The following data is provided as a public service, for informational purposes only. This data should not be construed as legal advice. Users of this data should independently verify its determinations prior to taking any action under the California Environmental Quality Act (CEQA) or any other law. The State of California makes no warranties as to accuracy of this data.
General plan land use element data was collected from 532 of California's 539 jurisdictions. An effort was made to contact each jurisdiction in the state and request general plan data in whatever form available. In the event that general plan maps were not available in a GIS format, those maps were converted from PDF or image maps using geo-referencing techniques and then transposing map information to parcel geometries sourced from county assessor data. Collection efforts began in late 2021 and were mostly finished in late 2022. Some data has been updated in 2023. Sources and dates are documented in the "Source" and "Date" columns with more detail available in the accompanying sources table. Data from a CNRA funded project, performed at UC Davis was used for 7 jurisdictions that had no current general plan land use maps available. Information about that CNRA funded project is available here: https://databasin.org/datasets/8d5da7200f4c4c2e927dafb8931fe75d
Individual general plan maps were combined for this statewide dataset. As part of the aggregation process, contiguous areas with identical use designations, within jurisdictions, were merged or dissolved. Some features representing roads with right-of-way or Null zone designations were removed from this data. Features less than 4 square meters in area were also removed.
This dataset consists of raster geotiff outputs of annual map projections of land use and land cover for the California Central Valley for the period 2011-2101 across 5 future scenarios. Four of the scenarios were developed as part of the Central Valley Landscape Conservation Project. The 4 original scenarios include a Bad-Business-As-Usual (BBAU; high water availability, poor management), California Dreamin’ (DREAM; high water availability, good management), Central Valley Dustbowl (DUST; low water availability, poor management), and Everyone Equally Miserable (EEM; low water availability, good management). These scenarios represent alternative plausible futures, capturing a range of climate variability, land management activities, and habitat restoration goals. We parameterized our models based on close interpretation of these four scenario narratives to best reflect stakeholder interests, adding a baseline Historical Business-As-Usual scenario (HBAU) for comparison. For these future map projections, the model was initialized in 2011 and run forward on an annual time step to 2101. Each filename has the associated scenario ID (scn418 = DUST, scn419 = DREAM, scn420 = HBAU, scn421 = BBAU, and scn426 = EEM), State Class identification as “sc”, model iteration (= it1 in all cases as only 1 Monte Carlo simulation was modeled), and timestep as “ts” information embedded in the file naming convention. For example, the filename scn418.sc.it1.ts2027.tif represents the DUST scenario (scn418), state class information (sc), iteration 1 (it1), for the 2027 model year (ts2027). The full methods and results of this research are described in detail in the parent manuscript "Integrated modeling of climate, land use, and water availability scenarios and their impacts on managed wetland habitat: A case study from California’s Central Valley" (2021).
This is collection of DWR County Land Use Surveys. You may scroll the list below to download any individual survey of interest. Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer. For Statewide Crop Mapping follow the link below : https://data.cnra.ca.gov/dataset/statewide-crop-mapping For Region Land Use Surveys follow link below: https://data.cnra.ca.gov/dataset/region-land-use-surveys Questions about the survey data may be directed to Landuse@water.ca.gov.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset represents a high resolution urban land cover classification map across the southern California Air Basin (SoCAB) with a spatial resolution of 60 cm in urban regions and 10 m in non-urban regions. This map was developed to support NASA JPL-based urban biospheric CO2 modeling in Los Angeles, CA. Land cover classification was derived from a novel fusion of Sentinel-2 (10-60 m x 10-60 m) and 2016 NAIP (60 cm x 60 cm) imagery and provides identification of impervious surface, non-photosynthetic vegetation, shrub, tree, grass, pools and lakes.
Land Cover Classes in .tif file: 0: Impervious surface 1: Tree (mixed evergreen/deciduous) 2: Grass (assumed irrigated) 3: Shrub 4: Non-photosynthetic vegetation 5: Water (masked using MNDWI/NDWI)
Google Earth Engine interactive app displaying this map: https://wcoleman.users.earthengine.app/view/socab-irrigated-classification
A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Support from the Earth Science Division OCO-2 program is acknowledged. Copyright 2020. All rights reserved.
A set of three estimates of land-cover types and annual transformations of land use are provided on a global 0.5 x0.5 degree lat/lon grid at annual time steps. The longest of the three estimates spans 1770-2010. The dataset presented here takes into account land-cover change due to four major land-use/management activities: (1) cropland expansion and abandonment, (2) pastureland expansion and abandonment, (3) urbanization, and (4) secondary forest regrowth due to wood harvest. Due to uncertainties associated with estimating historical agricultural (crops and pastures) land use, the study uses three widely accepted global reconstruction of cropland and pastureland in combination with common wood harvest and urban land data set to provide three distinct estimates of historical land-cover change and underlying land-use conversions. Hence, these distinct historical reconstructions offer a wide range of plausible regional estimates of uncertainty and extent to which different ecosystem have undergone changes. The three estimates use a consistent methodology, and start with a common land-cover map during pre-industrial conditions (year 1765), taking different courses as determined by the land-use/management datasets (cropland, pastureland, urbanization and wood harvest) to attain forest area distributions close to satellite estimates of forests for contemporary period. The satellite based estimates of forest area are based on MODIS sensor. All data uses the WGS84 spatial coordinate system for mapping.
The California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.
For the latest Land Use Legend, 2022-DWR-Standard-Land-Use-Legend-Remote-Sensing-Version.pdf, please see the Data and Resources section below.
Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.
For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.
For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.
For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.
Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.
This dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe's Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe's Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Raster data in both ArcGIS Grid and ERDAS Imagine format is available for download at http://gis1.usgs.gov/csas/gap/viewer/land_cover/Map.aspx Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS. In adition to the raster datasets the data is available in Web Mapping Services (WMS) format for each of the six NVC classification levels (Class, Subclass, Formation, Division, Macrogroup, Ecological System) at the following links. http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Class_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Subclass_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Formation_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Division_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Macrogroup_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_Ecological_Systems_Landuse/MapServer
This dataset provides annual raster maps of historical and projected future land use and land cover (LULC) for California, USA. Changes in LULC over time were simulated using the Land Use and Carbon Scenario Simulator (LUCAS). Simulations were run at 1-km resolution on an annual timestep for historical (1985-2020) and projected future time periods (2021-2100). Projected future simulations were run under all combinations of four climate scenarios, two urbanization scenarios, and two vegetation management scenarios with 40 Monte Carlo realizations for each simulation.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The U.S. Geological Survey (USGS), in partnership with several federal agencies, has now developed and released seven National Land Cover Database (NLCD) products: NLCD 1992, 2001, 2006, 2011, 2016, 2019, and 2021. Beginning with the 2016 release, land cover products were created for two-to-three-year intervals between 2001 and the most recent year. These products provide spatially explicit and reliable information on the Nation’s land cover and land cover change. NLCD continues to provide innovative, consistent, and robust methodologies for production of a multi-temporal land cover and land cover change database. NLCD 2021 adds an additional year to the map products produced for NLCD 2019, with a streamlined compositing process for assembling and preprocessing Landsat imagery and geospatial ancillary datasets; a temporally, spectrally, and spatially integrated land cover change analysis strategy; a theme-based post-classification protocol for generating land cover and change products; a continuous fields biophysical parameters modeling method; and a scripted operational system. The overall accuracy of the 2019 Level I land cover was 91%. Results from this study confirm the robustness of this comprehensive and highly automated procedure for NLCD 2021 operational mapping (see https://doi.org/10.1080/15481603.2023.2181143 for the latest accuracy assessment publication). Questions about the NLCD 2021 land cover product can be directed to the NLCD 2021 land cover mapping team at USGS EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov. See included spatial metadata for more details.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This landuse / landcover (LULC) map displays a basic depiction of the Los Planes watershed in Baja California Sur, Mexico. This simplified, 7-class LULC map displays classes that are useful for hydrologic modeling and broad vegetation mapping in the region. It was created from analysis of six Sentinel-2 satellite images and other existing geospatial datasets. These satellite images are provided at 10-meter spatial resolution and were calibrated for topographic illumination effects to enhance its accuracy in rugged, mountainous terrain like that seen in the watershed. A novel filtering methodology was also applied to minimize the "salt-and-pepper effect" from the principle component analysis (PCA) and image classification methodology. See "lulc_los_planes_watershed_final_2_legend.jpg" for a low-resolution overview of the image and legend.
The USGS, in cooperation with the U.S. Bureau of Land Management (BLM), created a series of geospatial products of the Scotts Creek Watershed in Lake County, California, using National Agriculture Imagery Program (NAIP) imagery from 2018, 2020 and 2022. The imagery was downloaded from United States Department of Agriculture (USDA) - Natural Resources Conservation Service (NRCS) Geospatial Data Gateway (https://datagateway.nrcs.usda.gov). The NAIP imagery from 2018, 2020 and 2022 was classified using Random Forest Modeling to produce land cover maps with three main classifications – bare, vegetation, and shadows. A total of 600 independent reference points were used in the accuracy assessment. The overall accuracy for all classes for each dataset is 98%. See attached ScottsCreek_20XX_AccuracyAssessment.csv files (contained within each LandCoverMap_associated_files_20XX.zip for each year respectively) for details. A preview image of the land cover map for 2018 is attached to this data release as an example (see LandCoverMap_RF_ScottsCreekWatershed_USGS2022_CC0.png). The percentage of bare, vegetation and shadow pixels were calculated for the complete watershed and each individual NHDPlus2.1 catchment basins (slightly modified to support hydrological modeling). These metrics can be used to quantify bare and vegetated areas and detect and quantify vegetation changes over time. Users should be aware of the inherent errors in remote sensing products.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Land Use Zoning Districts in San Jose, CA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Maps of California's Wildland Urban Interface (WUI) generated using the Time Step Moving Window (TSMW) method outlined in the paper "Remapping California's Wildland Urban Interface: A Property-Level Time-Space Framework, 2000-2020".
Please cite the original paper:
Berg, Aleksander K, Dylan S. Connor, Peter Kedron, and Amy E. Frazier. 2024. “Remapping California’s Wildland Urban Interface: A Property-Level Time-Space Framework, 2000–2020.” Applied Geography 167 (June): 103271. https://doi.org/10.1016/j.apgeog.2024.103271.
WUI maps were generated using Zillow ZTRAX parcel level attributes joined with FEMA USA Structures building footprints and the National Land Cover Database (NLCD).
All files are geotiff rasters with WUI areas mapped at a ~30m resolution. A raster value of null indicates not WUI, raster value of 1 indicates intermix WUI, and a raster value of 2 indicates interface WUI.
Three WUI maps were generated using structures built on of before the years indicated below:
2000 - "CA_WUI_2000.tif"
2010 - "CA_WUI_2010.tif"
2020 - "CA_WUI_2020.tif"
Acknowledgments -
We thank our reviewers and editors for helping us to improve the manuscript. We gratefully acknowledge access to the Zillow Transaction and Assessment Dataset (ZTRAX) through a data use agreement between the University of Colorado Boulder, Arizona State University, and Zillow Group, Inc. More information on accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions are those of the author(s) and do not reflect the position of Zillow Group. Support by Zillow Group Inc. is acknowledged. We thank Johannes Uhl and Stefan Leyk for their great work in preparing the original dataset. For feedback and comments, we also thank Billie Lee Turner II, Sharmistha Bagchi-Sen, and participants at the 2022 Global Conference on Economic Geography, the 2022 Young Economic Geographers Network meeting, and the 2023 annual meeting of the American Association of Geographers. Funding for our work has been provided by Arizona State University's Institute of Social Science Research (ISSR) Seed Grant Initiative. Additional funding was provided through the Humans, Disasters, and the Built Environment program of the National Science Foundation, Award Number 1924670 to the University of Colorado Boulder, the Institute of Behavioral Science, Earth Lab, the Cooperative Institute for Research in Environmental Sciences, the Grand Challenge Initiative and the Innovative Seed Grant program at the University of Colorado Boulder as well as the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health under Award Numbers R21 HD098717 01A1 and P2CHD066613.
This dataset consists of raster geotiff outputs of 30-year average annual land use and land cover transition probabilities for the California Central Valley modeled for the period 2011-2101 across 5 future scenarios. The full methods and results of this research are described in detail in “Integrated modeling of climate, land use, and water availability scenarios and their impacts on managed wetland habitat: A case study from California’s Central Valley” (2021). Land-use and land-cover change for California's Central Valley were modeled using the LUCAS model and five different scenarios were simulated from 2011 to 2101 across the entirety of the valley. The five future scenario projections originated from the four scenarios developed as part of the Central Valley Landscape Conservation Project (http://climate.calcommons.org/cvlcp ). The 4 original scenarios include a Bad-Business-As-Usual (BBAU; high water availability, poor management), California Dreamin’ (DREAM; high water availability, good management), Central Valley Dustbowl (DUST; low water availability, poor management), and Everyone Equally Miserable (EEM; low water availability, good management). These scenarios represent alternative plausible futures, capturing a range of climate variability, land management activities, and habitat restoration goals. We parameterized our models based on close interpretation of these four scenario narratives to best reflect stakeholder interests, adding a baseline Historical Business-As-Usual scenario (HBAU) for comparison. The TGAP raster maps represent the average annual transition probability of a cell over a specified time period for a specified land use transition group and type. Each filename has the associated scenario ID (scn418 = DUST, scn419 = DREAM, scn420 = HBAU, scn421 = BBAU, and scn426 = EEM), transition group (e.g. FALLOW, URBANIZATION), transition type, model iteration (= it0 in all cases as only 1 Monte Carlo simulation was modeled and no iteration data used in the calculation of the probability value), timestep of the 30-year transition summary end date (ts2041 = average annual 30-year transition probability from modeled timesteps 2012 to 2041, ts2071 = average annual 30-year transition probability from modeled timesteps 2042 to 2071, and ts101 = average annual 30-year transition probability from modeled timesteps 2072 to 2101). For example, the following filename “scn418.tgap_URBANIZATION_ Grass_Shrub to Developed [Type].it0.ts2041.tif” represents 30-year cumulative URBANIZATION transition group, for the Grass/Shrub to Developed transition type, for the 2011 to 2041 model period. More information about the LUCAS model can be found here: https://geography.wr.usgs.gov/LUCC/the_lucas_model.php. For more information on the specific parameter settings used in the model contact Tamara S. Wilson (tswilson@usgs.gov)
.pdf of Land Use map from 2021.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The U.S. Geological Survey (USGS), in partnership with several federal agencies, has developed and released five National Land Cover Database (NLCD) products over the past two decades: NLCD 1992, 2001, 2006, 2011, and 2016. The 2016 release saw landcover created for additional years of 2003, 2008, and 2013. These products provide spatially explicit and reliable information on the Nation’s land cover and land cover change. To continue the legacy of NLCD and further establish a long-term monitoring capability for the Nation’s land resources, the USGS has designed a new generation of NLCD products named NLCD 2019. The NLCD 2019 design aims to provide innovative, consistent, and robust methodologies for production of a multi-temporal land cover and land cover change database from 2001 to 2019 at 2–3-year intervals. Comprehensive research was conducted and resulted in developed strategies for NLCD 2019: continued integration between impervious surface and all landcover products with impervious surface being directly mapped as developed classes in the landcover, a streamlined compositing process for assembling and preprocessing based on Landsat imagery and geospatial ancillary datasets; a multi-source integrated training data development and decision-tree based land cover classifications; a temporally, spectrally, and spatially integrated land cover change analysis strategy; a hierarchical theme-based post-classification and integration protocol for generating land cover and change products; a continuous fields biophysical parameters modeling method; and an automated scripted operational system for the NLCD 2019 production. The performance of the developed strategies and methods were tested in twenty composite referenced areas throughout the conterminous U.S. An overall accuracy assessment from the 2016 publication give a 91% overall landcover accuracy, with the developed classes also showing a 91% accuracy in overall developed. Results from this study confirm the robustness of this comprehensive and highly automated procedure for NLCD 2019 operational mapping. Questions about the NLCD 2019 land cover product can be directed to the NLCD 2019 land cover mapping team at USGS EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov. See included spatial metadata for more details.
The U.S. Geological Survey (USGS), in partnership with several federal agencies, has developed and released five National Land Cover Database (NLCD) products over the past two decades: NLCD 1992, 2001, 2006, 2011, and 2016. The 2016 release saw landcover created for additional years of 2003, 2008, and 2013. These products provide spatially explicit and reliable information on the Nation’s land cover and land cover change. To continue the legacy of NLCD and further establish a long-term monitoring capability for the Nation’s land resources, the USGS has designed a new generation of NLCD products named NLCD 2019. The NLCD 2019 design aims to provide innovative, consistent, and robust methodologies for production of a multi-temporal land cover and land cover change database from 2001 to 2019 at 2–3-year intervals. Comprehensive research was conducted and resulted in developed strategies for NLCD 2019: continued integration between impervious surface and all landcover products with impervious surface being directly mapped as developed classes in the landcover, a streamlined compositing process for assembling and preprocessing based on Landsat imagery and geospatial ancillary datasets; a multi-source integrated training data development and decision-tree based land cover classifications; a temporally, spectrally, and spatially integrated land cover change analysis strategy; a hierarchical theme-based post-classification and integration protocol for generating land cover and change products; a continuous fields biophysical parameters modeling method; and an automated scripted operational system for the NLCD 2019 production. The performance of the developed strategies and methods were tested in twenty composite referenced areas throughout the conterminous U.S. An overall accuracy assessment from the 2016 publication give a 91% overall landcover accuracy, with the developed classes also showing a 91% accuracy in overall developed. Results from this study confirm the robustness of this comprehensive and highly automated procedure for NLCD 2019 operational mapping. Questions about the NLCD 2019 land cover product can be directed to the NLCD 2019 land cover mapping team at USGS EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov. See included spatial metadata for more details.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The U.S. Geological Survey (USGS), in partnership with several federal agencies, has developed and released five National Land Cover Database (NLCD) products over the past two decades: NLCD 1992, 2001, 2006, 2011, and 2016. The 2016 release saw landcover created for additional years of 2003, 2008, and 2013. These products provide spatially explicit and reliable information on the Nation’s land cover and land cover change. To continue the legacy of NLCD and further establish a long-term monitoring capability for the Nation’s land resources, the USGS has designed a new generation of NLCD products named NLCD 2019. The NLCD 2019 design aims to provide innovative, consistent, and robust methodologies for production of a multi-temporal land cover and land cover change database from 2001 to 2019 at 2–3-year intervals. Comprehensive research was conducted and resulted in developed strategies for NLCD 2019: continued integration between impervious surface and all landcover products with impervious surface being directly mapped as developed classes in the landcover, a streamlined compositing process for assembling and preprocessing based on Landsat imagery and geospatial ancillary datasets; a multi-source integrated training data development and decision-tree based land cover classifications; a temporally, spectrally, and spatially integrated land cover change analysis strategy; a hierarchical theme-based post-classification and integration protocol for generating land cover and change products; a continuous fields biophysical parameters modeling method; and an automated scripted operational system for the NLCD 2019 production. The performance of the developed strategies and methods were tested in twenty composite referenced areas throughout the conterminous U.S. An overall accuracy assessment from the 2016 publication give a 91% overall landcover accuracy, with the developed classes also showing a 91% accuracy in overall developed. Results from this study confirm the robustness of this comprehensive and highly automated procedure for NLCD 2019 operational mapping. Questions about the NLCD 2019 land cover product can be directed to the NLCD 2019 land cover mapping team at USGS EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov. See included spatial metadata for more details.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Land cover information is necessary for a large range of environmental applications related to climate impacts and adaption, emergency response, wildlife habitat, etc. In Canada, a 2008 user survey indicated that the most practical land cover data is provided in a nationwide 30 m spatial resolution format, with an update frequency of five years. In response to this need, the Canada Centre for Remote Sensing (CCRS) has generated a 30 m land cover map of Canada for the base year 2010, as well as this 2015 land cover map. This land cover dataset is also the Canadian contribution to the 30 m spatial resolution 2015 Land Cover Map of North America, which is produced by Mexican, American and Canadian government institutions under a collaboration called the North American Land Change Monitoring System (NALCMS). This land cover dataset for Canada is produced using observation from Operational Land Imager (OLI) Landsat sensor. An accuracy assessment based on 806 randomly distributed samples shows that land cover data produced with this new approach has achieved 79.90% accuracy with no marked spatial disparities. - Land Cover of Canada - Cartographic Product Collection
The following data is provided as a public service, for informational purposes only. This data should not be construed as legal advice. Users of this data should independently verify its determinations prior to taking any action under the California Environmental Quality Act (CEQA) or any other law. The State of California makes no warranties as to accuracy of this data.This zoning data was collected from 535 of California"s 539 jurisdictions. An effort was made to contact each jurisdiction in the state and request zoning data in whatever form available. In the event that zoning maps were not available in a GIS format, maps were converted from PDF or image maps using geo-referencing techniques and then transposing map information to parcel geometries sourced from county assessor data. Collection efforts began in late 2021 and were mostly finished in late 2022. Some data has been updated in 2023. Sources and dates are documented in the "Source" and "Date" columns with more detail available in the accompanying sources table.Individual zoning maps were combined for this statewide dataset. As part of the aggregation process, contiguous areas with identical zone codes, within jurisdictions, were merged or dissolved. Some features representing roads with right-of-way or Null zone designations were removed from this data. Features less than 4 square meters in area were also removed.
The following data is provided as a public service, for informational purposes only. This data should not be construed as legal advice. Users of this data should independently verify its determinations prior to taking any action under the California Environmental Quality Act (CEQA) or any other law. The State of California makes no warranties as to accuracy of this data.
General plan land use element data was collected from 532 of California's 539 jurisdictions. An effort was made to contact each jurisdiction in the state and request general plan data in whatever form available. In the event that general plan maps were not available in a GIS format, those maps were converted from PDF or image maps using geo-referencing techniques and then transposing map information to parcel geometries sourced from county assessor data. Collection efforts began in late 2021 and were mostly finished in late 2022. Some data has been updated in 2023. Sources and dates are documented in the "Source" and "Date" columns with more detail available in the accompanying sources table. Data from a CNRA funded project, performed at UC Davis was used for 7 jurisdictions that had no current general plan land use maps available. Information about that CNRA funded project is available here: https://databasin.org/datasets/8d5da7200f4c4c2e927dafb8931fe75d
Individual general plan maps were combined for this statewide dataset. As part of the aggregation process, contiguous areas with identical use designations, within jurisdictions, were merged or dissolved. Some features representing roads with right-of-way or Null zone designations were removed from this data. Features less than 4 square meters in area were also removed.