By Stephen Myers [source]
This dataset contains survey responses from individuals in the tech industry about their mental health, including questions about treatment, workplace resources, and attitudes towards discussing mental health in the workplace. Mental health is an issue that affects all people of all ages, genders and walks of life. The prevalence of these issues within the tech industry–one that places hard demands on those who work in it–is no exception. By analyzing this dataset, we can better understand how prevalent mental health issues are among those who work in the tech sector.–and what kinds of resources they rely upon to find help–so that more can be done to create a healthier working environment for all.
This dataset tracks key measures such as age, gender and country to determine overall prevalence, along with responses surrounding employee access to care options; whether mental health or physical illness are being taken as seriously by employers; whether or not anonymity is protected with regards to seeking help; and how coworkers may perceive those struggling with mental illness issues such as depression or anxiety. With an ever-evolving landscape due to new technology advancing faster than ever before – these statistics have never been more important for us to analyze if we hope remain true promoters of a healthy world inside and outside our office walls
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
In this dataset you will find data on age, gender, country, and state of survey respondents in addition to numerous questions that assess an individual's mental state including: self-employment status, family history of mental illness, treatment status and access or lack thereof; how their mental health condition affects their work; number of employees at the company they work for; remote work status; tech company status; benefit information from employers such as mental health benefits and wellness program availability; anonymity protection if seeking treatment resources for substance abuse or mental health issues ; ease (or difficulty) for medical leave for a mental health condition ; whether discussing physical or medical matters with employers have negative consequences. You will also find comments from survey participants.
To use this dataset effectively: - Clean the data by removing invalid responses/duplicates/missing values - you can do this with basic Pandas commands like .dropna() , .drop_duplicates(), .replace(). - Utilize descriptive statistics such as mean and median to draw general conclusions about patterns of responses - you can do this with Pandas tools such as .groupby() and .describe(). - Run various types analyses such as mean comparisons on different kinds of variables(age vs gender), correlations between different features etc using appropriate statistical methods - use commands like Statsmodels' OLS models (.smf) , calculate z-scores , run hypothesis tests etc depending on what analysis is needed. Make sure you are aware any underlying assumptions your analysis requires beforehand !
- Visualize your results with plotting libraries like Matplotlib/Seaborn to easily interpret these findings! Use boxplots/histograms/heatmaps where appropriate depending on your question !
- Using the results of this survey, you could develop targeted outreach campaigns directed at underrepresented groups that answer “No” to questions about their employers providing resources for mental health or discussing it as part of wellness programs.
- Analyzing the employee characteristics (e.g., age and gender) of those who reported negative consequences from discussing their mental health in the workplace could inform employer policies to support individuals with mental health conditions and reduce stigma and discrimination in the workplace.
- Correlating responses to questions about remote work, leave policies, and anonymity with whether or not individuals have sought treatment for a mental health condition may provide insight into which types of workplace resources are most beneficial for supporting employees dealing with these issues
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redi...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This submission includes publicly available data extracted in its original form. Please reference the Related Publication listed here for source and citation information: https://catalog.data.gov/dataset/smart-location-database7 If you have questions about the underlying data stored here, please contact Thomas John (thomas.john@epa.gov). If you have questions or recommendations related to this metadata entry and extracted data, please contact the CAFE Data Management team at: climatecafe@bu.edu. "The Smart Location Database is a nationwide geographic data resource for measuring location efficiency. It includes more than 90 attributes summarizing characteristics, such as housing density, diversity of land use, neighborhood design, destination accessibility, transit service, employment and demographics. Most attributes are available for every census block group in the United States. A large body of research has demonstrated that land use and urban form can have a significant effect on transportation outcomes. People who live and/or work in compact neighborhoods with a walkable street grid and easy access to public transit, jobs, stores, and services are more likely to have several transportation options to meet their everyday needs. As a result, they can choose to drive less, which reduces their emissions of greenhouse gases and other pollutants compared to people who live and work in places that are not location efficient. Walking, biking, and taking public transit can also save people money and improve their health by encouraging physical activity. The Smart Location Database summarizes several demographic, employment, and built environment variables for every census block group (CBG) in the United States. The database includes indicators of the commonly cited “D” variables shown in the transportation research literature to be related to travel behavior. The Ds include residential and employment density, land use diversity, design of the built environment, access to destinations, and distance to transit. SLD variables can be used as inputs to travel demand models, baseline data for scenario planning studies, and combined into composite indicators characterizing the relative location efficiency of CBG within U.S. metropolitan regions. EPA first released a beta version of the Smart Location Database in 2011. The initial full version was released in 2013, and the database was updated to its current version in 2021." Quote from https://www.epa.gov/smartgrowth/smart-location-mapping and https://catalog.data.gov/dataset/smart-location-database7
A large body of research has demonstrated that land use and urban form can have a significant effect on transportation outcomes. People who live and/or work in compact neighborhoods with a walkable street grid and easy access to public transit, jobs, stores, and services are more likely to have several transportation options to meet their everyday needs. As a result, they can choose to drive less, which reduces their emissions of greenhouse gases and other pollutants compared to people who live and work in places that are not location efficient. Walking, biking, and taking public transit can also save people money and improve their health by encouraging physical activity. The Smart Location Database summarizes several demographic, employment, and built environment variables for every census block group (CBG) in the United States. The database includes indicators of the commonly cited “D” variables shown in the transportation research literature to be related to travel behavior. The Ds include residential and employment density, land use diversity, design of the built environment, access to destinations, and distance to transit. SLD variables can be used as inputs to travel demand models, baseline data for scenario planning studies, and combined into composite indicators characterizing the relative location efficiency of CBG within U.S. metropolitan regions. This update features the most recent geographic boundaries (2019 Census Block Groups) and new and expanded sources of data used to calculate variables. Entirely new variables have been added and the methods used to calculate some of the SLD variables have changed. More information on the National Walkability index: https://www.epa.gov/smartgrowth/smart-location-mapping More information on the Smart Location Calculator: https://www.slc.gsa.gov/slc/
analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D
We collect, validate, model, and segment raw data signals from over 900+ sources globally to deliver thousands of mobile audience segments. We then combine that data with other public and private data sources to derive interests, intent, and behavioral attributes. Our proprietary algorithms then clean, enrich, unify and aggregate these data sets for use in our products. We have categorized our audience data into consumable categories such as interest, demographics, behavior, geography, etc. Audience Data Categories:Below mentioned data categories include consumer behavioral data and consumer profiles (available for the US and Australia) divided into various data categories. Brand Shoppers:Methodology: This category has been created based on the high intent of users in terms of their visits to Brand outlets in the real world. To create segments containing users with a high-affinity index, we use a precise determination of the number of occurrences at a given time. Place Category Visitors:Methodology: This category has been created based on the high intent of users visiting specific places of interest in the real world. To create segments containing users with a high-affinity index, we use a precise determination of the number of occurrences at a given time. Demographics:This category has been created based on deterministic data that we receive from apps based on the declared gender and age data. Marital Status, Education, Party affiliation, and State residency are available in the US. Geo-Behavioural:This category has been created based on the high intent of users in terms of the frequency of their visits to specific granular places of interest in the real world. To create segments containing users with a high-affinity index, we use a precise determination of the number of occurrences at a given time. Interests:This segment is created based on users' interest in a specific subject while browsing the internet when the visited website category is clearly focused on a specific subject such as cars, cooking, traveling, etc. We use a deterministic model to assign a proper profile and time that information is valid. The recency of data can range from 14 to 30 days, depending on the topic. Intent:Factori receives data from many partners to deliver high-quality pieces of information about users’ shopping intent. We collect data from sources connected to the eCommerce sector and we also receive data connected to online transactions from affiliate networks to deliver the most accurate segments with purchase intentions, such as laptops, mobile phones, or cars. The recency of data can range from 7 to 14 days depending on the product category. Events:This category was created based on the high interest of users in terms of content related to specific global events - sports, culture, and gaming. Among the event segments, we also distinguish categories related to the interest in certain lifestyle choices and behaviors. To create segments containing users with a high-affinity index, we use a precise determination of the number of occurrences at a given time. App Usage:Mobile category is a branch of the taxonomy that is dedicated only to the data that is based on mobile advertising IDs. It is based on the categorization of the mobile apps that the user has installed on the device. Auto Ownership:Consumer Profiles - Available for US and AustraliaThis audience has been created based on users declaring that they own a certain brand of automobile and other automotive attributes via a survey or registration. These audiences are currently available in the USA. Motorcycle Ownership:Consumer Profiles - Available for US and AustraliaThis audience has been created based on users declaring that they own a certain brand of motorcycle and other motorcycle-based attributes via a survey or registration. These audiences are currently available for the USA. Household:Consumer Profiles - Available for the US and AustraliaThis audience has been created based on users' declaring their marital status, parental status, and the overall number of children via a survey or registration. These audiences are currently available in the USA. Financial:Consumer Profiles - Available for the US and Australia this audience has been created based on their behavior in different financial services like property ownership, mortgage, investing behavior, and wealth and declaring their estimated net worth via a survey or registration. Purchase/ Spending Behavior:Consumer Profiles - Available for the US and AustraliaThis audience has been created based on their behavior in different spending behaviors in different business verticals available in the USA. Clusters:Consumer Profiles - Available for the US and AustraliaClusters are groups of consumers who exhibit similar demographic, lifestyle, and media consumption characteristics, empowering marketers to understand the unique attributes that comprise their most profitable consumer segments. Armed with this rich data, data scientists can drive analytics and modeling to power their brand’s unique marketing initiatives. B2B Audiences;Consumer Profiles - Available for US and AustraliaThis audience has been created based on users declaring their employee credentials, designations, and companies they work in, further specifying business verticals, revenue breakdowns, and headquarters locations. Customizable Audiences Data Segment:Brands can choose the appropriate pre-made audience segments or ask our data experts about creating a custom segment that is precisely tailored to your brief in order to reach their target customers and boost the campaign's effectiveness. Location Query Granularity:Minimum area: HEX 8Maximum area: QuadKey 17/City
Demographics Analysis with Consumer Edge Credit & Debit Card Transaction Data
Consumer Edge is a leader in alternative consumer data for public and private investors and corporate clients. CE Transact Signal is an aggregated transaction feed that includes consumer transaction data on 100M+ credit and debit cards, including 14M+ active monthly users. Capturing online, offline, and 3rd-party consumer spending on public and private companies, data covers 12K+ merchants and deep demographic and geographic breakouts. Track detailed consumer behavior patterns, including retention, purchase frequency, and cross shop in addition to total spend, transactions, and dollars per transaction.
Consumer Edge’s consumer transaction datasets offer insights into industries across consumer and discretionary spend such as: • Apparel, Accessories, & Footwear • Automotive • Beauty • Commercial – Hardlines • Convenience / Drug / Diet • Department Stores • Discount / Club • Education • Electronics / Software • Financial Services • Full-Service Restaurants • Grocery • Ground Transportation • Health Products & Services • Home & Garden • Insurance • Leisure & Recreation • Limited-Service Restaurants • Luxury • Miscellaneous Services • Online Retail – Broadlines • Other Specialty Retail • Pet Products & Services • Sporting Goods, Hobby, Toy & Game • Telecom & Media • Travel
This data sample illustrates how Consumer Edge data can be used to compare demographics breakdown (age and income excluded in this free sample view) for one company vs. a competitor for a set period of time (Ex: How do demographics like wealth, ethnicity, children in the household, homeowner status, and political affiliation differ for Walmart vs. Target shopper?).
Inquire about a CE subscription to perform more complex, near real-time demographics analysis functions on public tickers and private brands like: • Analyze a demographic, like age or income, within a state for a company in 2023 • Compare all of a company’s demographics to all of that company’s competitors through most recent history
Consumer Edge offers a variety of datasets covering the US and Europe (UK, Austria, France, Germany, Italy, Spain), with subscription options serving a wide range of business needs.
Use Case: Demographics Analysis
Problem A global retailer wants to understand company performance by age group.
Solution Consumer Edge transaction data can be used to analyze shopper transactions by age group to understand: • Overall sales growth by age group over time • Percentage sales growth by age group over time • Sales by age group vs. competitors
Impact Marketing and Consumer Insights were able to: • Develop weekly reporting KPI's on key demographic drivers of growth for company-wide reporting • Reduce investment in underperforming age groups, both online and offline • Determine retention by age group to refine campaign strategy • Understand how different age groups are performing compared to key competitors
Corporate researchers and consumer insights teams use CE Vision for:
Corporate Strategy Use Cases • Ecommerce vs. brick & mortar trends • Real estate opportunities • Economic spending shifts
Marketing & Consumer Insights • Total addressable market view • Competitive threats & opportunities • Cross-shopping trends for new partnerships • Demo and geo growth drivers • Customer loyalty & retention
Investor Relations • Shareholder perspective on brand vs. competition • Real-time market intelligence • M&A opportunities
Most popular use cases for private equity and venture capital firms include: • Deal Sourcing • Live Diligences • Portfolio Monitoring
Public and private investors can leverage insights from CE’s synthetic data to assess investment opportunities, while consumer insights, marketing, and retailers can gain visibility into transaction data’s potential for competitive analysis, understanding shopper behavior, and capturing market intelligence.
Most popular use cases among public and private investors include: • Track Key KPIs to Company-Reported Figures • Understanding TAM for Focus Industries • Competitive Analysis • Evaluating Public, Private, and Soon-to-be-Public Companies • Ability to Explore Geographic & Regional Differences • Cross-Shop & Loyalty • Drill Down to SKU Level & Full Purchase Details • Customer lifetime value • Earnings predictions • Uncovering macroeconomic trends • Analyzing market share • Performance benchmarking • Understanding share of wallet • Seeing subscription trends
Fields Include: • Day • Merchant • Subindustry • Industry • Spend • Transactions • Spend per Transaction (derivable) • Cardholder State • Cardholder CBSA • Cardholder CSA • Age • Income • Wealth • Ethnicity • Political Affiliation • Children in Household • Adults in Household • Homeowner vs. Renter • Business Owner • Retention by First-Shopped Period ...
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
A positive LMIA will be issued by Service Canada if an assessment indicates that hiring a temporary foreign worker (TFW) will have a positive or neutral impact on the Canadian labour market. A positive LMIA must be obtained by an employer before hiring a TFW for a specific occupation. This list excludes all personal names, such as employers of caregivers or business names that use or include personal names. For this reason, the list is not complete and does not reflect all employers who requested or received an LMIA. The data provided in this report tracks TFW positions on Labour Market Impact Assessments only, not TFWs that are issued a work permit or who enter Canada. The decision to issue a work permit rests with Immigration, Refugees and Citizenship Canada (IRCC); therefore, not all positions approved result in a work permit or a TFW entering Canada. The data includes all positions on all positive LMIAs as issued, and therefore also includes any position that may have been subsequently cancelled by the employer. For information on the number of work permits issued, please consult Immigration, Refugee and Citizenship Canada (IRCC) Facts and Figures: http://www.cic.gc.ca/english/resources/statistics/menu-fact.asp. Note: From Q1 2018 to Q3 2023 data, LMIAs in support of Permanent Residence (PR) were excluded from published employer lists. As of the publication of Q4 2023 employer lists (published in April 2024) and going forward, all LMIAs in support of 'Permanent Residence (PR) Only' will be included in the employer lists. However, previous employer lists will not be updated. Should an employer wish to contact ESDC concerning the accuracy of this information, please contact NA-TFWP-PTET@hrsdc-rhdcc.gc.ca.
Unlock the power of ready-to-use data sourced from developer communities and repositories with Developer Community and Code Datasets.
Data Sources:
GitHub: Access comprehensive data about GitHub repositories, developer profiles, contributions, issues, social interactions, and more.
StackShare: Receive information about companies, their technology stacks, reviews, tools, services, trends, and more.
DockerHub: Dive into data from container images, repositories, developer profiles, contributions, usage statistics, and more.
Developer Community and Code Datasets are a treasure trove of public data points gathered from tech communities and code repositories across the web.
With our datasets, you'll receive:
Choose from various output formats, storage options, and delivery frequencies:
Why choose our Datasets?
Fresh and accurate data: Access complete, clean, and structured data from scraping professionals, ensuring the highest quality.
Time and resource savings: Let us handle data extraction and processing cost-effectively, freeing your resources for strategic tasks.
Customized solutions: Share your unique data needs, and we'll tailor our data harvesting approach to fit your requirements perfectly.
Legal compliance: Partner with a trusted leader in ethical data collection. Oxylabs is trusted by Fortune 500 companies and adheres to GDPR and CCPA standards.
Pricing Options:
Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.
Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.
Experience a seamless journey with Oxylabs:
Empower your data-driven decisions with Oxylabs Developer Community and Code Datasets!
Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.
These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2023-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2019 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.
Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.
As these projections may be a valuable input to other analyses, this dataset is made available here as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.
Wasatch Front Real Estate Market Model (REMM) Projections
WFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:
Demographic data from the decennial census
County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature
Current employment locational patterns derived from the Utah Department of Workforce Services
Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff
Current land use and valuation GIS-based parcel data stewarded by County Assessors
Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations
Calibration of model variables to balance the fit of current conditions and dynamics at the county and regional level
‘Traffic Analysis Zone’ Projections
The annual projections are forecasted for each of the Wasatch Front’s 3,546 Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).
‘City Area’ Projections
The TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.
Summary Variables in the Datasets
Annual projection counts are available for the following variables (please read Key Exclusions note below):
Demographics
Household Population Count (excludes persons living in group quarters)
Household Count (excludes group quarters)
Employment
Typical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)
Retail Job Count (retail, food service, hotels, etc)
Office Job Count (office, health care, government, education, etc)
Industrial Job Count (manufacturing, wholesale, transport, etc)
Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count
All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).
Key Exclusions from TAZ and ‘City Area’ Projections
As the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.
Statewide Projections
Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.
2004 to 2021 Virginia Employment Status of the Civilian Non-Institutional Population by Sex, by Race, Hispanic or Latino ethnicity, and detailed by Age, by Year. Annual averages, numbers in thousands.
U.S. Bureau of Labor Statistics; Local Area Unemployment Statistics, Expanded State Employment Status Demographic Data Data accessed from the Bureau of Labor Statistics website (https://www.bls.gov/lau/ex14tables.htm)
Statewide data on the demographic and economic characteristics of the labor force are published on an annual-average basis from the Current Population Survey (CPS), the sample survey of households used to calculate the U.S. unemployment rate (https://www.bls.gov/cps/home.htm). For each state and the District of Columbia, employment status data are tabulated for 67 sex, race, Hispanic or Latino ethnicity, marital status, and detailed age categories and evaluated against a minimum base, calculated to reflect an expected maximum coefficient of variation (CV) of 50 percent, to determine reliability for publication.
The CPS sample was redesigned in 2014–15 to reflect the distribution of the population as of the 2010 Census. At the same time, BLS developed improved techniques for calculating minimum bases. These changes resulted in generally higher minimum bases of unemployment, leading to the publication of fewer state-demographic groups beginning in 2015. The most notable impact was on the detailed age categories, particularly the teenage and age 65 and older groups. In an effort to extend coverage, BLS introduced a version of the expanded state employment status demographic table with intermediate age categories, collapsing the seven categories historically included down to three. Ages 16–19 and 20–24 were combined into a 16–24 year-old category, ages 25–34, 35–44, and 45–54 were combined into a 25–54 year-old category, and ages 55–64 and 65 and older were combined into a 55-years-and-older category. These intermediate age data are tabulated for the total population, as well as the four race and ethnicity groups, and then are evaluated against the unemployment minimum bases. The more detailed age categories continue to be available in the main version of the expanded table, where the minimum base was met.
Additional information on the uses and limitations of statewide data from the CPS can be found in the document Notes on Using Current Population Survey (https://www.bls.gov/lau/notescps.htm) Subnational Data and in Appendix B of the bulletin Geographic Profile of Employment and Unemployment (https://www.bls.gov/opub/geographic-profile/home.htm).
https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Salary data aims to determine whether individuals earn less than or more than $50,000 annually based on their employment, education, and demographic information. It is used widely in analyses that seek to understand income disparities and economic factors influencing earnings.
2) Data Utilization (1) Salary data has characteristics that: • The dataset includes factors such as age, education, job type, hours worked per week, and other socio-economic variables that contribute to predicting salary categories. (2) Salary data can be used to: • Workforce Analysis: Useful for employers and policymakers to understand wage structures and adjust compensation plans accordingly. • Economic Research: Helps researchers analyze economic mobility and the impact of education and employment on income levels.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here are a few use cases for this project:
Traffic Management and Analysis: This computer vision model can be utilized by traffic management authorities in Thailand to monitor and analyze traffic flow in real-time. By identifying motorcycles, cars, and trucks, the model can help optimize traffic light timings, detect traffic congestion, and aid in implementing effective countermeasures to minimize travel delays.
Urban Planning and Infrastructure Development: City planners and engineers can use the "Motorcycle in Thailand" model to better understand the primary means of transportation in specific areas. Analyzing the distribution of motorcycle, car, and truck usage will aid in designing transportation infrastructure, optimizing public transit, and promoting sustainable development.
Road Safety and Accident Prevention: By identifying vehicles and their types, this computer vision model can contribute to improving road safety in Thailand. It can be used to analyze accident-prone zones, develop tailored safety campaigns, and monitor the effectiveness of implemented safety measures.
Insurance and Fleet Management: Insurance companies and fleet management organizations can leverage this model to detect and evaluate vehicle-related risks, assess damage in claims handling, and optimize vehicle maintenance schedules. By accurately identifying motorcycles, cars, and trucks, the model can help determine appropriate pricing for insurance premiums and maintenance costs.
Retail and Marketing Analysis: Businesses and marketing agencies can use this model to gather valuable demographic data about people's transportation preferences in Thailand. By recognizing the prevalence of motorcycles, cars, and trucks, companies can target products and services more effectively, catering to the specific needs of different user groups.
A global database of Direct Marketing Data that provides an understanding of population distribution at administrative and zip code levels over 55 years, past, present, and future. Leverage up-to-date audience targeting population trends for market research, audience targeting, and sales territory mapping.
Self-hosted marketing population dataset curated based on trusted sources such as the United Nations or the European Commission, with a 99% match accuracy. The Demographic Data is standardized, unified, and ready to use.
Use cases for the Global Consumer Behavior Database (Direct Marketing Data)
Ad targeting
B2B Market Intelligence
Customer analytics
Audience targeting
Marketing campaign analysis
Demand forecasting
Sales territory mapping
Retail site selection
Reporting
Audience targeting
Demographic data export methodology
Our population data packages are offered in CSV format. All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Product Features
Historical population data (55 years)
Changes in population density
Urbanization Patterns
Accurate at zip code and administrative level
Optimized for easy integration
Easy customization
Global coverage
Updated yearly
Standardized and reliable
Self-hosted delivery
Fully aggregated (ready to use)
Rich attributes
Why do companies choose our Consumer databases
Standardized and unified demographic data structure
Seamless integration in your system
Dedicated location data expert
Note: Custom population data packages are available. Please submit a request via the above contact button for more details.
A global database of Real Estate Data that provides an understanding of population distribution at administrative and zip code levels over 55 years, past, present, and future.
Leverage up-to-date urban planning data with population trends for real estate, market research, audience targeting, and sales territory mapping.
Self-hosted commercial real estate dataset curated based on trusted sources such as the United Nations or the European Commission, with a 99% match accuracy. The Urban Planning Data is standardized, unified, and ready to use.
Use cases for the Global Population Database (Urban Planning Data)
Ad targeting
B2B Market Intelligence
Customer analytics
Real Estate Data Estimations
Marketing campaign analysis
Demand forecasting
Sales territory mapping
Retail site selection
Reporting
Audience targeting
Demographic data export methodology
Our location data packages are offered in CSV format. All Demographic data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Product Features
Historical population data (55 years)
Changes in population density
Urbanization Patterns
Accurate at zip code and administrative level
Optimized for easy integration
Easy customization
Global coverage
Updated yearly
Standardized and reliable
Self-hosted delivery
Fully aggregated (ready to use)
Rich attributes
Why do companies choose our Real Estate databases
Standardized and unified demographic data structure
Seamless integration in your system
Dedicated location data expert
Note: Custom population data packages are available. Please submit a request via the above contact button for more details.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The energy accounts show how much energy flows into the Dutch economy (imports and domestic production) and how much is used by the Dutch economy (domestic use and exports). It also presents the energy that flows within the economy. The energy accounts distinguishes between energy products and users/producers of energy. They can be used to investigate where the economy gets its energy from and what it uses it for, which sector uses the most, how important imports are, and how efficiently the economy uses its energy.
The energy accounts differentiates between gross and net use of energy. Net energy is further disaggregated into different types of energy use. Gross energy use is further disaggregated into energy that is extracted from the domestic environment and energy that is imported from third parties. Imported energy is further disaggregated into different groups of energy carriers. The table presents the consumption of different energy carriers and allocates them to various industries and households. The energy accounts originate from the energy balance and are part of the environmental accounts that are published on an annual base. The data in the environmental accounts correspond directly to the economic data in the national accounts. This allows for direct comparisons of economic statistics that are derived from the Dutch national economic accounts with the energy consumption figures. Furthermore, the energy accounts can be used to construct environmental indicators. For example, the energy accounts can be used to determine the use of different energy carriers in the Netherlands as a whole and for individual industries .
The figures in the Dutch energy accounts are consistent with the concepts and definitions of the national accounts and may therefore deviate from figures in the Dutch energy balance.
Data available from: 1995 to 2013
Status of the figures: As this table has been discontinued, the data will no longer be finalized
Changes as of januari 2021 This table has been discontinued
When are new figures published? This table is followed by Aanbod en gebruik energie; energiedragers, huishoudens en bedrijven (NR) (Dutch only). See section 3.
The Medical Expenditure Panel Survey (MEPS) Household Component (HC) collects data from a sample of families and individuals in selected communities across the United States, drawn from a nationally representative subsample of households that participated in the prior year's National Health Interview Survey (conducted by the National Center for Health Statistics). During the household interviews, MEPS collects detailed information for each person in the household on the following: demographic characteristics, health conditions, health status, use of medical services, charges and source of payments, access to care, satisfaction with care, health insurance coverage, income, and employment. The panel design of the survey, which features several rounds of interviewing, makes it possible to determine how changes in respondents' health status, income, employment, eligibility for public and private insurance coverage, use of services, and payment for care are related. Public Use Files for Household data are available on the MEPS website.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundPrevious investigations suggest that the COVID-19 pandemic effects on alcohol consumption were heterogenous and may vary as a function of structural and psychological factors. Research examining mediating or moderating factors implicated in pandemic-occasioned changes in drinking have also tended to use single-study cross-sectional designs and convenience samples. Aims: First, to explore structural (changed employment or unemployment) and psychological (subjective mental health and drinking motives) correlates of consumption reported during the COVID-19 pandemic using a UK nationally representative (quota sampled) dataset. Second, to determine whether population-level differences in drinking during the COVID-19 pandemic (versus pre-pandemic levels) could be attributable to drinking motives. Method: Data collected from samples of UK adults before and during the pandemic were obtained and analysed: Step1 carried out structural equation modelling (SEM) to explore data gathered during a period of social restrictions after the UK’s first COVID-19-related lockdown (27 August-15 September, 2020; n = 3,798). It assessed whether drinking motives (enhancement, social, conformity, coping), employment and the perceived impact of the pandemic on subjective mental health may explain between-person differences in self-reported alcohol consumption. Step 2 multigroup SEM evaluated data gathered pre-pandemic (2018; n = 7,902) in concert with the pandemic data from step 1, to test the theory that population-level differences in alcohol consumption are attributable to variances in drinking motives. Results: Analyses of the 2020 dataset detected both direct and indirect effects of subjective mental health, drinking motives, and employment matters (e.g., having been furloughed) on alcohol use. Findings from a multigroup SEM were consistent with the theory that drinking motives explain not only individual differences in alcohol use at both time points, but also population-level increases in use during the pandemic. Conclusion: This work highlights socioeconomic and employment considerations when seeking to understand COVID-19-related drinking. It also indicates that drinking motives may be particularly important in explaining the apparent trend of heightened drinking during the pandemic. Limitations related to causal inference are discussed.
Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.
These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2023-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2019 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.
Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.
As these projections may be a valuable input to other analyses, this dataset is made available here as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.
Wasatch Front Real Estate Market Model (REMM) Projections
WFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:
Demographic data from the decennial census
County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature
Current employment locational patterns derived from the Utah Department of Workforce Services
Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff
Current land use and valuation GIS-based parcel data stewarded by County Assessors
Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations
Calibration of model variables to balance the fit of current conditions and dynamics at the county and regional level
‘Traffic Analysis Zone’ Projections
The annual projections are forecasted for each of the Wasatch Front’s 3,546 Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).
‘City Area’ Projections
The TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.
Summary Variables in the Datasets
Annual projection counts are available for the following variables (please read Key Exclusions note below):
Demographics
Household Population Count (excludes persons living in group quarters)
Household Count (excludes group quarters)
Employment
Typical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)
Retail Job Count (retail, food service, hotels, etc)
Office Job Count (office, health care, government, education, etc)
Industrial Job Count (manufacturing, wholesale, transport, etc)
Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count
All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).
Key Exclusions from TAZ and ‘City Area’ Projections
As the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.
Statewide Projections
Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data in this dataset were collected in the result of the survey of Latvian society (2021) aimed at identifying high-value data set for Latvia, i.e. data sets that, in the view of Latvian society, could create the value for the Latvian economy and society.
The survey is created for both individuals and businesses.
It being made public both to act as supplementary data for "Towards enrichment of the open government data: a stakeholder-centered determination of High-Value Data sets for Latvia" paper (author: Anastasija Nikiforova, University of Latvia) and in order for other researchers to use these data in their own work.
The survey was distributed among Latvian citizens and organisations. The structure of the survey is available in the supplementary file available (see Survey_HighValueDataSets.odt)
***Description of the data in this data set: structure of the survey and pre-defined answers (if any)***
1. Have you ever used open (government) data? - {(1) yes, once; (2) yes, there has been a little experience; (3) yes, continuously, (4) no, it wasn’t needed for me; (5) no, have tried but has failed}
2. How would you assess the value of open govenment data that are currently available for your personal use or your business? - 5-point Likert scale, where 1 – any to 5 – very high
3. If you ever used the open (government) data, what was the purpose of using them? - {(1) Have not had to use; (2) to identify the situation for an object or ab event (e.g. Covid-19 current state); (3) data-driven decision-making; (4) for the enrichment of my data, i.e. by supplementing them; (5) for better understanding of decisions of the government; (6) awareness of governments’ actions (increasing transparency); (7) forecasting (e.g. trendings etc.); (8) for developing data-driven solutions that use only the open data; (9) for developing data-driven solutions, using open data as a supplement to existing data; (10) for training and education purposes; (11) for entertainment; (12) other (open-ended question)
4. What category(ies) of “high value datasets” is, in you opinion, able to create added value for society or the economy? {(1)Geospatial data; (2) Earth observation and environment; (3) Meteorological; (4) Statistics; (5) Companies and company ownership; (6) Mobility}
5. To what extent do you think the current data catalogue of Latvia’s Open data portal corresponds to the needs of data users/ consumers? - 10-point Likert scale, where 1 – no data are useful, but 10 – fully correspond, i.e. all potentially valuable datasets are available
6. Which of the current data categories in Latvia’s open data portals, in you opinion, most corresponds to the “high value dataset”? - {(1)Foreign affairs; (2) business econonmy; (3) energy; (4) citizens and society; (5) education and sport; (6) culture; (7) regions and municipalities; (8) justice, internal affairs and security; (9) transports; (10) public administration; (11) health; (12) environment; (13) agriculture, food and forestry; (14) science and technologies}
7. Which of them form your TOP-3? - {(1)Foreign affairs; (2) business econonmy; (3) energy; (4) citizens and society; (5) education and sport; (6) culture; (7) regions and municipalities; (8) justice, internal affairs and security; (9) transports; (10) public administration; (11) health; (12) environment; (13) agriculture, food and forestry; (14) science and technologies}
8. How would you assess the value of the following data categories?
8.1. sensor data - 5-point Likert scale, where 1 – not needed to 5 – highly valuable
8.2. real-time data - 5-point Likert scale, where 1 – not needed to 5 – highly valuable
8.3. geospatial data - 5-point Likert scale, where 1 – not needed to 5 – highly valuable
9. What would be these datasets? I.e. what (sub)topic could these data be associated with? - open-ended question
10. Which of the data sets currently available could be valauble and useful for society and businesses? - open-ended question
11. Which of the data sets currently NOT available in Latvia’s open data portal could, in your opinion, be valauble and useful for society and businesses? - open-ended question
12. How did you define them? - {(1)Subjective opinion; (2) experience with data; (3) filtering out the most popular datasets, i.e. basing the on public opinion; (4) other (open-ended question)}
13. How high could be the value of these data sets value for you or your business? - 5-point Likert scale, where 1 – not valuable, 5 – highly valuable
14. Do you represent any company/ organization (are you working anywhere)? (if “yes”, please, fill out the survey twice, i.e. as an individual user AND a company representative) - {yes; no; I am an individual data user; other (open-ended)}
15. What industry/ sector does your company/ organization belong to? (if you do not work at the moment, please, choose the last option) - {Information and communication services; Financial and ansurance activities; Accommodation and catering services; Education; Real estate operations; Wholesale and retail trade; repair of motor vehicles and motorcycles; transport and storage; construction; water supply; waste water; waste management and recovery; electricity, gas supple, heating and air conditioning; manufacturing industry; mining and quarrying; agriculture, forestry and fisheries professional, scientific and technical services; operation of administrative and service services; public administration and defence; compulsory social insurance; health and social care; art, entertainment and recreation; activities of households as employers;; CSO/NGO; Iam not a representative of any company
16. To which category does your company/ organization belong to in terms of its size? - {small; medium; large; self-employeed; I am not a representative of any company}
17. What is the age group that you belong to? (if you are an individual user, not a company representative) - {11..15, 16..20, 21..25, 26..30, 31..35, 36..40, 41..45, 46+, “do not want to reveal”}
18. Please, indicate your education or a scientific degree that corresponds most to you? (if you are an individual user, not a company representative) - {master degree; bachelor’s degree; Dr. and/ or PhD; student (bachelor level); student (master level); doctoral candidate; pupil; do not want to reveal these data}
***Format of the file***
.xls, .csv (for the first spreadsheet only), .odt
***Licenses or restrictions***
CC-BY
The employment and unemployment indicator shows several data points. The first figure is the number of people in the labor force, which includes the number of people who are either working or looking for work. The second two figures, the number of people who are employed and the number of people who are unemployed, are the two subcategories of the labor force. The unemployment rate is a calculation of the number of people who are in the labor force and unemployed as a percentage of the total number of people in the labor force.
The unemployment rate does not include people who are not employed and not in the labor force. This includes adults who are neither working nor looking for work. For example, full-time students may choose not to seek any employment during their college career, and are thus not considered in the unemployment rate. Stay-at-home parents and other caregivers are also considered outside of the labor force, and therefore outside the scope of the unemployment rate.
The unemployment rate is a key economic indicator, and is illustrative of economic conditions in the county at the individual scale.
There are additional considerations to the unemployment rate. Because it does not count those who are outside the labor force, it can exclude individuals who were looking for a job previously, but have since given up. The impact of this on the overall unemployment rate is difficult to quantify, but it is important to note because it shows that no statistic is perfect.
The unemployment rates for Champaign County, the City of Champaign, and the City of Urbana are extremely similar between 2000 and 2023.
All three areas saw a dramatic increase in the unemployment rate between 2006 and 2009. The unemployment rates for all three areas decreased overall between 2010 and 2019. However, the unemployment rate in all three areas rose sharply in 2020 due to the effects of the COVID-19 pandemic. The unemployment rate in all three areas dropped again in 2021 as pandemic restrictions were removed, and were almost back to 2019 rates in 2022. However, the unemployment rate in all three areas rose slightly from 2022 to 2023.
This data is sourced from the Illinois Department of Employment Security’s Local Area Unemployment Statistics (LAUS), and from the U.S. Bureau of Labor Statistics.
Sources: Illinois Department of Employment Security, Local Area Unemployment Statistics (LAUS); U.S. Bureau of Labor Statistics.
By Stephen Myers [source]
This dataset contains survey responses from individuals in the tech industry about their mental health, including questions about treatment, workplace resources, and attitudes towards discussing mental health in the workplace. Mental health is an issue that affects all people of all ages, genders and walks of life. The prevalence of these issues within the tech industry–one that places hard demands on those who work in it–is no exception. By analyzing this dataset, we can better understand how prevalent mental health issues are among those who work in the tech sector.–and what kinds of resources they rely upon to find help–so that more can be done to create a healthier working environment for all.
This dataset tracks key measures such as age, gender and country to determine overall prevalence, along with responses surrounding employee access to care options; whether mental health or physical illness are being taken as seriously by employers; whether or not anonymity is protected with regards to seeking help; and how coworkers may perceive those struggling with mental illness issues such as depression or anxiety. With an ever-evolving landscape due to new technology advancing faster than ever before – these statistics have never been more important for us to analyze if we hope remain true promoters of a healthy world inside and outside our office walls
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
In this dataset you will find data on age, gender, country, and state of survey respondents in addition to numerous questions that assess an individual's mental state including: self-employment status, family history of mental illness, treatment status and access or lack thereof; how their mental health condition affects their work; number of employees at the company they work for; remote work status; tech company status; benefit information from employers such as mental health benefits and wellness program availability; anonymity protection if seeking treatment resources for substance abuse or mental health issues ; ease (or difficulty) for medical leave for a mental health condition ; whether discussing physical or medical matters with employers have negative consequences. You will also find comments from survey participants.
To use this dataset effectively: - Clean the data by removing invalid responses/duplicates/missing values - you can do this with basic Pandas commands like .dropna() , .drop_duplicates(), .replace(). - Utilize descriptive statistics such as mean and median to draw general conclusions about patterns of responses - you can do this with Pandas tools such as .groupby() and .describe(). - Run various types analyses such as mean comparisons on different kinds of variables(age vs gender), correlations between different features etc using appropriate statistical methods - use commands like Statsmodels' OLS models (.smf) , calculate z-scores , run hypothesis tests etc depending on what analysis is needed. Make sure you are aware any underlying assumptions your analysis requires beforehand !
- Visualize your results with plotting libraries like Matplotlib/Seaborn to easily interpret these findings! Use boxplots/histograms/heatmaps where appropriate depending on your question !
- Using the results of this survey, you could develop targeted outreach campaigns directed at underrepresented groups that answer “No” to questions about their employers providing resources for mental health or discussing it as part of wellness programs.
- Analyzing the employee characteristics (e.g., age and gender) of those who reported negative consequences from discussing their mental health in the workplace could inform employer policies to support individuals with mental health conditions and reduce stigma and discrimination in the workplace.
- Correlating responses to questions about remote work, leave policies, and anonymity with whether or not individuals have sought treatment for a mental health condition may provide insight into which types of workplace resources are most beneficial for supporting employees dealing with these issues
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redi...