time related information. Initially, it is intended to draw an enhanced interactive heatmap of the house prices for different neighborhoods (areas) However, if there is enough interest, there will be more information added as newer versions to this dataset. Some of those information will include more details on the property as well as time related information on the price (changes). This is a somehow related articles about the real estate prices in Ontario: http://www.canadianbusiness.com/blogs-and-comment/check-out-this-heat-map-of-toronto-real-estate-prices/ I am also inspired by this dataset which was provided for King County https://www.kaggle.com/harlfoxem/housesalesprediction

  3. F

    Housing Inventory: Median Listing Price per Square Feet in Los Angeles...

    • fred.stlouisfed.org
    json
    Updated Jul 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Housing Inventory: Median Listing Price per Square Feet in Los Angeles County, CA [Dataset]. https://fred.stlouisfed.org/series/MEDLISPRIPERSQUFEE6037
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 10, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    Los Angeles County, California
    Description

    Graph and download economic data for Housing Inventory: Median Listing Price per Square Feet in Los Angeles County, CA (MEDLISPRIPERSQUFEE6037) from Jul 2016 to Jun 2025 about Los Angeles County, CA; Los Angeles; square feet; CA; listing; median; price; and USA.

  4. Cost of living index in the U.S. 2024, by state

    • statista.com
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cost of living index in the U.S. 2024, by state [Dataset]. https://www.statista.com/statistics/1240947/cost-of-living-index-usa-by-state/
    Explore at:
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.

  5. M

    Vital Signs: List Rents – by city

    • open-data-demo.mtc.ca.gov
    • data.bayareametro.gov
    application/rdfxml +5
    Updated Jan 19, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    real Answers (2017). Vital Signs: List Rents – by city [Dataset]. https://open-data-demo.mtc.ca.gov/dataset/Vital-Signs-List-Rents-by-city/vpmm-yh3p/about
    Explore at:
    tsv, csv, json, xml, application/rdfxml, application/rssxmlAvailable download formats
    Dataset updated
    Jan 19, 2017
    Dataset authored and provided by
    real Answers
    Description

    VITAL SIGNS INDICATOR List Rents (EC9)

    FULL MEASURE NAME List Rents

    LAST UPDATED October 2016

    DESCRIPTION List rent refers to the advertised rents for available rental housing and serves as a measure of housing costs for new households moving into a neighborhood, city, county or region.

    DATA SOURCE real Answers (1994 – 2015) no link

    Zillow Metro Median Listing Price All Homes (2010-2016) http://www.zillow.com/research/data/

    CONTACT INFORMATION vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator) List rents data reflects median rent prices advertised for available apartments rather than median rent payments; more information is available in the indicator definition above. Regional and local geographies rely on data collected by real Answers, a research organization and database publisher specializing in the multifamily housing market. real Answers focuses on collecting longitudinal data for individual rental properties through quarterly surveys. For the Bay Area, their database is comprised of properties with 40 to 3,000+ housing units. Median list prices most likely have an upward bias due to the exclusion of smaller properties. The bias may be most extreme in geographies where large rental properties represent a small portion of the overall rental market. A map of the individual properties surveyed is included in the Local Focus section.

    Individual properties surveyed provided lower- and upper-bound ranges for the various types of housing available (studio, 1 bedroom, 2 bedroom, etc.). Median lower- and upper-bound prices are determined across all housing types for the regional and county geographies. The median list price represented in Vital Signs is the average of the median lower- and upper-bound prices for the region and counties. Median upper-bound prices are determined across all housing types for the city geographies. The median list price represented in Vital Signs is the median upper-bound price for cities. For simplicity, only the mean list rent is displayed for the individual properties. The metro areas geography rely upon Zillow data, which is the median price for rentals listed through www.zillow.com during the month. Like the real Answers data, Zillow's median list prices most likely have an upward bias since small properties are underrepresented in Zillow's listings. The metro area data for the Bay Area cannot be compared to the regional Bay Area data. Due to afore mentioned data limitations, this data is suitable for analyzing the change in list rents over time but not necessarily comparisons of absolute list rents. Metro area boundaries reflects today’s metro area definitions by county for consistency, rather than historical metro area boundaries.

    Due to the limited number of rental properties surveyed, city-level data is unavailable for Atherton, Belvedere, Brisbane, Calistoga, Clayton, Cloverdale, Cotati, Fairfax, Half Moon Bay, Healdsburg, Hillsborough, Los Altos Hills, Monte Sereno, Moranga, Oakley, Orinda, Portola Valley, Rio Vista, Ross, San Anselmo, San Carlos, Saratoga, Sebastopol, Windsor, Woodside, and Yountville.

    Inflation-adjusted data are presented to illustrate how rents have grown relative to overall price increases; that said, the use of the Consumer Price Index does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself. Percent change in inflation-adjusted median is calculated with respect to the median price from the fourth quarter or December of the base year.

  6. a

    Estimated Displacement Risk - Overall Displacement

    • affh-data-resources-cahcd.hub.arcgis.com
    • affh-data-and-mapping-resources-v-2-0-cahcd.hub.arcgis.com
    Updated Sep 27, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Housing and Community Development (2022). Estimated Displacement Risk - Overall Displacement [Dataset]. https://affh-data-resources-cahcd.hub.arcgis.com/datasets/CAHCD::estimated-displacement-risk-overall-displacement/about
    Explore at:
    Dataset updated
    Sep 27, 2022
    Dataset authored and provided by
    Housing and Community Development
    Area covered
    Description

    Urban Displacement Project’s (UDP) Estimated Displacement Risk (EDR) model for California identifies varying levels of displacement risk for low-income renter households in all census tracts in the state from 2015 to 2019(1). The model uses machine learning to determine which variables are most strongly related to displacement at the household level and to predict tract-level displacement risk statewide while controlling for region. UDP defines displacement risk as a census tract with characteristics which, according to the model, are strongly correlated with more low-income population loss than gain. In other words, the model estimates that more low-income households are leaving these neighborhoods than moving in.This map is a conservative estimate of low-income loss and should be considered a tool to help identify housing vulnerability. Displacement may occur because of either investment, disinvestment, or disaster-driven forces. Because this risk assessment does not identify the causes of displacement, UDP does not recommend that the tool be used to assess vulnerability to investment such as new housing construction or infrastructure improvements. HCD recommends combining this map with on-the-ground accounts of displacement, as well as other related data such as overcrowding, cost burden, and income diversity to achieve a full understanding of displacement risk.If you see a tract or area that does not seem right, please fill out this form to help UDP ground-truth the method and improve their model.How should I read the displacement map layers?The AFFH Data Viewer includes three separate displacement layers that were generated by the EDR model. The “50-80% AMI” layer shows the level of displacement risk for low-income (LI) households specifically. Since UDP has reason to believe that the data may not accurately capture extremely low-income (ELI) households due to the difficulty in counting this population, UDP combined ELI and very low-income (VLI) household predictions into one group—the “0-50% AMI” layer—by opting for the more “extreme” displacement scenario (e.g., if a tract was categorized as “Elevated” for VLI households but “Extreme” for ELI households, UDP assigned the tract to the “Extreme” category for the 0-50% layer). For these two layers, tracts are assigned to one of the following categories, with darker red colors representing higher displacement risk and lighter orange colors representing less risk:• Low Data Quality: the tract has less than 500 total households and/or the census margins of error were greater than 15% of the estimate (shaded gray).• Lower Displacement Risk: the model estimates that the loss of low-income households is less than the gain in low-income households. However, some of these areas may have small pockets of displacement within their boundaries. • At Risk of Displacement: the model estimates there is potential displacement or risk of displacement of the given population in these tracts.• Elevated Displacement: the model estimates there is a small amount of displacement (e.g., 10%) of the given population.• High Displacement: the model estimates there is a relatively high amount of displacement (e.g., 20%) of the given population.• Extreme Displacement: the model estimates there is an extreme level of displacement (e.g., greater than 20%) of the given population. The “Overall Displacement” layer shows the number of income groups experiencing any displacement risk. For example, in the dark red tracts (“2 income groups”), the model estimates displacement (Elevated, High, or Extreme) for both of the two income groups. In the light orange tracts categorized as “At Risk of Displacement”, one or all three income groups had to have been categorized as “At Risk of Displacement”. Light yellow tracts in the “Overall Displacement” layer are not experiencing UDP’s definition of displacement according to the model. Some of these yellow tracts may be majority low-income experiencing small to significant growth in this population while in other cases they may be high-income and exclusive (and therefore have few low-income residents to begin with). One major limitation to the model is that the migration data UDP uses likely does not capture some vulnerable populations, such as undocumented households. This means that some yellow tracts may be experiencing high rates of displacement among these types of households. MethodologyThe EDR is a first-of-its-kind model that uses machine learning and household level data to predict displacement. To create the EDR, UDP first joined household-level data from Data Axle (formerly Infogroup) with tract-level data from the 2014 and 2019 5-year American Community Survey; Affirmatively Furthering Fair Housing (AFFH) data from various sources compiled by California Housing and Community Development; Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination Employment Statistics (LODES) data; and the Environmental Protection Agency’s Smart Location Database.UDP then used a machine learning model to determine which variables are most strongly related to displacement at the household level and to predict tract-level displacement risk statewide while controlling for region. UDP modeled displacement risk as the net migration rate of three separate renter households income categories: extremely low-income (ELI), very low-income (VLI), and low-income (LI). These households have incomes between 0-30% of the Area Median Income (AMI), 30-50% AMI, and 50-80% AMI, respectively. Tracts that have a predicted net loss within these groups are considered to experience displacement in three degrees: elevated, high, and extreme. UDP also includes a “At Risk of Displacement” category in tracts that might be experiencing displacement.What are the main limitations of this map?1. Because the map uses 2019 data, it does not reflect more recent trends. The pandemic, which started in 2020, has exacerbated income inequality and increased housing costs, meaning that UDP’s map likely underestimates current displacement risk throughout the state.2. The model examines displacement risk for renters only, and does not account for the fact that many homeowners are also facing housing and gentrification pressures. As a result, the map generally only highlights areas with relatively high renter populations, and neighborhoods with higher homeownership rates that are known to be experiencing gentrification and displacement are not as prominent as one might expect.3. The model does not incorporate data on new housing construction or infrastructure projects. The map therefore does not capture the potential impacts of these developments on displacement risk; it only accounts for other characteristics such as demographics and some features of the built environment. Two of UDP’s other studies—on new housing construction and green infrastructure—explore the relationships between these factors and displacement.Variable ImportanceFigures 1, 2, and 3 show the most important variables for each of the three models—ELI, VLI, and LI. The horizontal bars show the importance of each variable in predicting displacement for the respective group. All three models share a similar order of variable importance with median rent, percent non-white, rent gap (i.e., rental market pressure calculated using the difference between nearby and local rents), percent renters, percent high-income households, and percent of low-income households driving much of the displacement estimation. Other important variables include building types as well as economic and socio-demographic characteristics. For a full list of the variables included in the final models, ranked by descending order of importance, and their definitions see all three tabs of this spreadsheet. “Importance” is defined in two ways: 1. % Inclusion: The average proportion of times this variable was included in the model’s decision tree as the most important or driving factor.2. MeanRank: The average rank of importance for each variable across the numerous model runs where higher numbers mean higher ranking. Figures 1 through 3 below show each of the model variable rankings ordered by importance. The red lines represent Jenks Breaks, which are designed to sort values into their most “natural” clusters. Variable importance for each model shows a substantial drop-off after about 10 variables, meaning a relatively small number of variables account for a large amount of the predictive power in UDP’s displacement model.Figure 1. Variable Importance for Low Income HouseholdsFor a description of each variable and its source, see this spreadsheet.Figure 2. Variable Importance for Very Low Income HouseholdsFor a description of each variable and its source, see this spreadsheet. Figure 3. Variable Importance for Extremely Low Income HouseholdsFor a description of each variable and its source, see this spreadsheet.Source: Chapple, K., & Thomas, T., and Zuk, M. (2022). Urban Displacement Project website. Berkeley, CA: Urban Displacement Project.(1) UDP used this time-frame because (a) the 2020 census had a large non-response rate and it implemented a new statistical modification that obscures and misrepresents racial and economic characteristics at the census tract level and (b) pandemic mobility trends are still in flux and UDP believes 2019 is more representative of “normal” or non-pandemic displacement trends.

  7. a

    2017 04: Bay Area Sweet Spots

    • hub.arcgis.com
    • opendata.mtc.ca.gov
    Updated Apr 28, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MTC/ABAG (2017). 2017 04: Bay Area Sweet Spots [Dataset]. https://hub.arcgis.com/documents/5c8d5777680a4078a68fc67f1c22c536
    Explore at:
    Dataset updated
    Apr 28, 2017
    Dataset authored and provided by
    MTC/ABAG
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    A recent New York Times article examines one of the biggest drivers in a families' decision to leave cities: school. Using data from a number of sources, the New York Times developed charts that look at school performance and median home sale price per square foot for five metro areas including New York/New Jersey, San Francisco, Boston, Chicago, and Minneapolis.For most of the cities studied, home prices rise with the quality of the school district but a number of districts break this pattern. The map shown highlights five Bay Area schools that perform above average, and have below average housing costs.The New York Times used median price per square foot to measure housing costs and the median number of grades ahead (or behind) for school district quality. In the San Francisco Bay Region, the price per square foot was around $500 while students were .28 grades ahead of their grade placement. The five Bay Area schools that were selected had the lowest home prices and the best performing schools in the region.Source: New York Times

  8. v

    Non-market housing

    • opendata.vancouver.ca
    csv, excel, geojson +1
    Updated Jun 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Non-market housing [Dataset]. https://opendata.vancouver.ca/explore/dataset/non-market-housing/
    Explore at:
    excel, json, csv, geojsonAvailable download formats
    Dataset updated
    Jun 9, 2025
    License

    https://opendata.vancouver.ca/pages/licence/https://opendata.vancouver.ca/pages/licence/

    Description

    This dataset contains data of non-market housing projects - both the buildings owned by City of Vancouver, and the buildings provided by other agencies. Non-market housing is for low and moderate income singles and families, often subsidized through a variety of ways, including senior government support. This housing is managed through various operators, including the public, non-profit, co-op, and urban indigenous sectors. Non-market housing is located throughout Vancouver in the forms of social, supportive, and co-op housing. This dataset includes temporary modular housing, which are demountable structures, not permanently affixed to land and assembled within months. The inventory does not include the following types of housing:Special Needs Residential Facilities - includes community care facilities providing licensed care services, and group residences providing housing as required by law, rehabilitative programs, or temporary housingSingle Room Accommodation - privately-owned single room occupancy (SRO) hotels, rooming houses, and other housing with rooms less than 320 square feet, typically featuring units with a basic cooking setup and shared bathroomsShelters - provide temporary beds, meals, and services to the city's homeless population NoteUnit total (and breakdown) of projects could change over the course of development and are not captured real timeHousing projects with "proposed", "approved" and "under construction" status may not contain unit number breakdown by "Design"Housing projects with "proposed", "approved" and "under construction" status may not contain information on operator names or typeUnit total is the sum of clientele groups (families, seniors, and others) Data currencyThis dataset is updated weekly. Data accuracyData for this dataset is amalgamated from a number of sources. It is possible that some information may not be shown because of data synchronization issues. There may be some loss of quality from data entry errors.Non-housing market projects for which geographic coordinates are not available yet will not show up on the map or in the spatial formats. For a complete list, please consult the XLS or CSV formats. Websites for further informationSocial and market rental housingFind social and co-op housing in Vancouver

  9. a

    Percentage of Hispanic

    • egis-lacounty.hub.arcgis.com
    • geohub.lacity.org
    • +1more
    Updated Dec 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2023). Percentage of Hispanic [Dataset]. https://egis-lacounty.hub.arcgis.com/datasets/percentage-of-hispanic
    Explore at:
    Dataset updated
    Dec 22, 2023
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    For the past several censuses, the Census Bureau has invited people to self-respond before following up in-person using census takers. The 2010 Census invited people to self-respond predominately by returning paper questionnaires in the mail. The 2020 Census allows people to self-respond in three ways: online, by phone, or by mail. The 2020 Census self-response rates are self-response rates for current census geographies. These rates are the daily and cumulative self-response rates for all housing units that received invitations to self-respond to the 2020 Census. The 2020 Census self-response rates are available for states, counties, census tracts, congressional districts, towns and townships, consolidated cities, incorporated places, tribal areas, and tribal census tracts. The Self-Response Rate of Los Angeles County is 65.1% for 2020 Census, which is slightly lower than 69.6% of California State rate. More information about these data are available in the Self-Response Rates Map Data and Technical Documentation document associated with the 2020 Self-Response Rates Map or review our FAQs. Animated Self-Response Rate 2010 vs 2020 is available at ESRI site SRR Animated Maps and can explore Census 2020 SRR data at ESRI Demographic site Census 2020 SSR Data. Following Demographic Characteristics are included in this data and web maps to visualize their relationships with Census Self-Response Rate (SRR)..1. Population Density2. Poverty Rate3. Median Household income4. Education Attainment5. English Speaking Ability6. Household without Internet Access7. Non-Hispanic White Population8. Non-Hispanic African-American Population9. Non-Hispanic Asian Population10. Hispanic Population

  10. K

    Los Angeles Parcels

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Oct 3, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Los Angeles, California (2018). Los Angeles Parcels [Dataset]. https://koordinates.com/layer/98155-los-angeles-parcels/
    Explore at:
    dwg, mapinfo mif, pdf, shapefile, csv, geodatabase, kml, geopackage / sqlite, mapinfo tabAvailable download formats
    Dataset updated
    Oct 3, 2018
    Dataset authored and provided by
    City of Los Angeles, California
    Area covered
    Description

    This layer represents current city parcels within the City of Los Angeles. It shares topology with the Landbase parcel lines feature class. The Mapping and Land Records Division of the Bureau of Engineering, Department of Public Works provides the most current geographic information of the public right of way, ownership and land record information. The legal boundaries are determined on the ground by license surveyors in the State of California, and by recorded documents from the Los Angeles County Recorder's office and the City Clerk's office of the City of Los Angeles. Parcel and ownership information are available on NavigateLA, a website hosted by the Bureau of Engineering, Department of Public Works.Associated information about the landbase parcels is entered into attributes. Principal attributes include:PIN and PIND: represents the unique auto-generated parcel identifier and key to related features and tables. This field is related to the LA_LEGAL, LA_APN and LA_HSE_NBR tables. PIN contains spaces and PIND replaces those spaces with a dash (-).LA_LEGAL - Table attributes containing legal description. Principal attributes include the following:TRACT: The subdivision tract number as recorded by the County of Los AngelesMAP_REF: Identifies the subdivision map book reference as recorded by the County of Los Angeles.LOT: The subdivision lot number as recorded by the County of Los Angeles.ENG_DIST: The four engineering Districts (W=Westla, C=Central, V= Valley and H=Harbor).CNCL_DIST: Council Districts 1-15 of the City of Los Angeles. OUTLA means parcel is outside the City.LA_APN- Table attributes containing County of Los Angeles Assessors information. Principal attributes include the following:BPP: The Book, Page and Parcel from the Los Angeles County Assessors office. SITUS*: Address for the property.LA_HSE_NBR - Table attributes containing housenumber information. Principal attributes include the following:HSE_ID: Unique id of each housenumber record.HSE_NBR: housenumber numerical valueSTR_*: Official housenumber addressFor a complete list of attribute values, please refer to Landbase_parcel_polygons_data_dictionary.

    © Randy Price Division Manager Mapping and Land Records Division Bureau of Engineering / Department of Public Works City of Los Angeles This layer is sourced from lacitydbs.org

  11. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
MTC/ABAG (2011). 2011 11: Travel Time and Housing Price Maps: 390 Main Street [Dataset]. https://opendata.mtc.ca.gov/documents/8fc4c0f83f484bbc8773d5a902dc261a

2011 11: Travel Time and Housing Price Maps: 390 Main Street

Explore at:
Dataset updated
Nov 16, 2011
Dataset authored and provided by
MTC/ABAG
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Description

The travel time data on this map is modeled from a 2005 transit network. The home values are as of 2000 and are expressed in year 2000 dollars. The home value estimates were created by the Association of Bay Area Governements by combining ParcelQuest real estate transaction data and real estate tax assessment data. This information can be generated for any address in the region using an interactive mapping tool available under Maps at onebayarea.org/maps.htm (Note - this tool is no longer available).

Search
Clear search
Close search
Google apps
Main menu