Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Random Lake population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Random Lake. The dataset can be utilized to understand the population distribution of Random Lake by age. For example, using this dataset, we can identify the largest age group in Random Lake.
Key observations
The largest age group in Random Lake, WI was for the group of age 15-19 years with a population of 174 (11.11%), according to the 2021 American Community Survey. At the same time, the smallest age group in Random Lake, WI was the 85+ years with a population of 22 (1.40%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Random Lake Population by Age. You can refer the same here
Facebook
TwitterA random sample of households were invited to participate in this survey. In the dataset, you will find the respondent level data in each row with the questions in each column. The numbers represent a scale option from the survey, such as 1=Excellent, 2=Good, 3=Fair, 4=Poor. The question stem, response option, and scale information for each field can be found in the var "variable labels" and "value labels" sheets. VERY IMPORTANT NOTE: The scientific survey data were weighted, meaning that the demographic profile of respondents was compared to the demographic profile of adults in Bloomington from US Census data. Statistical adjustments were made to bring the respondent profile into balance with the population profile. This means that some records were given more "weight" and some records were given less weight. The weights that were applied are found in the field "wt". If you do not apply these weights, you will not obtain the same results as can be found in the report delivered to the Bloomington. The easiest way to replicate these results is likely to create pivot tables, and use the sum of the "wt" field rather than a count of responses.
Facebook
TwitterRound 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.
The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire
Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe
Basic units of analysis that the study investigates include: individuals and groups
Sample survey data [ssd]
A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.
The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.
Sample Universe
The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.
What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.
Sample Design
The sample design is a clustered, stratified, multi-stage, area probability sample.
To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.
In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:
The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages
A first-stage to stratify and randomly select primary sampling units;
A second-stage to randomly select sampling start-points;
A third stage to randomly choose households;
A final-stage involving the random selection of individual respondents
We shall deal with each of these stages in turn.
STAGE ONE: Selection of Primary Sampling Units (PSUs)
The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.
We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.
Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.
Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.
Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.
Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.
The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.
These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.
The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY Census blocks with Pacific Ocean and San Francisco Bay water clipped out. Census blocks are the smallest geographic area for which the Bureau of the Census collects and tabulates decennial census data, are formed by streets, roads, railroads, streams and other bodies of water, other visible physical and cultural features, and the legal boundaries shown on Census Bureau maps. More information on the census tracts can be found here.
B. HOW THE DATASET IS CREATED The boundaries are uploaded from TIGER/Line shapefiles provided by the U.S. Census Bureau and clipped using the water boundaries provided by the U.S. Census Bureau.
C. UPDATE PROCESS This dataset is static. Changes to the census blocks are tracked in multiple datasets. See here for 2000 and 2010 census tract boundaries.
D. HOW TO USE THIS DATASET This boundary file can be joined to other census datasets on GEOID. Column descriptions can be found on in the technical documentation included on the census.gov website
E. RELATED DATASETS Census 2020: Census Tracts for San Francisco Analysis Neighborhoods - 2020 census tracts assigned to neighborhoods Census 2020: Blocks for San Francisco Census 2020: Blocks Groups for San Francisco Census 2020: Blocks Groups for San Francisco Clipped to SF Shoreline
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Random Lake population by gender and age. The dataset can be utilized to understand the gender distribution and demographics of Random Lake.
The dataset constitues the following two datasets across these two themes
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Facebook
TwitterThe Individuals File from the public use microdata files for the 2016 Canadian census. The .dat is the original version with fixed-width implicit columns, the .csv is a version that's easier to work with and has headers with column names.
See the user guide for information as to the meanings of the various columns. Note that to get accurate results, you need to weight each row by multiplying it by the value in the WEIGHT column. Summing all of the weights gets you the population of Canada on the reference date (May 10, 2016). You can also use WT1-WT16 instead of WEIGHT if you want to have multiple subsets of the data (perhaps for a test/train split).
Adapted from Statistics Canada, Individuals File, Census of Population (Public Use Microdata Files), 2016. This does not constitute an endorsement by Statistics Canada of this product. These files are licensed under the Statistics Canada Open Licence.
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY Census blocks, the smallest geographic area for which the Bureau of the Census collects and tabulates decennial census data, are formed by streets, roads, railroads, streams and other bodies of water, other visible physical and cultural features, and the legal boundaries shown on Census Bureau maps. More information on the census tracts can be found here.
B. HOW THE DATASET IS CREATED The boundaries are uploaded from TIGER/Line shapefiles provided by the U.S. Census Bureau.
C. UPDATE PROCESS This dataset is static. Changes to the census blocks are tracked in multiple datasets. See here for 2000 and 2010 census tract boundaries.
D. HOW TO USE THIS DATASET This boundary file can be joined to other census datasets on GEOID. Column descriptions can be found on in the technical documentation included on the census.gov website
E. RELATED DATASETS Census 2020: Census Tracts for San Francisco Analysis Neighborhoods - 2020 census tracts assigned to neighborhoods Census 2020: Blocks for San Francisco Clipped to SF Shoreline Census 2020: Blocks Groups for San Francisco Census 2020: Blocks Groups for San Francisco Clipped to SF Shoreline
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Max Foundation is a Netherlands-based NGO that works towards a healthy start for every child in the most effective and long-lasting way. Over the past 15 years, our teams in Bangladesh and Ethiopia have reached almost 3 million people, supporting communities in reducing stunting and undernutrition by gaining better access to clean water, sanitation and hygiene, as well as healthy diets and care for mother and child.
Maximising our impact and cost efficiency are at the core of our work, which makes quantifying and analysing our programmes crucial. We therefore collect a lot of information on the communities we work with; to understand them better and see where and how we can improve as an organisation.
This data set is one of many we are making publicly available because we believe that data in the development sector should be open: not as a goal in itself, but as a way to help the sector be more effective and create more impact.
These data were collected between Q1 and Q3 in 2018 (with a few observations earlier and later) in the areas in Bangladesh where Max Foundation is active. The original data set is a census, and covers basically all households in the area (some could not be found or declined consent). In order to protect privacy, villages with fewer than 50 responses are excluded and only 15% of the data is present in this dataset, stratified by village. The data were collected because in 2018 Max Foundation scaled up its operations, both geographically and thematically (from a focus on WASH (water, sanitation and hygiene) to including nutrition and food security). The data give a detailed picture of the access to WASH in the area.
All of Max Foundation's data are collected and processed according to GDPR standards and explicit informed consent is given by all respondents. They are also clearly informed that choosing not to participate in data collection will in no way affect their eligibility for, or receiving of, products or services from Max Foundation.
Furthermore, we enforce strong privacy protections on our open data to minimise the risk of these data being used to cause harm or re-identify individuals. Concretely this means: - Administrative units up to the Union can be directly identified with the BD_ loc_xx data. The ward and village are masked by random numbers. However, to ensure it is still possible to compare our data sets, these random numbers are consistent across all data sets. This means that village '1' in this data is the same as village '1' in all of our other Bangladesh datasets, unless stated otherwise; - Household numbers are randomised and these are NOT kept the same between datasets; - Sensitive variables are omitted, censored or bucketed.
The column descriptions specify any transformations done to the data.
These data could have not been collected without the generous support from the Embassy of the Kingdom of the Netherlands in Dhaka and numerous other donors who have supported us over the years. Special thanks to our Bangladesh team for their excellent work in guiding the data collection process.
We invite you to share any interesting insights you have derived from the data with us. From visualising our impact, to uncovering which parts of our programmes are most strongly related with reducing stunting, to making new connections we may have not even considered; we are eager to hear how we can be more effective in what we do and how we do it.
More detailed data insights are available from our internal data, such as the linking of households between datasets. Please note that we would be happy to share more detailed data with researchers, students and many others once proper agreements are in place.
As we value impact above all else, we are happy to work with anyone who can help us to improve our impact. We are constantly adapting our approach based on internal and external findings, and invite you to join us on this journey. Together we can ensure that every child has a healthy start.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
1990 US Census Data
Abstract The USCensus1990 data set is a discretized version of the USCensus1990raw data set. Many of the less useful attributes in the original data set have been dropped, the few continuous variables have been discretized and the few discrete variables that have a large number of possible values have been collapsed to have fewer possible values.
Sources The USCensus1990raw data set was obtained from the (U.S. Department of Commerce) Census Bureau website using the Data Extraction System. This system can be found at http://www.census.gov/DES/www/d es.html.
Donor of database Chris Meek Bo Thiesson David Heckerman
Data Characteristics The data was collected as part of the 1990 census.
There are 68 categorical attributes. This data set was derived from the USCensus1990raw data set. The attributes are listed in the file USCensus1990.attributes.txt (repeated below) and the coding for the values is described below. Many of the less useful attributes in the original data set have been dropped, the few continuous variables have been discretized and the few discrete variables that have a large number of possible values have been collapsed to have fewer possible values.
More specifically the USCensus1990 data set was obtained from the USCensus1990raw data set by the following sequence of operations;
Randomization: The order of the cases in the original USCensus1990raw data set were randomly permuted. Selection of attributes: The 68 attributes included in the data set are given below. In the USCensus1990 data set we have added a single letter prefix to the original name. We add the letter 'i' to indicate that the original attribute values are used and 'd' to indicate that original attribute values for each case have been mapped to new values (the precise mapping is described below).
Other Relevant Information Hierarchies of values are provided in the file USCensus1990raw.coding.htm and the mapping functions used to transform the USCensus1990raw to the USCensus1990 data sets are giving in the file USCensus1990.mapping.sql.
Data Format The data is contained in a file called USCensus1990.data.txt. The first row contains the list of attributes. The first attribute is a caseid and should be ignored during analysis. The data is comma delimited with one case per row.
References & Further Information The U.S. Department of Commerce Bureau of Census website Data Extraction System Meek, Thiesson, and Heckerman (2001), "The Learning Curve Method Applied to Clustering", to appear in The Journal of Machine Learning Research. MSR-TR-2001-34 The UCI KDD Archive Information and Computer Science University of California, Irvine Irvine, CA 92697-3425 Last modified: 6 Nov 2001
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The life-cycle age groups are:
Map shows the percentage change in the census usually resident population count for life-cycle age groups between the 2018 and 2023 Censuses.
Download lookup file from Stats NZ ArcGIS Online or Stats NZ geographic data service.
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Quality rating of a variable
The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.
Age concept quality rating
Age is rated as very high quality.
Age – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga".
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Facebook
TwitterExtraction was done by Barry Becker from the 1994 Census database. A set of reasonably clean records was extracted using the following conditions: ((AAGE>16) && (AGI>100) && (AFNLWGT>1)&& (HRSWK>0))
This data was extracted from the census bureau database found at http://www.census.gov/ftp/pub/DES/www/welcome.html Donor: Ronny Kohavi and Barry Becker, Data Mining and Visualization Silicon Graphics. e-mail: ronnyk@sgi.com for questions. Split into train-test using MLC++ GenCVFiles (2/3, 1/3 random). 48842 instances, mix of continuous and discrete (train=32561, test=16281) 45222 if instances with unknown values are removed (train=30162, test=15060) Duplicate or conflicting instances : 6 Class probabilities for adult.all file Probability for the label '>50K' : 23.93% / 24.78% (without unknowns) Probability for the label '<=50K' : 76.07% / 75.22% (without unknowns)
Extraction was done by Barry Becker from the 1994 Census database. A set of reasonably clean records was extracted using the following conditions: ((AAGE>16) && (AGI>100) && (AFNLWGT>1)&& (HRSWK>0))
Facebook
TwitterThe Tanzania Demographic and Health Survey (TDHS) is part of the worldwide Demographic and Health Surveys (DHS) programme, which is designed to collect data on fertility, family planning, and maternal and child health.
The primary objective of the 1999 TRCHS was to collect data at the national level (with breakdowns by urban-rural and Mainland-Zanzibar residence wherever warranted) on fertility levels and preferences, family planning use, maternal and child health, breastfeeding practices, nutritional status of young children, childhood mortality levels, knowledge and behaviour regarding HIV/AIDS, and the availability of specific health services within the community.1 Related objectives were to produce these results in a timely manner and to ensure that the data were disseminated to a wide audience of potential users in governmental and nongovernmental organisations within and outside Tanzania. The ultimate intent is to use the information to evaluate current programmes and to design new strategies for improving health and family planning services for the people of Tanzania.
National. The sample was designed to provide estimates for the whole country, for urban and rural areas separately, and for Zanzibar and, in some cases, Unguja and Pemba separately.
Sample survey data
The TRCHS used a three-stage sample design. Overall, 176 census enumeration areas were selected (146 on the Mainland and 30 in Zanzibar) with probability proportional to size on an approximately self-weighting basis on the Mainland, but with oversampling of urban areas and Zanzibar. To reduce costs and maximise the ability to identify trends over time, these enumeration areas were selected from the 357 sample points that were used in the 1996 TDHS, which in turn were selected from the 1988 census frame of enumeration in a two-stage process (first wards/branches and then enumeration areas within wards/branches). Before the data collection, fieldwork teams visited the selected enumeration areas to list all the households. From these lists, households were selected to be interviewed. The sample was designed to provide estimates for the whole country, for urban and rural areas separately, and for Zanzibar and, in some cases, Unguja and Pemba separately. The health facilities component of the TRCHS involved visiting hospitals, health centres, and pharmacies located in areas around the households interviewed. In this way, the data from the two components can be linked and a richer dataset produced.
See detailed sample implementation in the APPENDIX A of the final report.
Face-to-face
The household survey component of the TRCHS involved three questionnaires: 1) a Household Questionnaire, 2) a Women’s Questionnaire for all individual women age 15-49 in the selected households, and 3) a Men’s Questionnaire for all men age 15-59.
The health facilities survey involved six questionnaires: 1) a Community Questionnaire administered to men and women in each selected enumeration area; 2) a Facility Questionnaire; 3) a Facility Inventory; 4) a Service Provider Questionnaire; 5) a Pharmacy Inventory Questionnaire; and 6) a questionnaire for the District Medical Officers.
All these instruments were based on model questionnaires developed for the MEASURE programme, as well as on the questionnaires used in the 1991-92 TDHS, the 1994 TKAP, and the 1996 TDHS. These model questionnaires were adapted for use in Tanzania during meetings with representatives from the Ministry of Health, the University of Dar es Salaam, the Tanzania Food and Nutrition Centre, USAID/Tanzania, UNICEF/Tanzania, UNFPA/Tanzania, and other potential data users. The questionnaires and manual were developed in English and then translated into and printed in Kiswahili.
The Household Questionnaire was used to list all the usual members and visitors in the selected households. Some basic information was collected on the characteristics of each person listed, including his/her age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for individual interview and children under five who were to be weighed and measured. Information was also collected about the dwelling itself, such as the source of water, type of toilet facilities, materials used to construct the house, ownership of various consumer goods, and use of iodised salt. Finally, the Household Questionnaire was used to collect some rudimentary information about the extent of child labour.
The Women’s Questionnaire was used to collect information from women age 15-49. These women were asked questions on the following topics: · Background characteristics (age, education, religion, type of employment) · Birth history · Knowledge and use of family planning methods · Antenatal, delivery, and postnatal care · Breastfeeding and weaning practices · Vaccinations, birth registration, and health of children under age five · Marriage and recent sexual activity · Fertility preferences · Knowledge and behaviour concerning HIV/AIDS.
The Men’s Questionnaire covered most of these same issues, except that it omitted the sections on the detailed reproductive history, maternal health, and child health. The final versions of the English questionnaires are provided in Appendix E.
Before the questionnaires could be finalised, a pretest was done in July 1999 in Kibaha District to assess the viability of the questions, the flow and logical sequence of the skip pattern, and the field organisation. Modifications to the questionnaires, including wording and translations, were made based on lessons drawn from the exercise.
In all, 3,826 households were selected for the sample, out of which 3,677 were occupied. Of the households found, 3,615 were interviewed, representing a response rate of 98 percent. The shortfall is primarily due to dwellings that were vacant or in which the inhabitants were not at home despite of several callbacks.
In the interviewed households, a total of 4,118 eligible women (i.e., women age 15-49) were identified for the individual interview, and 4,029 women were actually interviewed, yielding a response rate of 98 percent. A total of 3,792 eligible men (i.e., men age 15-59), were identified for the individual interview, of whom 3,542 were interviewed, representing a response rate of 93 percent. The principal reason for nonresponse among both eligible men and women was the failure to find them at home despite repeated visits to the household. The lower response rate among men than women was due to the more frequent and longer absences of men.
The response rates are lower in urban areas due to longer absence of respondents from their homes. One-member households are more common in urban areas and are more difficult to interview because they keep their houses locked most of the time. In urban settings, neighbours often do not know the whereabouts of such people.
The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the TRCHS to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the TRCHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the TRCHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the TRCHS is the ISSA Sampling Error Module (SAMPERR). This module used the Taylor linearisation method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rate
Note: See detailed sampling error calculation in the APPENDIX B
Facebook
TwitterThis dataset contains electronic health records used to study associations between PFAS occurrence and multimorbidity in a random sample of UNC Healthcare system patients. The dataset contains the medical record number to uniquely identify each individual as well as information on PFAS occurrence at the zip code level, the zip code of residence for each individual, chronic disease diagnoses, patient demographics, and neighborhood socioeconomic information from the 2010 US Census. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Because this data has PII from electronic health records the data can only be accessed with an approved IRB application. Project analytic code is available at L:/PRIV/EPHD_CRB/Cavin/CARES/Project Analytic Code/Cavin Ward/PFAS Chronic Disease and Multimorbidity. Format: This data is formatted as a R dataframe and associated comma-delimited flat text file. The data has the medical record number to uniquely identify each individual (which also serves as the primary key for the dataset), as well as information on the occurrence of PFAS contamination at the zip code level, socioeconomic data at the census tract level from the 2010 US Census, demographics, and the presence of chronic disease as well as multimorbidity (the presence of two or more chronic diseases). This dataset is associated with the following publication: Ward-Caviness, C., J. Moyer, A. Weaver, R. Devlin, and D. Diazsanchez. Associations between PFAS occurrence and multimorbidity as observed in an electronic health record cohort. Environmental Epidemiology. Wolters Kluwer, Alphen aan den Rijn, NETHERLANDS, 6(4): p e217, (2022).
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Island Areas: Number of Production Workers and Hours Worked by Manufacturing Industry for Puerto Rico and Metropolitan Areas: 2022.Table ID.ISLANDAREASIND2022.IA2200IND20.Survey/Program.Economic Census of Island Areas.Year.2022.Dataset.ECNIA Economic Census of Island Areas.Source.U.S. Census Bureau, 2022 Economic Census of Island Areas, Core Statistics.Release Date.2024-12-19.Release Schedule.The Economic Census occurs every five years, in years ending in 2 and 7.2022 Economic Census of Island Areas tables are released on a flow basis from June through December 2024.For more information about economic census planned data product releases, see 2022 Economic Census Release Schedule..Dataset Universe. The dataset universe consists of all establishments that are in operation for at least some part of 2022, are located in Puerto Rico, have paid employees, and are classified in one of eighteen in-scope sectors defined by the 2022 NAICS..Sponsor.U.S. Department of Commerce.Methodology.Data Items and Other Identifying Records.Number of establishmentsNumber of production workers, average for yearProduction workers on March 12Production workers on June 12Production workers on September 12Production workers on December 12Production workers hoursDefinitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the Economic Census of Island Areas are employer establishments. An establishment is generally a single physical location where business is conducted or where services or industrial operations are performed..Geography Coverage.The data are shown for employer establishments and firms that vary by industry:At the Territory, Metropolitan and Micropolitan Statistical Area, and Combined Statistical Area level for Puerto RicoFor information about economic census geographies, including changes for 2022, see Economic Census: Economic Geographies..Industry Coverage.The data are shown for Puerto Rico at the 2- through 5-digit 2022 NAICS code levels for the manufacturing industry.For information about NAICS, see Economic Census Code Lists..Sampling.The Economic Census of Island Areas is a complete enumeration of establishments located in the islands (i.e., all establishments on the sampling frame are included in the sample). Therefore, the accuracy of tabulations is not affected by sampling error..Confidentiality.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. 7504609, Disclosure Review Board (DRB) approval number: CBDRB-FY24-0044).The primary method of disclosure avoidance protection is noise infusion. Under this method, the quantitative data values such as sales or payroll for each establishment are perturbed prior to tabulation by applying a random noise multiplier (i.e., factor). Each establishment is assigned a single noise factor, which is applied to all its quantitative data value. Using this method, most published cell totals are perturbed by at most a few percentage points.To comply with disclosure avoidance guidelines, data rows with fewer than three contributing establishments are not presented. For more information on disclosure avoidance, see Methodology for the 2022 Economic Census- Island Areas..Technical Documentation/Methodology.For detailed information about the methods used to collect data and produce statistics, see Methodology for the 2022 Economic Census- Island Areas.For more information about survey questionnaires, Primary Business Activity/NAICS codes, and NAPCS codes, see Economic Census Technical Documentation..Weights.Because the Economic Census of Island Areas is a complete enumeration, there is no sample weighting..Table Information.FTP Download.https://www2.census.gov/programs-surveys/economic-census/data/2022/sector00.API Information.Economic census data are housed in the Census Bureau Application Programming Interface (API)..Symbols.D - Withheld to avoid disclosing data for individual companies; data are included in higher level totalsN - Not available or not comparableS - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page.X - Not applicableA - Relative standard error of 100% or morer - Reviseds - Relative standard error exceeds 40%For a complete list of symbols, see Economic Census Data Dictionary..Data-Specific Notes.Data users who create their own estimates using data from this file should cite the U.S. Census Bureau as the source of the original data only.For more informati...
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Island Areas: Summary Statistics for Domestic and Nondomestic Corporations for Puerto Rico: 2022.Table ID.ISLANDAREASIND2022.IA2200SIZE05.Survey/Program.Economic Census of Island Areas.Year.2022.Dataset.ECNIA Economic Census of Island Areas.Source.U.S. Census Bureau, 2022 Economic Census of Island Areas, Core Statistics.Release Date.2024-12-19.Release Schedule.The Economic Census occurs every five years, in years ending in 2 and 7.2022 Economic Census of Island Areas tables are released on a flow basis from June through December 2024.For more information about economic census planned data product releases, see 2022 Economic Census Release Schedule..Dataset Universe. The dataset universe consists of all establishments that are in operation for at least some part of 2022, are located in Puerto Rico, have paid employees, and are classified in one of eighteen in-scope sectors defined by the 2022 NAICS..Sponsor.U.S. Department of Commerce.Methodology.Data Items and Other Identifying Records.Number of establishmentsSales, value of shipments, or revenue ($1,000)Annual payroll ($1,000)First-quarter payroll ($1,000)Number of employeesOperating expenses ($1,000)Total inventories, beginning of year ($1,000)Total inventories, end of year ($1,000)Range indicating imputed percentage of total sales, value of shipments, or revenueRange indicating imputed percentage of total annual payrollRange indicating imputed percentage of total employeesEach record includes a LFO code, which represents a specific legal form of organization category.The data are shown for legal form of organization.Definitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the Economic Census of Island Areas are employer establishments. An establishment is generally a single physical location where business is conducted or where services or industrial operations are performed..Geography Coverage.The data are shown for employer establishments and firms that vary by industry:At the Territory level for Puerto RicoFor information about economic census geographies, including changes for 2022, see Geographies..Industry Coverage.The data are shown at the 2-digit 2022 NAICS code levels for selected economic census sectors and geographies.For information about NAICS, see Economic Census Code Lists..Sampling.The Economic Census of Island Areas is a complete enumeration of establishments located in the islands (i.e., all establishments on the sampling frame are included in the sample). Therefore, the accuracy of tabulations is not affected by sampling error..Confidentiality.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. 7504609, Disclosure Review Board (DRB) approval number: CBDRB-FY24-0044).The primary method of disclosure avoidance protection is noise infusion. Under this method, the quantitative data values such as sales or payroll for each establishment are perturbed prior to tabulation by applying a random noise multiplier (i.e., factor). Each establishment is assigned a single noise factor, which is applied to all its quantitative data value. Using this method, most published cell totals are perturbed by at most a few percentage points.To comply with disclosure avoidance guidelines, data rows with fewer than three contributing establishments are not presented. For more information on disclosure avoidance, see Methodology for the 2022 Economic Census- Island Areas..Technical Documentation/Methodology.For detailed information about the methods used to collect data and produce statistics, see Methodology for the 2022 Economic Census- Island Areas.For more information about survey questionnaires, Primary Business Activity/NAICS codes, and NAPCS codes, see Economic Census Technical Documentation..Weights.Because the Economic Census of Island Areas is a complete enumeration, there is no sample weighting..Table Information.FTP Download.https://www2.census.gov/programs-surveys/economic-census/data/2022/sector00.API Information.Economic census data are housed in the Census Bureau Application Programming Interface (API)..Symbols.D - Withheld to avoid disclosing data for individual companies; data are included in higher level totalsN - Not available or not comparableS - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page.X - Not applicableA - Relative standard error of 100% or morer - Reviseds - Relative standard error exceeds 40%For a complete lis...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset presents information from G40 – Rent (weekly) by landlord type in Australia based on the general community profile from the 2021 Census. It contains characteristics of persons, families, and dwellings by Statistical Areas Level 2 (SA2), 2021, from the Australian Statistical Geography Standard (ASGS) Edition 3.
This dataset is part of a set of web services based on the 2021 Census. It can be used as a tool for researching, planning, and analysis. The data is based on place of usual residence (that is, where people usually live, rather than where they were counted on Census night), unless otherwise stated.
Small random adjustments have been made to all cell values to protect the confidentiality of respondents. These adjustments may cause the sum of rows or columns to differ by small amounts from table totals. For further information see the 2021 Census Privacy Statement, Confidentiality, and Introduced random error/perturbation.
Made possible by the Digital Atlas of Australia The Digital Atlas of Australia is an Australian Government initiative being led by Geoscience Australia. It will bring together trusted datasets from across government in an interactive, secure, and easy-to-use geospatial platform. The Australian Bureau of Statistics (ABS) is working in partnership with Geoscience Australia to establish a set of web services to make ABS data available in the Digital Atlas.
Contact the Australian Bureau of Statistics (ABS) If you have questions, feedback or would like to receive updates about this web service, please email geography@abs.gov.au. For information about how the ABS manages any personal information you provide view the ABS privacy policy.
Data and geography references Source data publication: G40 – Rent (weekly) by landlord type Geographic boundary information: Australian Statistical Geography Standard (ASGS) Edition 3 Further information: About the Census, 2021 Census product release guide – Community Profiles, Understanding Census geography Source: Australian Bureau of Statistics (ABS)
Facebook
TwitterUS Census American Community Survey Custom Tabulation (ST542) by Census Tract. Language spoken at home for population 5 years and over by ability to speak English, summarized by census tract for 114 languages spoken across LA County, 5-year estimates 2019-2023.See also source data tables:Census Tracts: Language Spoken at Home LA County Census TractsLA County: Language Spoken at Home LA County Headings:GEOIDGeography identificationCT20Census tract (2020)NameCensus tract nameCSACountywide Statistical Area (city or community)SPAService Planning AreaSDSupervisorial Districttotal_popPopulation over 5 years old in census tract (universe)total_limited_engPopulation that speaks English less than "very well"total_limited_eng_pctPercent of population that speaks English less than "very well"
Facebook
Twitterhttps://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset shows an individual’s statistical area 3 (SA3) of usual residence and the SA3 of their workplace address, for the employed census usually resident population count aged 15 years and over, by main means of travel to work from the 2018 and 2023 Censuses.
The main means of travel to work categories are:
Main means of travel to work is the usual method which an employed person aged 15 years and over used to travel the longest distance to their place of work.
Workplace address refers to where someone usually works in their main job, that is the job in which they worked the most hours. For people who work at home, this is the same address as their usual residence address. For people who do not work at home, this could be the address of the business they work for or another address, such as a building site.
Workplace address is coded to the most detailed geography possible from the available information. This dataset only includes travel to work information for individuals whose workplace address is available at SA3 level. The sum of the counts for each region in this dataset may not equal the total employed census usually resident population count aged 15 years and over for that region. Workplace address – 2023 Census: Information by concept has more information.
This dataset can be used in conjunction with the following spatial files by joining on the SA3 code values:
Download data table using the instructions in the Koordinates help guide.
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Population counts
Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data).
Workplace address time series
Workplace address time series data should be interpreted with care at lower geographic levels, such as statistical area 2 (SA2). Methodological improvements in 2023 Census resulted in greater data accuracy, including a greater proportion of people being counted at lower geographic areas compared to the 2018 Census. Workplace address – 2023 Census: Information by concept has more information.
Working at home
In the census, working at home captures both remote work, and people whose business is at their home address (e.g. farmers or small business owners operating from their home). The census asks respondents whether they ‘mostly’ work at home or away from home. It does not capture whether someone does both, or how frequently they do one or the other.
Rows excluded from the dataset
Rows show SA3 of usual residence by SA3 of workplace address. Rows with a total population count of less than six have been removed to reduce the size of the dataset, given only a small proportion of SA3-SA3 combinations have commuter flows.
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Quality rating of a variable
The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.
Main means of travel to work quality rating
Main means of travel to work is rated as moderate quality.
Main means of travel to work – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Workplace address quality rating
Workplace address is rated as moderate quality.
Workplace address – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Percentages
To calculate percentages, divide the figure for the category of interest by the figure for ‘Total stated’ where this applies.
Symbol
-999 Confidential
Inconsistencies in definitions
Please note that there may be differences in definitions between census classifications and those used for other data collections.
Facebook
TwitterA dataset to advance the study of life-cycle interactions of biomedical and socioeconomic factors in the aging process. The EI project has assembled a variety of large datasets covering the life histories of approximately 39,616 white male volunteers (drawn from a random sample of 331 companies) who served in the Union Army (UA), and of about 6,000 African-American veterans from 51 randomly selected United States Colored Troops companies (USCT). Their military records were linked to pension and medical records that detailed the soldiers������?? health status and socioeconomic and family characteristics. Each soldier was searched for in the US decennial census for the years in which they were most likely to be found alive (1850, 1860, 1880, 1900, 1910). In addition, a sample consisting of 70,000 men examined for service in the Union Army between September 1864 and April 1865 has been assembled and linked only to census records. These records will be useful for life-cycle comparisons of those accepted and rejected for service. Military Data: The military service and wartime medical histories of the UA and USCT men were collected from the Union Army and United States Colored Troops military service records, carded medical records, and other wartime documents. Pension Data: Wherever possible, the UA and USCT samples have been linked to pension records, including surgeon''''s certificates. About 70% of men in the Union Army sample have a pension. These records provide the bulk of the socioeconomic and demographic information on these men from the late 1800s through the early 1900s, including family structure and employment information. In addition, the surgeon''''s certificates provide rich medical histories, with an average of 5 examinations per linked recruit for the UA, and about 2.5 exams per USCT recruit. Census Data: Both early and late-age familial and socioeconomic information is collected from the manuscript schedules of the federal censuses of 1850, 1860, 1870 (incomplete), 1880, 1900, and 1910. Data Availability: All of the datasets (Military Union Army; linked Census; Surgeon''''s Certificates; Examination Records, and supporting ecological and environmental variables) are publicly available from ICPSR. In addition, copies on CD-ROM may be obtained from the CPE, which also maintains an interactive Internet Data Archive and Documentation Library, which can be accessed on the Project Website. * Dates of Study: 1850-1910 * Study Features: Longitudinal, Minority Oversamples * Sample Size: ** Union Army: 35,747 ** Colored Troops: 6,187 ** Examination Sample: 70,800 ICPSR Link: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06836
Facebook
Twitterhttps://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset contains counts and measures for families and extended families from the 2013, 2018, and 2023 Censuses. Data is available by statistical area 2.
The variables included in this dataset are for families and extended families in households in occupied private dwellings:
Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Concept descriptions and quality ratings
Data quality ratings for 2023 Census variables has additional details about variables found within totals by topic, for example, definitions and data quality.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Measures
Measures like averages, medians, and other quantiles are calculated from unrounded counts, with input noise added to or subtracted from each contributing value during measures calculations. Averages and medians based on less than six units (e.g. individuals, dwellings, households, families, or extended families) are suppressed. This suppression threshold changes for other quantiles. Where the cells have been suppressed, a placeholder value has been used.
Percentages
To calculate percentages, divide the figure for the category of interest by the figure for 'Total stated' where this applies.
Symbol
-997 Not available
-999 Confidential
Inconsistencies in definitions
Please note that there may be differences in definitions between census classifications and those used for other data collections.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Random Lake population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Random Lake. The dataset can be utilized to understand the population distribution of Random Lake by age. For example, using this dataset, we can identify the largest age group in Random Lake.
Key observations
The largest age group in Random Lake, WI was for the group of age 15-19 years with a population of 174 (11.11%), according to the 2021 American Community Survey. At the same time, the smallest age group in Random Lake, WI was the 85+ years with a population of 22 (1.40%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Random Lake Population by Age. You can refer the same here