25 datasets found
  1. Resident population in California 1960-2023

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Resident population in California 1960-2023 [Dataset]. https://www.statista.com/statistics/206097/resident-population-in-california/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    California, United States
    Description

    In 2023, the resident population of California was ***** million. This is a slight decrease from the previous year, with ***** million people in 2022. This makes it the most populous state in the U.S. Californian demographics Along with an increase in population, California’s gross domestic product (GDP) has also been increasing, from *** trillion U.S. dollars in 2000 to **** trillion U.S. dollars in 2023. In the same time period, the per-capita personal income has almost doubled, from ****** U.S. dollars in 2000 to ****** U.S. dollars in 2022. In 2023, the majority of California’s resident population was Hispanic or Latino, although the number of white residents followed as a close second, with Asian residents making up the third-largest demographic in the state. The dark side of the Golden State While California is one of the most well-known states in the U.S., is home to Silicon Valley, and one of the states where personal income has been increasing over the past 20 years, not everyone in California is so lucky: In 2023, the poverty rate in California was about ** percent, and the state had the fifth-highest rate of homelessness in the country during that same year, with an estimated ** homeless people per 10,000 of the population.

  2. M

    California Population 1900-2024

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). California Population 1900-2024 [Dataset]. https://www.macrotrends.net/states/california/population
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California
    Description

    Chart and table of population level and growth rate for the state of California from 1900 to 2024.

  3. F

    Resident Population in Los Angeles County, CA

    • fred.stlouisfed.org
    json
    Updated Mar 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Resident Population in Los Angeles County, CA [Dataset]. https://fred.stlouisfed.org/series/CALOSA7POP
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 14, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Los Angeles County, California
    Description

    Graph and download economic data for Resident Population in Los Angeles County, CA (CALOSA7POP) from 1970 to 2024 about Los Angeles County, CA; Los Angeles; residents; CA; population; and USA.

  4. a

    Evaluating the California Complete Count Census 2020 Campaign: A Narrative...

    • dru-data-portal-cacensus.hub.arcgis.com
    Updated Jun 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Calif. Dept. of Finance Demographic Research Unit (2023). Evaluating the California Complete Count Census 2020 Campaign: A Narrative Report [Dataset]. https://dru-data-portal-cacensus.hub.arcgis.com/documents/d3e5034676074d7fb7e443a5d6ad2165
    Explore at:
    Dataset updated
    Jun 29, 2023
    Dataset authored and provided by
    Calif. Dept. of Finance Demographic Research Unit
    Description

    California is home to 12 percent of the nation's population yet accounts for more than 20 percent of the people living in the nation’s hardest-to-count areas, according to the United States Census Bureau (U.S. Census Bureau). California's unique diversity, large population distributed across both urban and rural areas, and sheer geographic size present significant barriers to achieving a complete and accurate count. The state’s population is more racially and ethnically diverse than ever before, with about 18 percent of Californians speaking English “less than very well,” according to U.S. Census Bureau estimates. Because the 2020 Census online form was offered in only twelve non-English languages, which did not correspond with the top spoken language in California, and a paper questionnaire only in English and Spanish, many Californians may not have been able to access a census questionnaire or written guidance in a language they could understand. In order to earn the confidence of California’s most vulnerable populations, it was critical during the 2020 Census that media and trusted messengers communicate with them in their primary language and in accessible formats. An accurate count of the California population in each decennial census is essential to receive its equitable share of federal funds and political representation, through reapportionment and redistricting. It plays a vital role in many areas of public life, including important investments in health, education, housing, social services, highways, and schools. Without a complete count in the 2020 Census, the State faced a potential loss of congressional seats and billions of dollars in muchneeded federal funding. An undercount of California in 1990 cost an estimated $2 billion in federal funding. The potential loss of representation and critically needed funding could have long-term impacts; only with a complete count does California receive the share of funding the State deserves with appropriate representation at the federal, state, and local government levels. The high stakes and formidable challenges made this California Complete Count Census 2020 Campaign (Campaign) the most important to date. The 2020 Census brought an unprecedented level of new challenges to all states, beyond the California-specific hurdles discussed above. For the first time, the U.S. Census Bureau sought to collect data from households through an online form. While the implementation of digital forms sought to reduce costs and increase participation, its immediate impact is still unknown as of this writing, and it may have substantially changed how many households responded to the census. In addition, conditions such as the novel Coronavirus (COVID-19) pandemic, a contentious political climate, ongoing mistrust and distrust of government, and rising concerns about privacy may have discouraged people to open their doors, or use computers, to participate. Federal immigration policy, as well as the months-long controversy over adding a citizenship question to the census, may have deterred households with mixed documentation status, recent immigrants, and undocumented immigrants from participating. In 2017, to prepare for the unique challenges of the 2020 Census, California leaders and advocates reflected on lessons learned from previous statewide census efforts and launched the development of a high-impact strategy to efficiently raise public awareness about the 2020 Census. Subsequently, the State established the California Complete Count – Census 2020 Office (Census Office) and invested a significant sum for the Campaign. The Campaign was designed to educate, motivate, and activate Californians to respond to the 2020 Census. It relied heavily on grassroots messaging and outreach to those least likely to fill out the census form. One element of the Campaign was the Language and Communication Access Plan (LACAP), which the Census Office developed to ensure that language and communication access was linguistically and culturally relevant and sensitive and provided equal and meaningful access for California’s vulnerable populations. The Census Office contracted with outreach partners, including community leaders and organizations, local government, and ethnic media, who all served as trusted messengers in their communities to deliver impactful words and offer safe places to share information and trusted messages. The State integrated consideration of hardest-to-count communities’ needs throughout the Campaign’s strategy at both the statewide and regional levels. The Campaign first educated, then motivated, and during the census response period, activated Californians to fill out their census form. The Census Office’s mission was to ensure that Californians get their fair share of resources and representation by encouraging the full participation of all Californians in the 2020 Census. This report focuses on the experience of the Census Office and partner organizations who worked to achieve the most complete count possible, presenting an evaluation of four outreach and communications strategies.

  5. Population in the states of the U.S. 2024

    • statista.com
    Updated Jan 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Population in the states of the U.S. 2024 [Dataset]. https://www.statista.com/statistics/183497/population-in-the-federal-states-of-the-us/
    Explore at:
    Dataset updated
    Jan 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    California was the state with the highest resident population in the United States in 2024, with 39.43 million people. Wyoming had the lowest population with about 590,000 residents. Living the American Dream Ever since the opening of the West in the United States, California has represented the American Dream for both Americans and immigrants to the U.S. The warm weather, appeal of Hollywood and Silicon Valley, as well as cities that stick in the imagination such as San Francisco and Los Angeles, help to encourage people to move to California. Californian demographics California is an extremely diverse state, as no one ethnicity is in the majority. Additionally, it has the highest percentage of foreign-born residents in the United States. By 2040, the population of California is expected to increase by almost 10 million residents, which goes to show that its appeal, both in reality and the imagination, is going nowhere fast.

  6. c

    Where are the population centers?

    • hub.scag.ca.gov
    Updated Feb 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    rdpgisadmin (2022). Where are the population centers? [Dataset]. https://hub.scag.ca.gov/maps/9df4a45a3f5e46f6aae5af57988d45fa
    Explore at:
    Dataset updated
    Feb 1, 2022
    Dataset authored and provided by
    rdpgisadmin
    Area covered
    Description

    This multi-scale map shows counts of the total population the US. Data is from U.S. Census Bureau's 2020 PL 94-171 data for county, tract, block group, and block.County and metro area highlights:The largest county in the United States in 2020 remains Los Angeles County with over 10 million people.The largest city (incorporated place) in the United States in 2020 remains New York with 8.8 million people.312 of the 384 U.S. metro areas gained population between 2010 and 2020.The fastest-growing U.S. metro area between the 2010 Census and 2020 Census was The Villages, FL, which grew 39% from about 93,000 people to about 130,000 people.72 U.S. metro areas lost population from the 2010 Census to the 2020 Census. The U.S. metro areas with the largest percentage declines were Pine Bluff, AR, and Danville, IL, at -12.5 percent and -9.1 percent, respectively.View more 2020 Census statistics highlights on local populations changes.

  7. Population density in the U.S. 2023, by state

    • statista.com
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population density in the U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/183588/population-density-in-the-federal-states-of-the-us/
    Explore at:
    Dataset updated
    Dec 3, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.

  8. N

    California, MO annual income distribution by work experience and gender...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). California, MO annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/california-mo-income-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Missouri, California
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within California. The dataset can be utilized to gain insights into gender-based income distribution within the California population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within California, among individuals aged 15 years and older with income, there were 1,559 men and 1,894 women in the workforce. Among them, 752 men were engaged in full-time, year-round employment, while 961 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 3.46% fell within the income range of under $24,999, while 17.38% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 11.44% of men in full-time roles earned incomes exceeding $100,000, while 5.41% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for California median household income by race. You can refer the same here

  9. A

    Summary of California Clapper Rail Winter Populations in the San Francisco...

    • data.amerigeoss.org
    • datadiscoverystudio.org
    pdf
    Updated Jul 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). Summary of California Clapper Rail Winter Populations in the San Francisco Bay, 1989 to 1993 [Dataset]. https://data.amerigeoss.org/pt_BR/dataset/d71e2189-d6bb-46e1-9f5e-4676013b1cd1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 30, 2019
    Dataset provided by
    United States[old]
    Area covered
    San Francisco Bay
    Description

    The federal and state endangered California clapper rail, Rallus longirostris obsoletus. is a species that, until very recently, was on the verge of extinction. This secretive marsh bird's decline began over 100 years ago in the pristine marshes of San Francisco Bay (Bay) and the California coast (Fig. 1). In the earlier part of this century, the rail was found as far north as Humboldt Bay pd as far south as Morro Bay (Gill 1979) (Fig. 2). In the early 80s, the last known pair of rails outside of the Bay was seen at Elkhorn Slough in Monterey County. During the first half of this century, exploitation of the Bay's natural resources, including unrestricted filling and diking of the tidal marshes, began shrinking the rail's habitat in San Pablo Bay, Central and South San Francisco Bay from over 51,000 hectares to less than 9,000 hectares that now remain today (Dedrick 1993). The cumulative effects from this continued loss of critical habitat, combined with recent threats from increased predation, probable contamination, and other stresses associated with expanding urban growth, has created a crisis for our bay's indigenous rail. After the rail was listed as Endangered under the authority of the Endangered Species Act by the U.S. Fish and Wildlife Service (Service) in 1970, censuses of the population in the Bay were initiated. In the early 1970s, Gill estimated the total California clapper rail population at 4200 to 6000 individuals (1979). Surveys for the rail continued into the 80s (Moss 1980), with Harvey providing an estimate of 1200-1500 rails in 1981. The survey by Harvey was more accurate than the Gill estimate because an actual count was made, as compared to an average density which Gill applied to all suitable habitat. Subsequent censuses were sporadic and incomplete (Harvey 1987) until the Service, led by the San Francisco Bay National Wildlife Refuge (Refuge) began winter high tide surveys of South San Francisco Bay (South Bay) in 1988 (Foerster 1989). The Service began to suspect that the rail was in serious decline after the Refuge conducted a thorough survey of major South Bay marshes in the winter of 1988-89 and estimated a total population of only 700 rails. It was discovered that populations of rails in marshes on the east side of the bay were suffering the greatest declines and that predation by non-native predators was implicated as a primary factor (Foerster 1989). This hypothesis was confirmed by data collected by the Refuge and subsequently an Environmental Assessment and Predator Management Plan was implemented in March 1991 (Foerster and Takekawa 1991). Since 1988, the Refuge has continued to conduct annual winter high tide surveys of South Bay rail populations and some San Pablo Bay (North Bay) subpopulations (Figs. 2 and 3), with the assistance of the California Department of Fish and Game (CDFG) and other local organizations such as the San Francisco Bay Bird Observatory. This report summarizes data collected between November 1989 and January 1993, encompassing four annual winter surveys. During the last two years, the Refuge also initiated research into several factors which were implicated in rail population decline. The factors which were identified as significantly affecting rail survival included predation by non-native predators (Foerster and Takekawa 1991), and high levels of heavy metals in prey species (Lonzarich, et al. 1992). Continued analysis of these factors by the Service will culminate in a several reports to be released in late 1994.

  10. U.S. projected state population by state 2040

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. projected state population by state 2040 [Dataset]. https://www.statista.com/statistics/312714/us-projected-state-population-by-state/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 2024
    Area covered
    United States
    Description

    According to a population projection based on 2020 Census Data, in 2040, California's population will amount to ***** million inhabitants.

  11. Data from: County Health Status Profiles

    • data.chhs.ca.gov
    • data.ca.gov
    • +2more
    csv, zip
    Updated Aug 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). County Health Status Profiles [Dataset]. https://data.chhs.ca.gov/dataset/county-health-status-profiles
    Explore at:
    csv(4783), csv(567843), csv(570397), csv(549726), zip, csv(1107046), csv(570685)Available download formats
    Dataset updated
    Aug 26, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    County Health Status Profiles is an annually published report for the State of California by the California Department of Public Health in collaboration with the California Conference of Local Health Officers. Health indicators are measured for 58 counties and California statewide that can be directly compared to national standards and populations of similar composition. Where available, the measurements are ranked and compared with target rates established for Healthy People National Objectives.

    For tables where the health indicator denominator and numerator are derived from the same data source, the denominator excludes records for which the health indicator data is missing and unable to be imputed.

    For more information see the County Health Status Profiles report.

  12. A

    ‘California Housing Data (1990)’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Nov 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘California Housing Data (1990)’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-california-housing-data-1990-a0c5/b7389540/?iid=007-628&v=presentation
    Explore at:
    Dataset updated
    Nov 12, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California
    Description

    Analysis of ‘California Housing Data (1990)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/harrywang/housing on 12 November 2021.

    --- Dataset description provided by original source is as follows ---

    Source

    This is the dataset used in this book: https://github.com/ageron/handson-ml/tree/master/datasets/housing to illustrate a sample end-to-end ML project workflow (pipeline). This is a great book - I highly recommend!

    The data is based on California Census in 1990.

    About the Data (from the book):

    "This dataset is a modified version of the California Housing dataset available from Luís Torgo's page (University of Porto). Luís Torgo obtained it from the StatLib repository (which is closed now). The dataset may also be downloaded from StatLib mirrors.

    The following is the description from the book author:

    This dataset appeared in a 1997 paper titled Sparse Spatial Autoregressions by Pace, R. Kelley and Ronald Barry, published in the Statistics and Probability Letters journal. They built it using the 1990 California census data. It contains one row per census block group. A block group is the smallest geographical unit for which the U.S. Census Bureau publishes sample data (a block group typically has a population of 600 to 3,000 people).

    The dataset in this directory is almost identical to the original, with two differences: 207 values were randomly removed from the total_bedrooms column, so we can discuss what to do with missing data. An additional categorical attribute called ocean_proximity was added, indicating (very roughly) whether each block group is near the ocean, near the Bay area, inland or on an island. This allows discussing what to do with categorical data. Note that the block groups are called "districts" in the Jupyter notebooks, simply because in some contexts the name "block group" was confusing."

    About the Data (From Luís Torgo page):

    http://www.dcc.fc.up.pt/%7Eltorgo/Regression/cal_housing.html

    This is a dataset obtained from the StatLib repository. Here is the included description:

    "We collected information on the variables using all the block groups in California from the 1990 Cens us. In this sample a block group on average includes 1425.5 individuals living in a geographically co mpact area. Naturally, the geographical area included varies inversely with the population density. W e computed distances among the centroids of each block group as measured in latitude and longitude. W e excluded all the block groups reporting zero entries for the independent and dependent variables. T he final data contained 20,640 observations on 9 variables. The dependent variable is ln(median house value)."

    End-to-End ML Project Steps (Chapter 2 of the book)

    1. Look at the big picture
    2. Get the data
    3. Discover and visualize the data to gain insights
    4. Prepare the data for Machine Learning algorithms
    5. Select a model and train it
    6. Fine-tune your model
    7. Present your solution
    8. Launch, monitor, and maintain your system

    The 10-Step Machine Learning Project Workflow (My Version)

    1. Define business object
    2. Make sense of the data from a high level
      • data types (number, text, object, etc.)
      • continuous/discrete
      • basic stats (min, max, std, median, etc.) using boxplot
      • frequency via histogram
      • scales and distributions of different features
    3. Create the traning and test sets using proper sampling methods, e.g., random vs. stratified
    4. Correlation analysis (pair-wise and attribute combinations)
    5. Data cleaning (missing data, outliers, data errors)
    6. Data transformation via pipelines (categorical text to number using one hot encoding, feature scaling via normalization/standardization, feature combinations)
    7. Train and cross validate different models and select the most promising one (Linear Regression, Decision Tree, and Random Forest were tried in this tutorial)
    8. Fine tune the model using trying different combinations of hyperparameters
    9. Evaluate the model with best estimators in the test set
    10. Launch, monitor, and refresh the model and system

    --- Original source retains full ownership of the source dataset ---

  13. California Housing Data (1990)

    • kaggle.com
    Updated May 10, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harry Wang (2018). California Housing Data (1990) [Dataset]. https://www.kaggle.com/harrywang/housing/activity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 10, 2018
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Harry Wang
    Area covered
    California
    Description

    Source

    This is the dataset used in this book: https://github.com/ageron/handson-ml/tree/master/datasets/housing to illustrate a sample end-to-end ML project workflow (pipeline). This is a great book - I highly recommend!

    The data is based on California Census in 1990.

    About the Data (from the book):

    "This dataset is a modified version of the California Housing dataset available from Luís Torgo's page (University of Porto). Luís Torgo obtained it from the StatLib repository (which is closed now). The dataset may also be downloaded from StatLib mirrors.

    The following is the description from the book author:

    This dataset appeared in a 1997 paper titled Sparse Spatial Autoregressions by Pace, R. Kelley and Ronald Barry, published in the Statistics and Probability Letters journal. They built it using the 1990 California census data. It contains one row per census block group. A block group is the smallest geographical unit for which the U.S. Census Bureau publishes sample data (a block group typically has a population of 600 to 3,000 people).

    The dataset in this directory is almost identical to the original, with two differences: 207 values were randomly removed from the total_bedrooms column, so we can discuss what to do with missing data. An additional categorical attribute called ocean_proximity was added, indicating (very roughly) whether each block group is near the ocean, near the Bay area, inland or on an island. This allows discussing what to do with categorical data. Note that the block groups are called "districts" in the Jupyter notebooks, simply because in some contexts the name "block group" was confusing."

    About the Data (From Luís Torgo page):

    http://www.dcc.fc.up.pt/%7Eltorgo/Regression/cal_housing.html

    This is a dataset obtained from the StatLib repository. Here is the included description:

    "We collected information on the variables using all the block groups in California from the 1990 Cens us. In this sample a block group on average includes 1425.5 individuals living in a geographically co mpact area. Naturally, the geographical area included varies inversely with the population density. W e computed distances among the centroids of each block group as measured in latitude and longitude. W e excluded all the block groups reporting zero entries for the independent and dependent variables. T he final data contained 20,640 observations on 9 variables. The dependent variable is ln(median house value)."

    End-to-End ML Project Steps (Chapter 2 of the book)

    1. Look at the big picture
    2. Get the data
    3. Discover and visualize the data to gain insights
    4. Prepare the data for Machine Learning algorithms
    5. Select a model and train it
    6. Fine-tune your model
    7. Present your solution
    8. Launch, monitor, and maintain your system

    The 10-Step Machine Learning Project Workflow (My Version)

    1. Define business object
    2. Make sense of the data from a high level
      • data types (number, text, object, etc.)
      • continuous/discrete
      • basic stats (min, max, std, median, etc.) using boxplot
      • frequency via histogram
      • scales and distributions of different features
    3. Create the traning and test sets using proper sampling methods, e.g., random vs. stratified
    4. Correlation analysis (pair-wise and attribute combinations)
    5. Data cleaning (missing data, outliers, data errors)
    6. Data transformation via pipelines (categorical text to number using one hot encoding, feature scaling via normalization/standardization, feature combinations)
    7. Train and cross validate different models and select the most promising one (Linear Regression, Decision Tree, and Random Forest were tried in this tutorial)
    8. Fine tune the model using trying different combinations of hyperparameters
    9. Evaluate the model with best estimators in the test set
    10. Launch, monitor, and refresh the model and system
  14. Median age of U.S. population by state 2022

    • statista.com
    Updated Aug 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Median age of U.S. population by state 2022 [Dataset]. https://www.statista.com/statistics/208048/median-age-of-population-in-the-usa-by-state/
    Explore at:
    Dataset updated
    Aug 6, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    In 2022, the state with the highest median age of its population was Maine at 45.1 years. Utah had the lowest median age at 32.1 years. View the distribution of the U.S. population by ethnicity here.

    Additional information on the aging population in the United States

    High birth rates during the so-called baby boom years that followed World War II followed by lower fertility and morality rates have left the United States with a serious challenge in the 21st Century. However, the issue of an aging population is certainly not an issue unique to the United States. The age distribution of the global population shows that other parts of the world face a similar issue.

    Within the United States, the uneven distribution of populations aged 65 years and over among states offers both major challenges and potential solutions. On the one hand, federal action over the issue may be contentious as other states are set to harbor the costs of elderly care in states such as California and Florida. That said, domestic migration from comparably younger states may help to fill gaps in the workforce left by retirees in others.

    Nonetheless, aging population issues are set to gain further prominence in the political and economic decisions made by policymakers regardless of the eventual distribution of America’s elderly. Analysis of the financial concerns of Americans by age shows many young people still decades from retirement hold strong concern over their eventual financial position.

  15. U.S. House of Representatives seat distribution 2025, by state

    • statista.com
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. House of Representatives seat distribution 2025, by state [Dataset]. https://www.statista.com/statistics/1356977/house-representatives-seats-state-us/
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    United States
    Description

    There are 435 seats in the U.S. House of Representatives, of which ** are allocated to the state of California. Seats in the House are allocated based on the population of each state. To ensure proportional and dynamic representation, congressional apportionment is reevaluated every 10 years based on census population data. After the 2020 census, six states gained a seat - Colorado, Florida, Montana, North Carolina, and Oregon. The states of California, Illinois, Michigan, New York, Ohio, Pennsylvania, and West Virginia lost a seat.

  16. California's electoral votes in U.S. presidential elections 1852-2024

    • statista.com
    Updated Nov 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). California's electoral votes in U.S. presidential elections 1852-2024 [Dataset]. https://www.statista.com/statistics/1128983/california-electoral-votes-since-1852/
    Explore at:
    Dataset updated
    Nov 7, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    California, United States
    Description

    Since 1852, the U.S. presidential election has been contested in California 44 times, with Californians successfully voting for the winning candidate on 35 occasions, giving an overall success rate of 80 percent. California has awarded the majority of its electoral votes to the Republican Party in 23 elections, the Democratic Party in 20 elections, and the only year when a third-party candidate won a majority was in 1912, where Theodore Roosevelt won the state while campaigning as the Progressive Party's nominee. Between 1952 and 1988, there was only one election that was not won by the Republican candidate, while all elections since 1992 have been won by the Democratic nominee. In the 2024 election, Oakland-born Vice President Kamala Harris ran as the Democratic nominee, and comfortably won her home state but lost the nationwide vote. Californian under-representation? California was admitted to the union in 1850, and was granted just four electoral votes in its first three presidential elections. In the past two centuries, California's population has grown rapidly, largely due to a positive net migration rate from within the U.S. and abroad. Today, it has the highest population of any state in the U.S, with almost forty million people, and has therefore been designated 54 electoral votes; the most of any state. Although California has been allocated around ten percent of the total electoral votes on offer nationwide, The Golden State is home to roughly twelve percent of the total U.S. population, therefore a number closer to 62 electoral votes would be more proportional to the U.S. population distribution. Despite this, California's total allocation was reduced to 54 in the 2024 election. Native Californians As of 2020, Richard Nixon is the only native Californian to have been elected to the presidency, having won the election in 1968 and 1972. California also voted for Nixon in the 1960 election, although John F. Kennedy was the overall winner. Two other U.S. Presidents had declared California as their home state; they were Herbert Hoover, who won the 1928 election, and Ronald Reagan, who won in 1980 and 1984 respectively. While states generally support candidates who were born or reside there, Californian candidates have failed to carry their home state or state of birth in four U.S. presidential elections, these were; John C. Frémont in 1854 (who actually came third in California), Herbert Hoover in 1932, and Adlai Stevenson in both the 1952 and 1956 elections.

  17. N

    California Township, Michigan annual income distribution by work experience...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). California Township, Michigan annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/ba9b104b-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California Township, Michigan
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within California township. The dataset can be utilized to gain insights into gender-based income distribution within the California township population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within California township, among individuals aged 15 years and older with income, there were 408 men and 204 women in the workforce. Among them, 227 men were engaged in full-time, year-round employment, while 73 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 10.13% fell within the income range of under $24,999, while 4.11% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 14.54% of men in full-time roles earned incomes exceeding $100,000, while none of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for California township median household income by race. You can refer the same here

  18. Data from: Study of Race, Crime, and Social Policy in Oakland, California,...

    • catalog.data.gov
    • icpsr.umich.edu
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Study of Race, Crime, and Social Policy in Oakland, California, 1976-1982 [Dataset]. https://catalog.data.gov/dataset/study-of-race-crime-and-social-policy-in-oakland-california-1976-1982-b8cd2
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    National Institute of Justicehttp://nij.ojp.gov/
    Area covered
    Oakland, California
    Description

    In 1980, the National Institute of Justice awarded a grant to the Cornell University College of Human Ecology for the establishment of the Center for the Study of Race, Crime, and Social Policy in Oakland, California. This center mounted a long-term research project that sought to explain the wide variation in crime statistics by race and ethnicity. Using information from eight ethnic communities in Oakland, California, representing working- and middle-class Black, White, Chinese, and Hispanic groups, as well as additional data from Oakland's justice systems and local organizations, the center conducted empirical research to describe the criminalization process and to explore the relationship between race and crime. The differences in observed patterns and levels of crime were analyzed in terms of: (1) the abilities of local ethnic communities to contribute to, resist, neutralize, or otherwise affect the criminalization of its members, (2) the impacts of criminal justice policies on ethnic communities and their members, and (3) the cumulative impacts of criminal justice agency decisions on the processing of individuals in the system. Administrative records data were gathered from two sources, the Alameda County Criminal Oriented Records Production System (CORPUS) (Part 1) and the Oakland District Attorney Legal Information System (DALITE) (Part 2). In addition to collecting administrative data, the researchers also surveyed residents (Part 3), police officers (Part 4), and public defenders and district attorneys (Part 5). The eight study areas included a middle- and low-income pair of census tracts for each of the four racial/ethnic groups: white, Black, Hispanic, and Asian. Part 1, Criminal Oriented Records Production System (CORPUS) Data, contains information on offenders' most serious felony and misdemeanor arrests, dispositions, offense codes, bail arrangements, fines, jail terms, and pleas for both current and prior arrests in Alameda County. Demographic variables include age, sex, race, and marital status. Variables in Part 2, District Attorney Legal Information System (DALITE) Data, include current and prior charges, days from offense to charge, disposition, and arrest, plea agreement conditions, final results from both municipal court and superior court, sentence outcomes, date and outcome of arraignment, disposition, and sentence, number and type of enhancements, numbers of convictions, mistrials, acquittals, insanity pleas, and dismissals, and factors that determined the prison term. For Part 3, Oakland Community Crime Survey Data, researchers interviewed 1,930 Oakland residents from eight communities. Information was gathered from community residents on the quality of schools, shopping, and transportation in their neighborhoods, the neighborhood's racial composition, neighborhood problems, such as noise, abandoned buildings, and drugs, level of crime in the neighborhood, chances of being victimized, how respondents would describe certain types of criminals in terms of age, race, education, and work history, community involvement, crime prevention measures, the performance of the police, judges, and attorneys, victimization experiences, and fear of certain types of crimes. Demographic variables include age, sex, race, and family status. For Part 4, Oakland Police Department Survey Data, Oakland County police officers were asked about why they joined the police force, how they perceived their role, aspects of a good and a bad police officer, why they believed crime was down, and how they would describe certain beats in terms of drug availability, crime rates, socioeconomic status, number of juveniles, potential for violence, residential versus commercial, and degree of danger. Officers were also asked about problems particular neighborhoods were experiencing, strategies for reducing crime, difficulties in doing police work well, and work conditions. Demographic variables include age, sex, race, marital status, level of education, and years on the force. In Part 5, Public Defender/District Attorney Survey Data, public defenders and district attorneys were queried regarding which offenses were increasing most rapidly in Oakland, and they were asked to rank certain offenses in terms of seriousness. Respondents were also asked about the public's influence on criminal justice agencies and on the performance of certain criminal justice agencies. Respondents were presented with a list of crimes and asked how typical these offenses were and what factors influenced their decisions about such cases (e.g., intent, motive, evidence, behavior, prior history, injury or loss, substance abuse, emotional trauma). Other variables measured how often and under what circumstances the public defender and client and the public defender and the district attorney agreed on the case, defendant characteristics in terms of who should not be put on the stand, the effects of Proposition 8, public defender and district attorney plea guidelines, attorney discretion, and advantageous and disadvantageous characteristics of a defendant. Demographic variables include age, sex, race, marital status, religion, years of experience, and area of responsibility.

  19. n

    Data from: A single migrant enhances the genetic diversity of an inbred puma...

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated May 12, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kyle C. Gustafson; T. Winston Vickers; Walter M. Boyce; Holly B. Ernest; Kyle D. Gustafson (2017). A single migrant enhances the genetic diversity of an inbred puma population [Dataset]. http://doi.org/10.5061/dryad.1kh2n
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 12, 2017
    Dataset provided by
    University of California, Davis
    University of Wyoming
    Authors
    Kyle C. Gustafson; T. Winston Vickers; Walter M. Boyce; Holly B. Ernest; Kyle D. Gustafson
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Migration is essential for maintaining genetic diversity among populations, and pumas (Puma concolor) provide an excellent model for studying the genetic impacts of migrants on populations isolated by increasing human development. In densely populated southern California, USA, puma populations on the east and west side of interstate highway 15 (I-15) have become fragmented into a small inbred population on the west side (Santa Ana Mountains) and a relatively larger, more diverse population on the east side (Eastern Peninsular Range). From 146 sampled pumas, genetic analyses indicate seven pumas crossed I-15 over the last 15 years, including four males from west to east, and three males from east to west. However, only a single migrant (named M86) was detected to have produced offspring and contribute to gene flow across the I-15 barrier. Prior to the M86 migration, the Santa Ana population exhibited inbreeding and had significantly lower genetic diversity than the Eastern Peninsular Range population. After M86 emigrated, he sired 11 offspring with Santa Ana females, decreasing inbreeding measures and raising heterozygosity to levels similar to pumas in the Eastern Peninsular Range. The emigration of M86 also introduced new alleles into the Santa Ana population, although allelic richness still remained significantly lower than the Eastern Peninsular population. Our results clearly show the benefit of a single migrant to the genetics of a small, isolated population. However, ongoing development and habitat loss on both sides of I-15 will increasingly strengthen the barrier to successful migration. Further monitoring, and potential human intervention, including minimizing development effects on connectivity, adding or improving freeway crossing structures, or animal translocation, may be needed to ensure adequate gene flow and long-term persistence of the Santa Ana puma population.

  20. d

    Data from: A Century of Landscape Disturbance and Urbanization of the San...

    • search.dataone.org
    • data.usgs.gov
    • +1more
    Updated Oct 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dustin A. Wood; Thuy-Vy D. Bui; Cory T. Overton; Amy G. Vandergast; Michael L. Casazza; Joshua M. Hull; John Y. Takekawa (2016). A Century of Landscape Disturbance and Urbanization of the San Francisco Bay Region affects the Present-day Genetic Diversity of the California Ridgway’s Rail (Rallus obsoletus obsoletus). [Dataset]. https://search.dataone.org/view/624c0512-bc84-4207-bb3d-096b3e39376f
    Explore at:
    Dataset updated
    Oct 29, 2016
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Dustin A. Wood; Thuy-Vy D. Bui; Cory T. Overton; Amy G. Vandergast; Michael L. Casazza; Joshua M. Hull; John Y. Takekawa
    Time period covered
    Jan 5, 2007 - Mar 21, 2013
    Area covered
    Variables measured
    Marsh, Zone_, Easting, Northing, Individual_Sample, TET_AET08_Allele_1, TET_AET08_Allele_2, TET_BUii1_Allele_1, TET_BUii1_Allele_2, TET_CBG53_Allele_1, and 13 more
    Description

    Fragmentation and loss of natural habitat have important consequences for wild populations and can negatively affect long-term viability and resilience to environmental change. Salt marsh obligate species, such as those that occupy the San Francisco Bay Estuary in western North America, occupy already impaired habitats as result of human development and modifications and are highly susceptible to increased habitat loss and fragmentation due to global climate change. We examined the genetic variation of the California Ridgway’s rail ( Rallus obsoletus obsoletus), a state and federally endangered species that occurs within the fragmented salt marsh of the San Francisco Bay Estuary. We genotyped 107 rails across 11 microsatellite loci and a single mitochondrial gene to estimate genetic diversity and population structure among seven salt marsh fragments and assessed demographic connectivity by inferring patterns of gene flow and migration rates. We found pronounced genetic structuring among four geographically separate genetic clusters across the San Francisco Bay. Gene flow analyses supported a stepping stone model of gene flow from south-to-north. However, contemporary gene flow among the regional embayments was low. Genetic diversity among occupied salt marshes and genetic clusters were not significantly different. However, we detected low effective population sizes and significantly high relatedness among individuals within salt marshes. Preserving genetic diversity and connectivity throughout the San Francisco Bay may require attention to salt marsh restoration in the Central Bay where habitat is both most limited and most fragmented. Incorporating periodic genetic sampling in to the management regime may help evaluate population trends and guide long-term management priorities. These data support the following in-press publication: Wood, D.A., Bui, T.D., Overton, C.T., Vandergast, A.G., Casazza, M.L., Hull, J.M., and Takekawa, J.Y. Conservation Genetics (2016). doi:10.1007/s10592-016-0888-4.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Resident population in California 1960-2023 [Dataset]. https://www.statista.com/statistics/206097/resident-population-in-california/
Organization logo

Resident population in California 1960-2023

Explore at:
5 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 23, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
California, United States
Description

In 2023, the resident population of California was ***** million. This is a slight decrease from the previous year, with ***** million people in 2022. This makes it the most populous state in the U.S. Californian demographics Along with an increase in population, California’s gross domestic product (GDP) has also been increasing, from *** trillion U.S. dollars in 2000 to **** trillion U.S. dollars in 2023. In the same time period, the per-capita personal income has almost doubled, from ****** U.S. dollars in 2000 to ****** U.S. dollars in 2022. In 2023, the majority of California’s resident population was Hispanic or Latino, although the number of white residents followed as a close second, with Asian residents making up the third-largest demographic in the state. The dark side of the Golden State While California is one of the most well-known states in the U.S., is home to Silicon Valley, and one of the states where personal income has been increasing over the past 20 years, not everyone in California is so lucky: In 2023, the poverty rate in California was about ** percent, and the state had the fifth-highest rate of homelessness in the country during that same year, with an estimated ** homeless people per 10,000 of the population.

Search
Clear search
Close search
Google apps
Main menu