Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 55 counties in the California by Multi-Racial White population, as estimated by the United States Census Bureau. It also highlights population changes in each counties over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This statistic shows the 25 largest counties in the United States in 2022, by population. In 2022, about 9.72 million people were estimated to be living in Los Angeles County, California.
Additional information on urbanization in the United States
Urbanization is defined as the process by which cities grow or by which societies become more urban. Rural to urban migration in the United States, and around the world, is often undertaken in the search for employment or to enjoy greater access to services such as healthcare. The largest cities in the United States are steadily growing. Given their size, incremental increases yield considerable numerical gains as seen by New York increasing by 69,777 people in 2011, the most of any city. However in terms of percentage growth, smaller cities outside the main centers are growing the fastest, such as Georgetown city and Leander city in Texas.
Urbanization has increased slowly in the United States, rising from 80.77 percent of the population living in urban areas in 2010 to 82.66 percent in 2020. In 2018, the United States ranked 14th in a ranking of countries based on their degree of urbanization. Unlike fully urbanized countries such as Singapore and Hong Kong, the United States maintains a sizeable agricultural industry. Although technological developments have reduced demands for rural labor, labor in the industry and supporting services are still required.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 55 counties in the California by Non-Hispanic Native Hawaiian and Other Pacific Islander (NHPI) population, as estimated by the United States Census Bureau. It also highlights population changes in each counties over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 55 counties in the California by Hispanic American Indian and Alaska Native (AIAN) population, as estimated by the United States Census Bureau. It also highlights population changes in each counties over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
The Los Angeles county recorded nearly ****** sales of plug-in electric vehicles (PHEVs) to consumers in 2023, making it the largest market for PHEVs in California. This was close to ****** sales more than those recorded in Orange County, which was second in the ranking. Los Angeles was also the county with the largest battery-electric sales volume that year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 55 counties in the California by Multi-Racial Some Other Race (SOR) population, as estimated by the United States Census Bureau. It also highlights population changes in each counties over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 55 counties in the California by Multi-Racial Asian population, as estimated by the United States Census Bureau. It also highlights population changes in each counties over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
In 2023, Los Angeles, Santa Clara, and Orange were the counties with the largest public electric vehicle charger network. Los Angeles recorded some ****** chargers that year, most of which were Level 2 chargers using alternating current electricity to charge a vehicle at *** to *** volts, providing around ** to ** miles of range for each hour of charging.
This is an update to the MSSA geometries and demographics to reflect the new 2020 Census tract data. The Medical Service Study Area (MSSA) polygon layer represents the best fit mapping of all new 2020 California census tract boundaries to the original 2010 census tract boundaries used in the construction of the original 2010 MSSA file. Each of the state's new 9,129 census tracts was assigned to one of the previously established medical service study areas (excluding tracts with no land area), as identified in this data layer. The MSSA Census tract data is aggregated by HCAI, to create this MSSA data layer. This represents the final re-mapping of 2020 Census tracts to the original 2010 MSSA geometries. The 2010 MSSA were based on U.S. Census 2010 data and public meetings held throughout California.
The index ranges from 0.0, when all families (households) have equal shares of income (implies perfect equality), to 1.0 when one family (household) has all the income and the rest have none (implies perfect inequality). Index data is provided for California and its counties, regions, and large cities/towns. The data is from the U.S. Census Bureau, American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Income is linked to acquiring resources for healthy living. Both household income and the distribution of income across a society independently contribute to the overall health status of a community. On average Western industrialized nations with large disparities in income distribution tend to have poorer health status than similarly advanced nations with a more equitable distribution of income. Approximately 119,200 (5%) of the 2.4 million U.S. deaths in 2000 are attributable to income inequality. The pathways by which income inequality act to increase adverse health outcomes are not known with certainty, but policies that provide for a strong safety net of health and social services have been identified as potential buffers.Dataset taken from https://data.chhs.ca.gov/dataset/income-inequalityData Dictionary: COLUMN NAMEDEFINITIONFORMATCODINGind_idIndicator IDPlain Text770ind_definitionDefinition of indicator in plain languagePlain TextFree textreportyearYear(s) that the indicator was reportedPlain Text2005-2007, 2008-2010, 2006-2010. 2005-2007, 2008-2010, and 2006-2010 data is from the American Community Survey (ACS), U.S. Census Bureau. The ACS is a continuous survey. ACS estimates are period estimates that describe the average characteristics of the population in a period of data collection. The multiyear estimates are averages of the characteristics over several years. For example, the 2005-2007 ACS 3-year estimates are averages over the period from January 1, 2005 to December 31, 2007. Multiyear estimates cannot be used to say what was going on in any particular year in the period, only what the average value is over the full time period (Source: http://www.census.gov/acs/www/about_the_survey/american_community_survey/).race_eth_codenumeric code for a race/ethnicity groupPlain Text9=Totalrace_eth_nameName of race/ethnic groupPlain Text9=TotalgeotypeType of geographic unitPlain TextPL=Place (includes cities, towns, and census designated places -CDP-. It does not include unincorporated communities); CO=County; RE=region; CA=StategeotypevalueValue of geographic unitPlain Text9-digit Census tract code; 5-digit FIPS place code; 5-digit FIPS county code; 2-digit region ID; 2-digit FIPS state codegeonameName of geographic unitPlain Textplace name, county name, region name, or state namecounty_nameName of county that geotype is inPlain TextNot available for geotypes RE and CAcounty_fipsFIPS code of county that geotype is inPlain Text2-digit census state code (06) plus 3-digit census county coderegion_nameMetopolitan Planning Organization (MPO)-based region name: see MPO_County List TabPlain TextMetropolitan Planning Organizations (MPO) regions as reported in the 2010 California Regional Progress Report (http://www.dot.ca.gov/hq/tpp/offices/orip/Collaborative%20Planning/Files/CARegionalProgress_2-1-2011.pdf).region_codeMetopolitan Planning Organization (MPO)-based region code: see MPO_CountyList tabPlain Text01=Bay Area; 08=Sacramento Area; 09=San Diego; 14=Southern CaliforniaNumber_HouseholdsNumber of households in a jurisdictionNumericGini_indexCumulative percentage of household income relative to the cumulative percentage of the number of households expressed on a 0 to 1 scale called the Gini Index. The index ranges from 0.0, when all families (households) have equal shares of income, to 1.0, when one family (household) has all the income and the rest none (https://www.census.gov/prod/2000pubs/p60-204.pdf).NumericLL_95CILower limit of 95% confidence intervalNumericLower limit of 95% confidence interval. The 95% confidence limits depict the range within which the percentage would probably occur in 95 of 100 sets of data (if data similar to the present set were independently acquired on 100 separate occasions). In five of those 100 data sets, the percentage would fall outside the limits.UL_95CIUpper limit of 95% confidence intervalNumericUpper limit of 95% confidence interval. The 95% confidence limits depict the range within which the percentage would probably occur in 95 of 100 sets of data (if data similar to the present set were independently acquired on 100 separate occasions). In five of those 100 data sets, the percentage would fall outside the limits.seStandard error of percent NumericThe standard error (SE) of the estimate of the mean is a measure of the precision of the sample mean. The standard error falls as the sample size increases. (Reference: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1255808/)rseRelative standard error (se/percent * 100) expressed as a percentNumericThe relative standard error (RSE) provides the rational basis for determining which rates may be considered “unreliable.” Conforming to National Center for Health Statistics (NCHS) standards, rates that are calculated from fewer than 20 data elements, the equivalent of an RSE of 23 percent or more, are considered unreliable. From: http://www.cdph.ca.gov/programs/ohir/Documents/OHIRProfiles2014.pdfCA_decileDecilesNumeric"CA_decile" groups places or census tracts into 10 groups (or deciles) according to the distribution of values of the index (Gini_index). The first decile (1) corresponds to the highest Gini indices; the tenth decile (10) corresponds to the lowest Gini indices. Equal values or 'ties' are assigned the mean decile rank. For example, in a database of 100 records where 70 records equal 0, 0 values span from the 1st to 7th deciles (70% of all data records). As a result, all 0 values will be assigned to the 4th decile: the mean between the 1st and 7th deciles. The deciles are only calculated for places and/or census tracts.CA_RRIndex ratio to state indexNumericRatio of local index to state index. This indicates how many times the local index is higher or lower than the state index (Reference: http://health.mo.gov/training/epi/RateRatio-b.html). Values higher than 1 indicate local index is higher than state index.Median_HH_incomeMedian household income data is provided for users to stratify the Gini index by income deciles for places and countiesNumericMedian_HH_decileMedian household income data is provided for users to stratify the Gini index by income deciles for places and countiesNumericversionDate/time stamp of version of dataDate/Timemm/DD/CCYY hh:mm:ss
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Detailed Analysis Unit-(DAU) Convergence via County Boundary cnty18_1 for Cal-Fire, (See metadata for CAL-FIRE cnty18_1), State of California.
The existing DAU boundaries were aligned with cnty18_1 feature class.
Originally a collaboration by Department of Water Resources, Region Office personnel, Michael L. Serna, NRO, Jason Harbaugh - NCRO, Cynthia Moffett - SCRO and Robert Fastenau - SRO with the final merge of all data into a cohesive feature class to create i03_DAU_COUNTY_cnty24k09 alignment which has been updated to create i03_DAU_COUNTY_cnty18_1.
This version was derived from a preexisting “dau_v2_105, 27, i03_DAU_COUNTY_cnty24k09” Detailed Analysis Unit feature class's and aligned with Cal-Fire's 2018 boundary.
Manmade structures such as piers and breakers, small islands and coastal rocks have been removed from this version. Inlets waters are listed on the coast only.
These features are reachable by County\DAU. This allows the county boundaries, the DAU boundaries and the State of California Boundary to match Cal-Fire cnty18_1.
DAU Background
The first investigation of California's water resources began in 1873 when President Ulysses S. Grant commissioned an investigation by Colonel B. S. Alexander of the U.S. Army Corps of Engineers. The state followed with its own study in 1878 when the State Engineer's office was created and filled by William Hammond Hall. The concept of a statewide water development project was first raised in 1919 by Lt. Robert B. Marshall of the U.S. Geological Survey.
In 1931, State Engineer Edward Hyatt introduced a report identifying the facilities required and the economic means to accomplish a north-to-south water transfer. Called the "State Water Plan", the report took nine years to prepare. To implement the plan, the Legislature passed the Central Valley Act of 1933, which authorized the project. Due to lack of funds, the federal government took over the CVP as a public works project to provide jobs and its construction began in 1935.
In 1945, the California Legislature authorized an investigation of statewide water resources and in 1947, the California Legislature requested that an investigation be conducted of the water resources as well as present and future water needs for all hydrologic regions in the State. Accordingly, DWR and its predecessor agencies began to collect the urban and agricultural land use and water use data that serve as the basis for the computations of current and projected water uses.
The work, conducted by the Division of Water Resources (DWR’s predecessor) under the Department of Public Works, led to the publication of three important bulletins: Bulletin 1 (1951), "Water Resources of California," a collection of data on precipitation, unimpaired stream flows, flood flows and frequency, and water quality statewide; Bulletin 2 (1955), "Water Utilization and Requirements of California," estimates of water uses and forecasts of "ultimate" water needs; and Bulletin 3 (1957), "The California Water Plan," plans for full practical development of California’s water resources, both by local projects and a major State project to meet the State's ultimate needs. (See brief addendum below* “The Development of Boundaries for Hydrologic Studies for the Sacramento Valley Region”)
DWR subdivided California into study areas for planning purposes. The largest study areas are the ten hydrologic regions (HR), corresponding to the State’s major drainage basins. The next levels of delineation are the Planning Areas (PA), which in turn are composed of multiple detailed analysis units (DAU). The DAUs are often split by county boundaries, so are the smallest study areas used by DWR.
The DAU/counties are used for estimating water demand by agricultural crops and other surfaces for water resources planning. Under current guidelines, each DAU/County has multiple crop and land-use categories. Many planning studies begin at the DAU or PA level, and the results are aggregated into hydrologic regions for presentation.
Since 1950 DWR has conducted over 250 land use surveys of all or parts of California's 58 counties. Early land use surveys were recorded on paper maps of USGS 7.5' quadrangles. In 1986, DWR began to develop georeferenced digital maps of land use survey data, which are available for download. Long term goals for this program is to survey land use more frequently and efficiently using satellite imagery, high elevation digital imagery, local sources of data, and remote sensing in conjunction with field surveys.
There are currently 58 counties and 278 DAUs in California.
Due to some DAUs being split by county lines, the total number of DAU’s identifiable via DAU by County is 782.
ADDENDUM
The Development of Boundaries for Hydrologic Studies for the Sacramento Valley Region
[Detailed Analysis Units made up of a grouping of the Depletion Study Drainage Areas (DSA) boundaries occurred on the Eastern Foothills and Mountains within the Sacramento Region. Other DSA’s were divided into two or more DAU’s; for example, DSA 58 (Redding Basin) was divided into 3 DAU’s; 143,141, and 145. Mountain areas on both the east and west side of the Sacramento River below Shasta Dam went from ridge top to ridge top, or topographic highs. If available, boundaries were set adjacent to stream gages located at the low point of rivers and major creek drainages.
Later, as the DAU’s were developed, some of the smaller watershed DSA boundaries in the foothill and mountain areas were grouped. The Pit River DSA was split so water use in the larger valleys (Alturas area, Big
Existing single family homes in California have been selling faster than ever in the past year. As of March 2022, the median time between a new listing and a purchase in the major counties in California was below ** days, whereas in August 2019, it was between ** and ** days. The robust demand for properties in California has led to substantial house price growth in almost all counties in California in the past year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains data on income inequality. The primary measure is the Gini index – a measure of the extent to which the distribution of income among families/households within a community deviates from a perfectly equal distribution. The index ranges from 0.0, when all families (households) have equal shares of income (implies perfect equality), to 1.0 when one family (household) has all the income and the rest have none (implies perfect inequality). Index data is provided for California and its counties, regions, and large cities/towns. The data is from the U.S. Census Bureau, American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Income is linked to acquiring resources for healthy living. Both household income and the distribution of income across a society independently contribute to the overall health status of a community. On average Western industrialized nations with large disparities in income distribution tend to have poorer health status than similarly advanced nations with a more equitable distribution of income. Approximately 119,200 (5%) of the 2.4 million U.S. deaths in 2000 are attributable to income inequality. The pathways by which income inequality act to increase adverse health outcomes are not known with certainty, but policies that provide for a strong safety net of health and social services have been identified as potential buffers. More information about the data table and a data dictionary can be found in the About/Attachments section.
CDTFA Data PortalTaxable Sales - Large Counties https://cdtfa.ca.gov/dataportal/dataset.htm?url=TaxSales36LargestCountiesTaxable Sales - Small Countieshttps://cdtfa.ca.gov/dataportal/dataset.htm?url=TaxSales22SmallestCountiesTaxable Sales by Countyhttps://www.cdtfa.ca.gov/dataportal/map.htm?url=TaxSalesByCounty
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Orange County median household income by race. The dataset can be utilized to understand the racial distribution of Orange County income.
The dataset will have the following datasets when applicable
Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Explore our comprehensive data analysis and visual representations for a deeper understanding of Orange County median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset illustrates the median household income in Kern County, spanning the years from 2010 to 2023, with all figures adjusted to 2023 inflation-adjusted dollars. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varied over the last decade. The dataset can be utilized to gain insights into median household income trends and explore income variations.
Key observations:
From 2010 to 2023, the median household income for Kern County increased by $1,503 (2.27%), as per the American Community Survey estimates. In comparison, median household income for the United States increased by $5,602 (7.68%) between 2010 and 2023.
Analyzing the trend in median household income between the years 2010 and 2023, spanning 13 annual cycles, we observed that median household income, when adjusted for 2023 inflation using the Consumer Price Index retroactive series (R-CPI-U-RS), experienced growth year by year for 8 years and declined for 5 years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.
Years for which data is available:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Kern County median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Riverside County population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Riverside County. The dataset can be utilized to understand the population distribution of Riverside County by age. For example, using this dataset, we can identify the largest age group in Riverside County.
Key observations
The largest age group in Riverside County, CA was for the group of age 10 to 14 years years with a population of 181,182 (7.40%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Riverside County, CA was the 85 years and over years with a population of 41,240 (1.68%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Riverside County Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Los Angeles County population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Los Angeles County. The dataset can be utilized to understand the population distribution of Los Angeles County by age. For example, using this dataset, we can identify the largest age group in Los Angeles County.
Key observations
The largest age group in Los Angeles County, CA was for the group of age 30 to 34 years years with a population of 798,347 (8.11%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Los Angeles County, CA was the 80 to 84 years years with a population of 166,251 (1.69%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Los Angeles County Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Plumas County population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Plumas County. The dataset can be utilized to understand the population distribution of Plumas County by age. For example, using this dataset, we can identify the largest age group in Plumas County.
Key observations
The largest age group in Plumas County, CA was for the group of age 70 to 74 years years with a population of 1,854 (9.46%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Plumas County, CA was the 85 years and over years with a population of 548 (2.79%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Plumas County Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 55 counties in the California by Multi-Racial White population, as estimated by the United States Census Bureau. It also highlights population changes in each counties over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.