Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the California population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of California across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2024, the population of California was 39.43 million, a 0.59% increase year-by-year from 2023. Previously, in 2023, California population was 39.2 million, an increase of 0.14% compared to a population of 39.14 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of California increased by 5.44 million. In this period, the peak population was 39.52 million in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for California Population by Year. You can refer the same here
Facebook
TwitterIn 2023, the resident population of California was ***** million. This is a slight decrease from the previous year, with ***** million people in 2022. This makes it the most populous state in the U.S. Californian demographics Along with an increase in population, California’s gross domestic product (GDP) has also been increasing, from *** trillion U.S. dollars in 2000 to **** trillion U.S. dollars in 2023. In the same time period, the per-capita personal income has almost doubled, from ****** U.S. dollars in 2000 to ****** U.S. dollars in 2022. In 2023, the majority of California’s resident population was Hispanic or Latino, although the number of white residents followed as a close second, with Asian residents making up the third-largest demographic in the state. The dark side of the Golden State While California is one of the most well-known states in the U.S., is home to Silicon Valley, and one of the states where personal income has been increasing over the past 20 years, not everyone in California is so lucky: In 2023, the poverty rate in California was about ** percent, and the state had the fifth-highest rate of homelessness in the country during that same year, with an estimated ** homeless people per 10,000 of the population.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the California population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of California across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of California was 39,029,342, a 0.29% decrease year-by-year from 2021. Previously, in 2021, California population was 39,142,991, a decline of 0.91% compared to a population of 39,501,653 in 2020. Over the last 20 plus years, between 2000 and 2022, population of California increased by 5,034,959. In this period, the peak population was 39,501,653 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for California Population by Year. You can refer the same here
Facebook
TwitterThe 2020 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Facebook
Twitterhttps://koordinates.com/license/attribution-3-0/https://koordinates.com/license/attribution-3-0/
20 year Projected Urban Growth scenarios. Base year is 2000. Projected year in this dataset is 2020.
By 2020, most forecasters agree, California will be home to between 43 and 46 million residents-up from 35 million today. Beyond 2020 the size of California's population is less certain. Depending on the composition of the population, and future fertility and migration rates, California's 2050 population could be as little as 50 million or as much as 70 million. One hundred years from now, if present trends continue, California could conceivably have as many as 90 million residents.
Where these future residents will live and work is unclear. For most of the 20th Century, two-thirds of Californians have lived south of the Tehachapi Mountains and west of the San Jacinto Mountains-in that part of the state commonly referred to as Southern California. Yet most of coastal Southern California is already highly urbanized, and there is relatively little vacant land available for new development. More recently, slow-growth policies in Northern California and declining developable land supplies in Southern California are squeezing ever more of the state's population growth into the San Joaquin Valley.
How future Californians will occupy the landscape is also unclear. Over the last fifty years, the state's population has grown increasingly urban. Today, nearly 95 percent of Californians live in metropolitan areas, mostly at densities less than ten persons per acre. Recent growth patterns have strongly favored locations near freeways, most of which where built in the 1950s and 1960s. With few new freeways on the planning horizon, how will California's future growth organize itself in space? By national standards, California's large urban areas are already reasonably dense, and economic theory suggests that densities should increase further as California's urban regions continue to grow. In practice, densities have been rising in some urban counties, but falling in others.
These are important issues as California plans its long-term future. Will California have enough land of the appropriate types and in the right locations to accommodate its projected population growth? Will future population growth consume ever-greater amounts of irreplaceable resource lands and habitat? Will jobs continue decentralizing, pushing out the boundaries of metropolitan areas? Will development densities be sufficient to support mass transit, or will future Californians be stuck in perpetual gridlock? Will urban and resort and recreational growth in the Sierra Nevada and Trinity Mountain regions lead to the over-fragmentation of precious natural habitat? How much water will be needed by California's future industries, farms, and residents, and where will that water be stored? Where should future highway, transit, and high-speed rail facilities and rights-of-way be located? Most of all, how much will all this growth cost, both economically, and in terms of changes in California's quality of life?
Clearly, the more precise our current understanding of how and where California is likely to grow, the sooner and more inexpensively appropriate lands can be acquired for purposes of conservation, recreation, and future facility siting. Similarly, the more clearly future urbanization patterns can be anticipated, the greater our collective ability to undertake sound city, metropolitan, rural, and bioregional planning.
Consider two scenarios for the year 2100. In the first, California's population would grow to 80 million persons and would occupy the landscape at an average density of eight persons per acre, the current statewide urban average. Under this scenario, and assuming that 10% percent of California's future population growth would occur through infill-that is, on existing urban land-California's expanding urban population would consume an additional 5.06 million acres of currently undeveloped land. As an alternative, assume the share of infill development were increased to 30%, and that new population were accommodated at a density of about 12 persons per acre-which is the current average density of the City of Los Angeles. Under this second scenario, California's urban population would consume an additional 2.6 million acres of currently undeveloped land. While both scenarios accommodate the same amount of population growth and generate large increments of additional urban development-indeed, some might say even the second scenario allows far too much growth and development-the second scenario is far kinder to California's unique natural landscape.
This report presents the results of a series of baseline population and urban growth projections for California's 38 urban counties through the year 2100. Presented in map and table form, these projections are based on extrapolations of current population trends and recent urban development trends. The next section, titled Approach, outlines the methodology and data used to develop the various projections. The following section, Baseline Scenario, reviews the projections themselves. A final section, entitled Baseline Impacts, quantitatively assesses the impacts of the baseline projections on wetland, hillside, farmland and habitat loss.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Resident Population in California (CAPOP) from 1900 to 2024 about residents, CA, population, and USA.
Facebook
TwitterThis resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) System (MTS). The MTS represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined because of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard Census Bureau geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
DEC. 22, 2022 – After a historically low rate of change between 2020 and 2021, the U.S. resident population increased by 0.4%, or 1,256,003, to 333,287,557 in 2022, according to the U.S. Census Bureau’s Vintage 2022 national and state population estimates and components of change released today.
Net international migration — the number of people moving in and out of the country — added 1,010,923 people between 2021 and 2022 and was the primary driver of growth. This represents 168.8% growth over 2021 totals of 376,029 – an indication that migration patterns are returning to pre-pandemic levels. Positive natural change (births minus deaths) increased the population by 245,080.
“There was a sizeable uptick in population growth last year compared to the prior year’s historically low increase,” said Kristie Wilder, a demographer in the Population Division at the Census Bureau. “A rebound in net international migration, coupled with the largest year-over-year increase in total births since 2007, is behind this increase.”
Regional Patterns The South, the most populous region with a resident population of 128,716,192, was the fastest-growing and the largest-gaining region last year, increasing by 1.1%, or 1,370,163. Positive net domestic migration (867,935) and net international migration (414,740) were the components with the largest contributions to this growth, adding a combined 1,282,675 residents.
The West was the only other region to experience growth in 2022, having gained 153,601 residents — an annual increase of 0.2% for a total resident population of 78,743,364 — despite losing 233,150 residents via net domestic migration (the difference between residents moving in and out of an area). Natural increase (154,405) largely accounted for the growth in the West.
The Northeast, with a population of 57,040,406, and the Midwest, with a population of 68,787,595, lost 218,851 (-0.4%) and 48,910 (-0.1%) residents, respectively. The declines in these regions were due to negative net domestic migration.
Changes in State Population Increasing by 470,708 people since July 2021, Texas was the largest-gaining state in the nation, reaching a total population of 30,029,572. By crossing the 30-million-population threshold this past year, Texas joins California as the only states with a resident population above 30 million. Growth in Texas last year was fueled by gains from all three components: net domestic migration (230,961), net international migration (118,614), and natural increase (118,159).
Florida was the fastest-growing state in 2022, with an annual population increase of 1.9%, resulting in a total resident population of 22,244,823.
“While Florida has often been among the largest-gaining states,” Wilder noted, “this was the first time since 1957 that Florida has been the state with the largest percent increase in population.”
It was also the second largest-gaining state behind Texas, with an increase of 416,754 residents. Net migration was the largest contributing component of change to Florida’s growth, adding 444,484 residents. New York had the largest annual numeric and percent population decline, decreasing by 180,341 (-0.9%). Net domestic migration (-299,557) was the largest contributing component to the state’s population decline.
Eighteen states experienced a population decline in 2022, compared to 15 and DC the prior year. California, with a population of 39,029,342, and Illinois, with a population of 12,582,032, also had six-figure decreases in resident population. Both states’ declining populations were largely due to net domestic outmigration, totaling 343,230 and 141,656, respectively.
Puerto Rico Population Changes In 2022, Puerto Rico’s population was 3,221,789. This reflects a decrease of 1.3%, or 40,904 people, between 2021 and 2022.
Puerto Rico’s population decline resulted from negative net international migration (-26,447) and negative natural change (-14,457), where deaths outnumber births.
**###Components of Change for States**
In 2022, 24 states experienced negative natural change, or natural decrease. Florida had the highest natural decrease at -40,216, followed by Pennsylvania (-23,021) and Ohio (-19,543). In 2021, 25 states had natural decrease.
Of the 26 states and the District of Columbia where births outnumbered deaths, Texas (118,159), California (106,155) and New York (35,611) had the highest natural increase.
All 50 states and the District of Columbia saw positive net international migration with California (125,715), Florida (125,629) and Texas (118,614) having the largest gains.
The biggest gains from net domestic migration last year were in Florida (318,855), Texas (230,961) and North Carolina (99,796), while the biggest losses were in California (-343,230), New York (-299,557) and Illinois...
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Oakland population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Oakland across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Oakland was 436,504, a 0.45% increase year-by-year from 2022. Previously, in 2022, Oakland population was 434,568, a decline of 0.52% compared to a population of 436,850 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Oakland increased by 36,006. In this period, the peak population was 440,943 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Oakland Population by Year. You can refer the same here
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Facebook
TwitterThe 2023 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files.
Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Facebook
TwitterThe 2022 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files.
Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Protected areas are one of the most widespread and accepted conservation interventions, yet their population trends are rarely compared to regional trends to gain insight into their effectiveness. Here, we leverage two long-term community science datasets to demonstrate mixed effects of protected areas on long-term bird population trends. We analyzed 31 years of bird transect data recorded by community volunteers across all major habitats of Stanford University’s Jasper Ridge Biological Preserve to determine the population trends for a sample of 66 species. We found that nearly a third of species experienced long-term declines, and on average, all species declined by 12%. Further, we averaged species trends by conservation status and key life history attributes to identify correlates and possible drivers of these trends. Observed increases in some cavity-nesters and declines of scrub-associated species suggest that long-term fire suppression may be a key driver, reshaping bird communities through changes in forest and chaparral structure and composition. Additionally, we compared our results to those of the North American Breeding Bird Survey’s Central California Coast region (n = 55 species) to place Jasper Ridge in a broader context. Most species experienced similar directional population trends inside vs. outside of the preserve, and only eight species (14.5%) did better inside this small, protected area. Therefore, we must identify relevant management strategies for declining populations and explicitly consider how existing protected areas target and manage each species. Further, this analysis underscores the importance of local and national community science for revealing nuanced long-term bird population trends. Methods
From 1989 to 2020, volunteer observers conducted monthly surveys of six sectors within Stanford University's Jasper Ridge Biological Preserve (JRBP). Each survey consisted of a trail-based transect in which a group of observers walked the trail in the morning and counted all birds detected over roughly 3 hours. Observers recorded the number of each species seen or heard along the route, regardless of the distance to the bird. Over 31 years of surveys, 192 observers conducted 2,055 transects and recorded a total of 473,401 observations of 184 species (91% of JRBP’s documented avian richness). We used these data to estimate long-term avian population trends at JRBP. Prior to analy- sis, we performed extensive data cleaning, including the standardization of species names and observer identity. Unlikely species without notes or supporting information were removed from the analysis. All transects with fewer than seven species (n = 30) were considered incidental and removed. These transects were often performed during suboptimal conditions (e.g. wind or rain) and/or were of abnormally short duration. Finally, we limited our analysis to the 100 most consistently detected species (those detected in the greatest number of transects).
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
AbstractThe prevalence of disease-driven mass mortality events is increasing, but our understanding of spatial variation in their magnitude, timing, and triggers are often poorly resolved. Here, we use a novel range-wide dataset comprised of 48,810 surveys to quantify how Sea Star Wasting Disease affected Pycnopodia helianthoides, the sunflower sea star, across its range from Baja California, Mexico to the Aleutian Islands, USA. We found that the outbreak occurred more rapidly, killed a greater percentage of the population, and left fewer survivors in the southern half of the species’ range. Pycnopodia now appears to be functionally extinct (> 99.2% declines) from Baja California, Mexico to Cape Flattery, Washington, USA and exhibited severe declines (> 87.8%) from the Salish Sea to the Gulf of Alaska. The importance of temperature in predicting Pycnopodia distribution rose 450% after the outbreak, suggesting these latitudinal gradients may stem from an interaction between disease severity and warmer waters. We found no evidence of population recovery in the years since the outbreak. Natural recovery in the southern half of the range is unlikely over the short-term and assisted recovery will likely be required for recovery in the southern half of the range on ecologically-relevant time scales. MethodsThirty research groups from Canada, the United States, Mexico, including First Nations, shared 34 datasets containing field surveys of Pycnopodia (Table S1). The data included 48,810 surveys from 1967 to 2020 derived from trawls, remotely operated vehicles, SCUBA dives, and intertidal surveys. We compiled survey data into a standardized format that included at minimum the coordinates, date, depth, area surveyed, and occurrence of Pycnopodia for each survey. When datasets contained more than one survey at a site in the same day (e.g. multiple transects), we divided the total Pycnopodia count in all surveys by the total survey area and averaged the latitude, longitude, and depth as necessary. Using breaks in data coverage, political boundaries, and biogeographic breaks we assigned each survey to one of twelve regions: Aleutian Islands, west Gulf of Alaska (GOA), east Gulf of Alaska, southeast Alaska, British Columbia (excluding the Salish Sea), Salish Sea (including the Puget Sound), Washington outer coast (excluding the Puget Sound), Oregon, northern California, central California, southern California, and the Pacific coast of Baja California (Fig. S1; see Supplementary Material). Usage notesDocumentation, data, and code accompanying Hamilton et al., 2021 Pycnopodia Rangewide Assessment paper. Data MasterPycno_ToShare: Dec_lat = latitude in decimal degrees. Numeric. Dec_lon = longitude in decimal degrees. Numeric. Depth = depth in meters. Numeric. Pres_abs = presence or absence of Pycnopodia on that survey. Binary. Presence = 1, absence = 0 Density_m2 = density in meters squared if available for that set of surveys. Numeric. NA = no density data available for that survey. Source = shorthand name of the group that shared the data with us and the type of data (e.g. trawl, dive). To get further info on who that dataset, group, and group contact, see Table S1. Character. Note: When datasets contained more than one survey at a site in the same day (e.g. multiple transects), we divided the total Pycnopodia count in all surveys by the total survey area and averaged the latitude, longitude, and depth as necessary in order to minimize the impacts of pseudoreplication on the dataset. Used in MaxentSWD_Final and Density-Inc_Models_Figs_Tables_ToShare. CrashEventsForRPlot: Crash Dates were determined trends in Pycnopodia occurrence (site-level presence or absence) to estimate ‘crash date’, defined as the date when the occurrence rate of Pycnopodia in a region decreased by 75% from pre-outbreak levels. Used in OutbreakTimelineFigs_ToShare.R EpidemicPhases: See manuscript methods for information on how the column ‘EpidemicPhases’ was created. “Start-End” specifies whether that date was the start or the end of that epidemic phase for that region. Used in OutbreakTimelineFigs_ToShare.R Incidence_2012-2019: Columns G-J were calculated by fitting a logistic regression model to the occurrence of Pycnopodia over time for each region. We fit a logistic regression model to the occurrence of Pycnopodia from 1/1/2012 to 12/31/2019 to model the shape of the population decline for each region (Fig. 1a). From these models, we 1) estimated regional Pycnopodia occurrence rates on 1/1/2012 and 12/31/2019, 2) calculated the predicted occurrence value corresponding to a 75% decline in starting versus ending occurrence in each region, and 3) solved the inverse logistic equations for the date at which this occurrence value was predicted. All other columns are identifying information derived from MasterPycno_ToShare. Used in OutbreakTimelineFigs_ToShare.R MasterPycno_021821_SpatialJoin: Used to make Fig 5 for the remnant population analysis....
Facebook
TwitterThe average American family in 2023 consisted of 3.15 persons. Families in the United States According to the U.S. Census Bureau, a family is a group of two people or more (one of whom is the householder) related by birth, marriage, or adoption and residing together; all such people (including related subfamily members) are considered as members of one family. As of 2023, the U.S. Census Bureau counted about 84.33 million families in the United States. The average family consisted of 3.15 persons in 2021, down from 3.7 in the 1960s. This is reflected in the decrease of children in family households overall. In 1970, about 56 percent of all family households had children under the age of 18 living in the household. This percentage declined to about 40 percent in 2020. The average size of a family household varies greatly from state to state. The largest average families can be found in Utah, California, and Hawaii, while the smallest families can be found in Wisconsin, Vermont and Maine.
Facebook
TwitterThe Likely Tables herd contains migrants, but this herd does not migrate between traditional summer and winter seasonal ranges. Instead, much of the herd displays a nomadic tendency, slowly migrating north for the summer using various high use areas as they move. Therefore, annual ranges were modeled using year-round data to demarcate high use areas in lieu modeling specific winter ranges. A high use area being used during winter by many of the collared animals is west of the Warner Mountains, east of U.S. Highway 395, and north of Moon Lake. Some animals live in the agricultural fields west of U.S. Highway 395. There appears to be little if any movement across the highway, which is fenced on both sides in this area. Summer ranges are spread out, with some individuals moving as far north as Goose Lake. A few outliers in the herd moved long distances south toward the Lassen herd or east to Nevada. Drought, increasing fire frequency, invasive annual grasses, and juniper encroachment negatively affect pronghorn habitat. Recent population surveys indicate a declining population (Trausch and others, 2020). Juniper removal on public and private lands have potential to improve habitat quality and potentially reduce predation (Ewanyk, 2020). Fences on public and private lands affect movement corridors and increase crossing and/or migration times. Recent fence modifications on BLM lands have shown potential to ease pronghorn movements (Hudgens, 2022). These mapping layers show the _location of the migration stopovers for pronghorn (Antilocapra americana) in the Likely Tables population in California. They were developed from 29 migration sequences collected from a sample size of 17 animals comprising GPS locations collected every 1-4 hours.
Facebook
TwitterThe Clear Lake herd contains migrants, but this herd does not migrate between traditional summer and winter seasonal ranges. Instead, much of the herd displays a nomadic tendency, slowly migrating north, east, or south for the summer using various high use areas as they move. Therefore, annual ranges were modeled using year-round data to demarcate high use areas in lieu of modeling specific winter ranges. The areas adjacent to Clear Lake Reservoir were heavily used during winter by many of the collared animals. A few collared individuals persisted west of State Route 139 year-round, seemingly separated from the rest of the herd due to this highway barrier. However, some pronghorn cross this road near Cornell and join this subgroup. Summer ranges are spread out, with many individuals moving southeast through protected forests or over the state border into Oregon. A few outliers in the herd moved long distances south, crossing State Route 139 to Oak Ridge, or east into Likely Tables pronghorn herd areas. Drought, increasing fire frequency, invasive annual grasses, and juniper encroachment negatively affect pronghorn habitat. Recent population surveys indicate a declining population (Trausch and others, 2020). Juniper removal on public and private lands has potential to improve habitat quality and potentially reduce predation (Ewanyk, 2020). These mapping layers show the _location of the migration corridors for pronghorn (Antilocapra americana) in the Clear Lake population in California. They were developed from 72 migration sequences collected from a sample size of 23 animals comprising GPS locations collected every 1-6 hours.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the California township population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of California township across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of California township was 1,181, a 0.34% decrease year-by-year from 2021. Previously, in 2021, California township population was 1,185, an increase of 0.77% compared to a population of 1,176 in 2020. Over the last 20 plus years, between 2000 and 2022, population of California township increased by 264. In this period, the peak population was 1,185 in the year 2021. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for California township Population by Year. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the California population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of California across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2024, the population of California was 39.43 million, a 0.59% increase year-by-year from 2023. Previously, in 2023, California population was 39.2 million, an increase of 0.14% compared to a population of 39.14 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of California increased by 5.44 million. In this period, the peak population was 39.52 million in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for California Population by Year. You can refer the same here