Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset represents polygon boundaries of all public water agencies in California including public water systems, agricultural water districts, urban water districts, Federal and State water contractors, wholesalers, retailers, and other public or private utilities that deliver water to the end user.
Facebook
TwitterUse Constraints:This mapping tool is for reference and guidance purposes only and is not a binding legal document to be used for legal determinations. The data provided may contain errors, inconsistencies, or may not in all cases appropriately represent the current boundaries of PWSs in California. The data in this map are subject to change at any time and should not be used as the sole source for decision making. By using this data, the user acknowledges all limitations of the data and agrees to accept all errors stemming from its use.Description:This mapping tool provides a representation of the general PWS boundaries for water service, wholesaler and jurisdictional areas. The boundaries were created originally by collection via crowd sourcing by CDPH through the Boundary Layer Tool, this tool was retired as of June 30, 2020. State Water Resources Control Board – Division of Drinking Water is currently in the process of verifying the accuracy of these boundaries and working on a tool for maintaining the current boundaries and collecting boundaries for PWS that were not in the original dataset. Currently, the boundaries are in most cases have not been verified. Map Layers· Drinking Water System Areas – representation of the general water system boundaries maintained by the State Water Board. This layer contains polygons with associated data on the water system and boundary the shape represents.· LPA office locations – represents the locations of the Local Primacy Agency overseeing the water system in that county. Address and contact information are attributes of this dataset.· LPA office locations – represents the locations of the Local Primacy Agency overseeing the water system in that county. Address and contact information are attributes of this dataset· California Senate Districts – represents the boundaries of the senate districts in California included as a reference layer in order to perform analysis with the Drinking Water System Boundaries layers.· California Senate Districts – represents the boundaries of the assembly districts in California included as a reference layer in order to perform analysis with the Drinking Water System Boundaries layers.· California County – represents the boundaries of the counties in California included as a reference layer in order to perform analysis with the Drinking Water System Boundaries layers.Informational Pop-up Box for Boundary layer· Water System No. – unique identifier for each water system· Water System Name – name of water system· Regulating Agency – agency overseeing the water system· System Type – classification of water system.· Population the approximate population served by the water system· Boundary Type – the type of water system boundary being displayed· Address Line 1 – the street or mailing address on file for the water system· Address Line 2 – additional line for street or mailing address on file for the water system, if applicable· City – city where water system located or receives mail· County – county where water system is located· Verification Status – the verification status of the water system boundary· Verified by – if the boundary is verified, the person responsible for the verification Date Created and Sources:This web app was most recently updated on July, 21, 2021. Each layer has a data created date and data source is indicated in the overview/metadata page and is valid up to the date provided.
Facebook
TwitterIn order to provide an accurate data set of service area boundaries for California drinking water systems, the Division of Drinking Water of the California Water Resources Control Board (SWRCB DDW) has undertaken a project to vet and verify the data collected by the Tracking California's Water Boundary Tool (WBT).Note: This feature layer is updated on a regular basis. However, in some locations where it is shared, it shows the “Data Updated” date as the last time the item has changed, not the data. To accurately determine when the data was last updated, open the data table and sort by Last Edited Date field.SWRCB DDW downloaded a copy of the current water system service areas loaded in the WBT as of June 27, 2019. Additional attribute fields indicating verification status, verification staff and system type were appended to the data set. SWRCB DDW staff are reviewing and validating the displayed boundaries of each service area as well as contacting the service providers regarding necessary corrections. The verification status of any particular service area may be found in the Verification Status field.For any questions regarding this dataset, please contact the Data Support Unit at DDW-DSU@waterboards.ca.gov.
Facebook
TwitterThis is the 2022 version of the Aquifer Risk Map. The 2021 version of the Aquifer Risk Map is available here.This aquifer risk map is developed to fulfill requirements of SB-200 and is intended to help prioritize areas where domestic wells and state small water systems may be accessing raw source groundwater that does not meet primary drinking water standards (maximum contaminant level or MCL). In accordance with SB-200, the risk map is to be made available to the public and is to be updated annually starting January 1, 2021. The Fund Expenditure Plan states the risk map will be used by Water Boards staff to help prioritize areas for available SAFER funding. This is the final 2022 map based upon feedback received from the 2021 map. A summary of methodology updates to the 2022 map can be found here.This map displays raw source groundwater quality risk per square mile section. The water quality data is based on depth-filtered, declustered water quality results from public and domestic supply wells. The process used to create this map is described in the 2022 Aquifer Risk Map Methodology document. Data processing scripts are available on GitHub. Download/export links are provided in this app under the Data Download widget.This draft version was last updated December 1, 2021. Water quality risk: This layer contains summarized water quality risk per square mile section and well point. The section water quality risk is determined by analyzing the long-tern (20-year) section average and the maximum recent (within 5 years) result for all sampled contaminants. These values are compared to the MCL and sections with values above the MCL are “high risk”, sections with values within 80%-100% of the MCL are “medium risk” and sections with values below 80% of the MCL are “low risk”. The specific contaminants above or close to the MCL are listed as well. The water quality data is based on depth-filtered, de-clustered water quality results from public and domestic supply wells.Individual contaminants: This layer shows de-clustered water quality data for arsenic, nitrate, 1,2,3-trichloropropane, uranium, and hexavalent chromium per square mile section. Domestic Well Density: This layer shows the count of domestic well records per square mile. The domestic well density per square mile is based on well completion report data from the Department of Water Resources Online System for Well Completion Reports, with records drilled prior to 1970 removed and records of “destruction” removed.State Small Water Systems: This layer displays point locations for state small water systems based on location data from the Division of Drinking Water.Public Water System Boundaries: This layer displays the approximate service boundaries for public water systems based on location data from the Division of Drinking Water.Reference layers: This layer contains several reference boundaries, including boundaries of CV-SALTS basins with their priority status, Groundwater Sustainability Agency boundaries, census block group boundaries, county boundaries, and groundwater unit boundaries. ArcGIS Web Application
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The California State Water Resources Control Board (State Water Board) and the nine Regional Water Quality Control Boards (Regional Water Boards), collectively known as the California Water Boards (Water Boards), are dedicated to a single vision: abundant clean water for human uses and environmental protection to sustain California’s future. Under the federal Clean Water Act (CWA) and the state’s pioneering Porter-Cologne Water Quality Control Act, the State and Regional Water Boards have regulatory responsibility for protecting the water quality of nearly 1.6 million acres of lakes, 1.3 million acres of bays and estuaries, 211,000 miles of rivers and streams, and about 1,100 miles of California coastline.The State Water Board is located in Sacramento. There are nine Regional Water Boards, the boundaries of which are generally based on watersheds, also known as hydrologic areas. The nine Regional Water Boards are referred to by specific names, which are: (1) North Coast, (2) San Francisco Bay, (3) Central Coast, (4) Los Angeles, (5) Central Valley, (6) Lahontan, (7) Colorado River Basin, (8) Santa Ana, and (9) San Diego. Due to their size, and/or geographic spread, the Central Valley Board has three offices and the Lahontan Board has two offices. In addition, the Drinking Water Program has fourteen District offices spread throughout the state.This map service shows the jurisdictional boundaries of the nine Regional Water Boards and the locations of their administrative offices. The official legal definitions of Regional Water Quality Control Board jurisdictions may be found in the Section 13200 of the California Water Code.For more information, please visit the California Water Boards website at https://www.waterboards.ca.gov.
Facebook
TwitterCommunity Service Districts
Facebook
TwitterInteractive GIS Mapping Tool – Urgent Drinking Water Needs (UDWN) Web Map in California
Use Constraints:
This mapping tool is for reference and guidance purposes only and is not a binding legal document to be used for legal determinations. The data provided may contain errors, inconsistencies, or may not in all cases appropriately represent the current status of Urgent Drinking Water Needs project locations. The data in this map are subject to change at any time and should not be used as the sole source for decision making. By using this data, the user acknowledges all limitations of the data and agrees to accept all errors stemming from its use. The Urgent Drinking Water Needs map does not provide the locations of individual households that were provided funding through grant agreements with non-profit organizations.
Description:
This map displays Urgent Drinking Water Needs due to drought, contamination, or other eligible emergencies. This includes projects approved for funding from July 1, 2014 to November 18, 2022, including both active and completed projects. The data comes from the State Water Resources Control Board (SWRCB) Cleanup and Abatement Account’s (CAA) project database and was exported on November 18, 2022. The map contains four layers: UDWN_Projects, UDWN_Summary_by_county, CA_Assembly_Districts_WEB, and CA_Senate_Districts_WEB.
The attributes for each project in the UDWN_Projects layer include the recipient of grant funding (grantee), community served, type of project, grant amount, funding program, date the project was approved, date the project was completed, Disadvantaged Community status, Small Disadvantaged Community status, the public water system number, status of the project (Active or Completed), and the state fiscal year in which the project was approved.
How to Use the Interactive Mapping Tool:When the map loads, it displays the state of California, UDWN Project locations, and California county boundaries. The “About” tab is located on the left-hand side of the map and displays instructions for using the map. The next tab display pre-set filters, the legend, and a layer list. Clicking on the “Legend” tab in the menu will show the legend of the map. Projects that appear as blue dots are still active, while projects that appear as red dots have already been completed.Note: Layers that show CA Assembly and Senate Districts were created by the Sierra Nevada Conservancy (SNC). These layers must be toggled on in the layers list to be seen. To view information about a specific project, click on a project location. A pop-up box will appear with the following information: (a) county name, (b) community served, (c) type of project, (d) approved funding amount, (e) approval date, and (f) status. To view information about the total funding and number of projects in a county, click within a county boundary and a pop up will appear.Use the pre-set filters to filter projects by status, fiscal year, funding program, county, assembly district, and/or senate district using the drop-down menu. The filters can be toggled on or off using the switches on the right side of the menu. To create a custom filter, click the filter icon at the bottom of the preset filter menu and enter the desired parameters. For one parameter, click “add expression” to create a custom filter. For more than one, click “add set” to create a custom filter.To export and download filtered data, open the Attribute Table located at the bottom of the map, click the “Options” drop down menu, select “Export all to CSV” from the drop-down menu, and download the desired information.
Map Layers:UDWN_Projects – This layer shows all active or completed UDWN projects from July 1, 2014 to November 18, 2022. Active projects are represented with blue dots while completed projects are represented with red dots. The attributes in this layer include what county the project is in, the community served, the type of project, approved funding amount, approval date, and status.UDWN_Summary_by_county – This layer shows the boundary lines for all the counties in California. The attributes in this layer include the total number of projects and total funding approved in that county since July 1, 2014. CA_Assembly_Districts_WEB – This layer shows the boundary lines for all the assembly districts in California. It is owned and maintained by the Sierra Nevada Conservancy (SNC) and boundaries may not be accurate. CA_Senate_Districts_WEB – This layer shows the boundary lines for all the senate districts in California. It is owned and maintained by the Sierra Nevada Conservancy (SNC) and boundaries may not be accurate.
Informational Pop-up Box:County – California county where the project is locatedCommunity Served – California community that is benefiting from UDWN funding Type of Project – Project type, which can include bottled water, consolidation, hauled water, pilot study, POU, pump, tank, treatment, and well Approved Funding Amount – Amount of money in U.S. dollars approved for the projectApproval Date – Date that the project was approved for fundingStatus – Current status of the project (active or closed)Date Created:
Data created on November 18, 2022 and valid up to this date.
Sources:
Urgent Drinking Water Needs data was exported from the CAA Database.
The Sierra Nevada Conservancy (SNC) created the California Senate and Assembly layers.
Points of Contact:
Christina Raynard is the creator and owner of this layer. Christina.raynard@waterboards.ca.gov (State Water Resources Control Board, Division of Financial Assistance)
Terms of Use
No special restrictions or limitations on using the item’s content have been provided.
Facebook
TwitterIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Santa Barbara Channel map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Santa Barbara Channel map area data layers. Data layers are symbolized as shown on the associated map sheets.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The USGS National Hydrography Dataset (NHD) downloadable data collection from The National Map (TNM) is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. For additional information on NHD, go to https://www.usgs.gov/core-science-systems/ngp/national-hydrography.
DWR was the steward for NHD and Watershed Boundary Dataset (WBD) in California. We worked with other organizations to edit and improve NHD and WBD, using the business rules for California. California's NHD improvements were sent to USGS for incorporation into the national database. The most up-to-date products are accessible from the USGS website. Please note that the California portion of the National Hydrography Dataset is appropriate for use at the 1:24,000 scale.
For additional derivative products and resources, including the major features in geopackage format, please go to this page: https://data.cnra.ca.gov/dataset/nhd-major-features Archives of previous statewide extracts of the NHD going back to 2018 may be found at https://data.cnra.ca.gov/dataset/nhd-archive.
In September 2022, USGS officially notified DWR that the NHD would become static as USGS resources will be devoted to the transition to the new 3D Hydrography Program (3DHP). 3DHP will consist of LiDAR-derived hydrography at a higher resolution than NHD. Upon completion, 3DHP data will be easier to maintain, based on a modern data model and architecture, and better meet the requirements of users that were documented in the Hydrography Requirements and Benefits Study (2016). The initial releases of 3DHP include NHD data cross-walked into the 3DHP data model. It will take several years for the 3DHP to be built out for California. Please refer to the resources on this page for more information.
The FINAL,STATIC version of the National Hydrography Dataset for California was published for download by USGS on December 27, 2023. This dataset can no longer be edited by the state stewards. The next generation of national hydrography data is the USGS 3D Hydrography Program (3DHP).
Questions about the California stewardship of these datasets may be directed to nhd_stewardship@water.ca.gov.
Facebook
TwitterUse Constraints:
This mapping tool is for reference and guidance purposes only and is not a binding legal document to be used for legal determinations. The data provided may contain errors, inconsistencies, or may not in all cases appropriately represent the current boundaries of PWSs in California. The data in this map are subject to change at any time and should not be used as the sole source for decision making. By using this data, the user acknowledges all limitations of the data and agrees to accept all errors stemming from its use.
Description:
This mapping tool provides a representation of the general PWS boundaries for water service, wholesaler and jurisdictional areas. The boundaries were created originally by collection via crowd sourcing by CDPH through the Boundary Layer Tool, this tool was retired as of June 30, 2020. State Water Resources Control Board – Division of Drinking Water is currently in the process of verifying the accuracy of these boundaries and working on a tool for maintaining the current boundaries and collecting boundaries for PWS that were not in the original dataset. Currently, the boundaries are in most cases have not been verified.
How to Use the Interactive Mapping Tool:
·
The
information and instruction widget in the header is open wen the web app is
opened. This widget contains information about and instructions on how to use
the map. This panel can be closed and reopened for reference by clicking the x
or icon in the upper right corner of the map, respectively.
·
Navigate
to your point of interest by either using the search bar or by zooming in on
the map. You may enter a stream name, street address, or watershed ID in the
search bar. Click on the map to identify the location of interest and one or
more pop-up boxes may appear with information about the PWS.
Map Layers
·
Drinking Water System Areas – representation of the
general water system boundaries maintained by the State Water Board. This layer contains polygons with associated data
on the water system and boundary the shape represents.
·
LPA office locations – represents the locations of the Local Primacy Agency
overseeing the water system in that county. Address and contact information are
attributes of this dataset.
·
LPA office locations – represents the locations of the Local Primacy Agency
overseeing the water system in that county. Address and contact information are
attributes of this dataset
·
California Senate Districts – represents the boundaries of the senate districts in
California included as a reference layer in order to perform analysis with the Drinking
Water System Boundaries layers.
·
California Senate Districts – represents the boundaries of the assembly districts in
California included as a reference layer in order to perform analysis with the Drinking
Water System Boundaries layers.
·
California County – represents the boundaries of the counties in California included
as a reference layer in order to perform analysis with the Drinking Water System
Boundaries layers.
Informational Pop-up Box
·
Water System No. – unique identifier for each water system
·
Water System Name – name of water system
·
Regulating Agency – agency overseeing the water system
·
System Type – classification of water system.
·
Population the approximate population served by the water system
·
Boundary Type – the type of water system boundary being displayed
·
Address Line 1 – the street or mailing address on file for the water system
·
Address Line 2 – additional line for street or mailing address on file for the
water system, if applicable
·
City – city where water system located or receives mail
·
County – county
where water system is located
·
Verification Status – the verification status of the water system boundary
·
Verified by – if the boundary is verified, the person responsible for the
verification
For any questions regarding this dataset, please contact the DDW Data Support Unit at DDW-DSU@waterboards.ca.gov.
Date Created and Sources:
This web app was most recently updated on June 23, 2020. Each layer has a data created date and data source is indicated in the overview/metadata page and is valid up to the date provided.
Facebook
TwitterIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Point Conception map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Point Conception map area data layers. Data layers are symbolized as shown on the associated map sheets.
Facebook
TwitterIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Point Conception to Hueneme Canyon map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Point Conception to Hueneme Canyon map area data layers. Data layers are symbolized as shown on the associated map sheets.
Facebook
TwitterIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Salt Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Salt Point map area data layers. Data layers are symbolized as shown on the associated map sheets.
Facebook
TwitterThe California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.
For the latest Land Use Legend, 2022-DWR-Standard-Land-Use-Legend-Remote-Sensing-Version.pdf, please see the Data and Resources section below.
Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.
For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.
For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.
For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.
Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.
Facebook
TwitterThe aquifer risk map is being developed to fulfill requirements of SB-200 and is intended to help prioritize areas where domestic wells and state small water systems may be accessing groundwater that does not meet primary drinking water standards (maximum contaminant level or MCL). In accordance with SB-200, the risk map is to be made available to the public and is to be updated annually starting January 1, 2021. The Fund Expenditure Plan states the risk map will be used by Water Boards staff to help prioritize areas for available SAFER funding.This layer contains several reference boundaries, including:California County boundariesCensus Tract boundaries with Disadvantaged Community Status (based on Median Household Income)California Assembly District boundariesCalifornia Senate District boundariesCalifornia Regional Water Board boundariesCV-SALTS priority groundwater basinsGroundwater Sustainability Agency boundariesGroundwater Unit boundaries
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Authority In the 1963 general session, the Utah State Legislature charged the Division of Water Resources with the responsibility of developing a State Water Plan. This plan is to coordinate and direct the activities of state and federal agencies concerned with Utah’s water resources. As a part of this objective, the Division of Water Resources collects water-related land use data for the entire state. This data includes the types and extent of irrigated crops as well as information concerning phreatophytes, wet/open water areas, dry land agriculture and urban areas. The data produced by the water-related land use program are used for various planning purposes. Some of these include: determining cropland water use, evaluating irrigated land losses and conversion to urban uses, planning for new water development, estimating irrigated acreages for any area, and developing water budgets. Additionally, the data are used by many other state and federal agencies. Previous Methods The land use inventory methods used by the division in conducting water-related land use studies have varied with regard to the procedures used and the precision obtained. During the 1960s and 70s, inventories were prepared using large format vertical-aerial photographs supplemented with field surveys to label boundaries, vegetation types, and other water use information. After identifying crops and labeling photographs, the information was transferred onto a base map and then planimetered or "dot-counted" to determine the acreage. Tables for individual townships and ranges were prepared showing the amount of land in each land use category within each section. Data were then available for use in preparing water budgets. In the early 1980s, the division began updating its methodology for collecting water-related land use data to take advantage of the rapidly growing fields of Remote Sensing and computerized Geographic Information Systems (GIS). For several years during the early 1980’s, the division contracted with the University of Utah Research Institute, Center for Remote Sensing and Cartography (CRSC), to prepare water-related land use inventories. During this period, water-related land use data was obtained by using high altitude color infrared photography and laboratory interpretation, with field checking. In March 1984, several division staff members visited the California Department of Water Resources to observe its methodology for collecting water-related land use data for state water planning purposes. Based on its review of the California methodology and its own experience, the division developed a water-related land use inventory program. This program included the use of 35mm slides, United States Geological Survey (USGS) 7-1/2 minute quadrangle maps, field-mapping using base maps produced from the 35mm photography and a computerized GIS to process, store and retrieve land use data. Areas for survey were first identified from previous land use studies and any other available information. The identified areas were then photographed using an aircraft carrying a high quality 35mm single lens reflex camera mounted to focus along a vertical axis to the earth. Photos were taken between 6,000 and 6,500 feet above the ground using a 24mm lens. This procedure allowed each slide to cover a little more than one square mile with approximately 30 percent overlap on the wide side of the slide and 5 percent on the slide's narrow side. The slides were then indexed according to a flight-line number, slide number, latitude and longitude. All 35mm slides were stored in files at the division offices and cataloged according to township, range and section, and quadrangle map location. Water-related land use areas were then transferred from the slide to USGS 7-1/2 minute quadrangle maps using a standard slide projector with a 100-200mm zoom lens. This step allowed the technician to project the slide onto the back of a quadrangle map. The image showing through the map was adjusted to the map scale with the zoom lens. Field boundaries and other water-use boundaries were then traced on the 7-1/2 minute quadrangle map. Next, a team was sent to use the map in the field to check the boundaries and current year land use field data on the 7-1/2 minute quadrangles. The final step was to digitize and process the field data using ARC/INFO software developed by Environmental Systems Research Institute (ESRI). Starting in 2000 with the land use survey of the Uintah Basin, the division further improved its land use program by using digital data for the purposes of outlining agricultural and other land cover boundaries. The division used satellite data, USGS Digital Orthophoto Quadrangles (DOQs), National Agricultural Imagery Program (NAIP), and other digital images in a heads-up digitizing mode for this process. This allowed the division to use multiple technicians for the digitizing process. Digitizing was done as line and polygon files using ArcView 3.2 with a satellite image, DOQ or NAIP image as a background with other layers added for reference. Boundary files were created in logical groups so that the process of edge-matching along quad lines was eliminated and precision increased. Subsequent inventories were digitized in the ArcMap 9.x software versions. Present Methodology Using the latest statewide NAIP Imagery and ArcGIS 10, all boundaries of individual agricultural fields, urban areas, and significant riparian areas are precisely digitized. Once the process of boundary digitizing is done, the polygons are loaded onto tablet PCs. Field crews are then sent to field check the crop and irrigation type for each agricultural polygon and label the shapefiles accordingly. Each tablet PC is attached to a GPS unit for real-time tracking to continuously update the field crew’s location during the field labeling process. This improved process has saved the division much time and money and even greater savings will be realized as the new statewide field boundaries are completed. Once processed and quality checked, the data is filed in the State Geographic Information Database (SGID) maintained by the State Automated Geographic Reference Center (AGRC). Once in the SGID, the data becomes available to the public. At this point, the data is also ready for use in preparing various planning studies. In conducting water-related land use inventories, the division attempts to inventory all lands or areas that consume or evaporate water other than natural precipitation. Areas not inventoried are mainly desert, rangeland and forested areas. Wet/open water areas and dry land agriculture areas are mapped if they are within or border irrigated lands. As a result, the numbers of acres of wet/open water areas and dry land agriculture reported by the division may not represent all such areas in a basin or county. During land use inventories, the division uses 11 hydrologic basins as the basic collection units. County data is obtained from the basin data. The water-related land use data collected statewide covers more than 4.3 million acres of dry and irrigated agricultural land. This represents about 8 percent of the total land area in the state. Due to changes in methodology, improvements in imagery, and upgrades in software and hardware, increasingly more refined inventories have been made in each succeeding year of the Water-Related Land Use Inventory. While this improves the data we report, it also makes comparisons to past years difficult. Making comparisons between datasets is still useful; however, increases or decreases in acres reported should not be construed to represent definite trends or total amounts of change up or down. To estimate such trends or change, more analysis is required.
Facebook
TwitterIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Point Reyes map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Point Reyes map area data layers. Data layers are symbolized as shown on the associated map sheets.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The California State Water Resources Control Board (State Water Board) and the nine Regional Water Quality Control Boards (Regional Water Boards), collectively known as the California Water Boards (Water Boards), are dedicated to a single vision: abundant clean water for human uses and environmental protection to sustain California’s future. Under the federal Clean Water Act (CWA) and the state’s pioneering Porter-Cologne Water Quality Control Act, the State and Regional Water Boards have regulatory responsibility for protecting the water quality of nearly 1.6 million acres of lakes, 1.3 million acres of bays and estuaries, 211,000 miles of rivers and streams, and about 1,100 miles of California coastline.The State Water Board is located in Sacramento. There are nine Regional Water Boards, the boundaries of which are generally based on watersheds, also known as hydrologic areas. The nine Regional Water Boards are referred to by specific names, which are: (1) North Coast, (2) San Francisco Bay, (3) Central Coast, (4) Los Angeles, (5) Central Valley, (6) Lahontan, (7) Colorado River Basin, (8) Santa Ana, and (9) San Diego. Due to their size, and/or geographic spread, the Central Valley Board has three offices and the Lahontan Board has two offices. In addition, the Drinking Water Program has fourteen District offices spread throughout the state.This map service shows the jurisdictional boundaries of the nine Regional Water Boards and the locations of their administrative offices. The official legal definitions of Regional Water Quality Control Board jurisdictions may be found in the Section 13200 of the California Water Code.For more information, please visit the California Water Boards website at https://www.waterboards.ca.gov.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description for i03_DAU_county_cnty2018 is as follows:
Detailed Analysis Unit-(DAU) Convergence via County Boundary cnty18_1 for Cal-Fire, (See metadata for CAL-FIRE cnty18_1), State of California.
The existing DAU boundaries were aligned with cnty18_1 feature class.
Originally a collaboration by Department of Water Resources, Region Office personnel, Michael L. Serna, NRO, Jason Harbaugh - NCRO, Cynthia Moffett - SCRO and Robert Fastenau - SRO with the final merge of all data into a cohesive feature class to create i03_DAU_COUNTY_cnty24k09 alignment which has been updated to create i03_DAU_COUNTY_cnty18_1.
This version was derived from a preexisting “dau_v2_105, 27, i03_DAU_COUNTY_cnty24k09” Detailed Analysis Unit feature class's and aligned with Cal-Fire's 2018 boundary.
Manmade structures such as piers and breakers, small islands and coastal rocks have been removed from this version. Inlets waters are listed on the coast only.
These features are reachable by County\DAU. This allows the county boundaries, the DAU boundaries and the State of California Boundary to match Cal-Fire cnty18_1.
DAU Background
The first investigation of California's water resources began in 1873 when President Ulysses S. Grant commissioned an investigation by Colonel B. S. Alexander of the U.S. Army Corps of Engineers. The state followed with its own study in 1878 when the State Engineer's office was created and filled by William Hammond Hall. The concept of a statewide water development project was first raised in 1919 by Lt. Robert B. Marshall of the U.S. Geological Survey.
In 1931, State Engineer Edward Hyatt introduced a report identifying the facilities required and the economic means to accomplish a north-to-south water transfer. Called the "State Water Plan", the report took nine years to prepare. To implement the plan, the Legislature passed the Central Valley Act of 1933, which authorized the project. Due to lack of funds, the federal government took over the CVP as a public works project to provide jobs and its construction began in 1935.
In 1945, the California Legislature authorized an investigation of statewide water resources and in 1947, the California Legislature requested that an investigation be conducted of the water resources as well as present and future water needs for all hydrologic regions in the State. Accordingly, DWR and its predecessor agencies began to collect the urban and agricultural land use and water use data that serve as the basis for the computations of current and projected water uses.
The work, conducted by the Division of Water Resources (DWR’s predecessor) under the Department of Public Works, led to the publication of three important bulletins: Bulletin 1 (1951), "Water Resources of California," a collection of data on precipitation, unimpaired stream flows, flood flows and frequency, and water quality statewide; Bulletin 2 (1955), "Water Utilization and Requirements of California," estimates of water uses and forecasts of "ultimate" water needs; and Bulletin 3 (1957), "The California Water Plan," plans for full practical development of California’s water resources, both by local projects and a major State project to meet the State's ultimate needs. (See brief addendum below* “The Development of Boundaries for Hydrologic Studies for the Sacramento Valley Region”)
DWR subdivided California into study areas for planning purposes. The largest study areas are the ten hydrologic regions (HR), corresponding to the State’s major drainage basins. The next levels of delineation are the Planning Areas (PA), which in turn are composed of multiple detailed analysis units (DAU). The DAUs are often split by county boundaries, so are the smallest study areas used by DWR.
The DAU/counties are used for estimating water demand by agricultural crops and other surfaces for water resources planning. Under current guidelines, each DAU/County has multiple crop and land-use categories. Many planning studies begin at the DAU or PA level, and the results are aggregated into hydrologic regions for presentation.
<p style='margin-top:0px; margin-bottom:1.5rem; font-family:"Avenir Next W01", "Avenir Next W00", "Avenir Next", Avenir,
Facebook
TwitterIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within Californiaâ s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map Californiaâ s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of â œlandsâ from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of Californiaâ s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bayâ s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Serviceâ Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Salt Point to Drakes Bay map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these â œground-truthâ surveying data are available from the CSMP Video and Photograph Portal at http://dx.doi.org/10.5066/F7J1015K. The â œseafloor characterâ data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The â œpotential habitatsâ polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Salt Point to Drakes Bay map area data layers. Data layers are symbolized as shown on the associated map sheets.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset represents polygon boundaries of all public water agencies in California including public water systems, agricultural water districts, urban water districts, Federal and State water contractors, wholesalers, retailers, and other public or private utilities that deliver water to the end user.