The USDA Long-Term Agroecosystem Research was established to develop national strategies for sustainable intensification of agricultural production. As part of the Agricultural Research Service, the LTAR Network incorporates numerous geographies consisting of experimental areas and locations where data are being gathered. Starting in early 2019, two working groups of the LTAR Network (Remote Sensing and GIS, and Data Management) set a major goal to jointly develop a geodatabase of LTAR Standard GIS Data Layers. The purpose of the geodatabase was to enhance the Network's ability to utilize coordinated, harmonized datasets and reduce redundancy and potential errors associated with multiple copies of similar datasets. Project organizers met at least twice with each of the 18 LTAR sites from September 2019 through December 2020, compiling and editing a set of detailed geospatial data layers comprising a geodatabase, describing essential data collection areas within the LTAR Network. The LTAR Standard GIS Data Layers geodatabase consists of geospatial data that represent locations and areas associated with the LTAR Network as of late 2020, including LTAR site locations, addresses, experimental plots, fields and watersheds, eddy flux towers, and phenocams. There are six data layers in the geodatabase available to the public. This geodatabase was created in 2019-2020 by the LTAR network as a national collaborative effort among working groups and LTAR sites. The creation of the geodatabase began with initial requests to LTAR site leads and data managers for geospatial data, followed by meetings with each LTAR site to review the initial draft. Edits were documented, and the final draft was again reviewed and certified by LTAR site leads or their delegates. Revisions to this geodatabase will occur biennially, with the next revision scheduled to be published in 2023. Resources in this dataset:Resource Title: LTAR Standard GIS Data Layers, 2020 version, File Geodatabase. File Name: LTAR_Standard_GIS_Layers_v2020.zipResource Description: This file geodatabase consists of authoritative GIS data layers of the Long-Term Agroecosystem Research Network. Data layers include: LTAR site locations, LTAR site points of contact and street addresses, LTAR experimental boundaries, LTAR site "legacy region" boundaries, LTAR eddy flux tower locations, and LTAR phenocam locations.Resource Software Recommended: ArcGIS,url: esri.com Resource Title: LTAR Standard GIS Data Layers, 2020 version, GeoJSON files. File Name: LTAR_Standard_GIS_Layers_v2020_GeoJSON_ADC.zipResource Description: The contents of the LTAR Standard GIS Data Layers includes geospatial data that represent locations and areas associated with the LTAR Network as of late 2020. This collection of geojson files includes spatial data describing LTAR site locations, addresses, experimental plots, fields and watersheds, eddy flux towers, and phenocams. There are six data layers in the geodatabase available to the public. This dataset was created in 2019-2020 by the LTAR network as a national collaborative effort among working groups and LTAR sites. Resource Software Recommended: QGIS,url: https://qgis.org/en/site/
The objectives for this effort are as follow:Produce 6 vetted standard GIS layers that represent the LTAR NetworkPublish these layers to AgCROS and make them authoritative layersProduce a DOI for this dataset after it has been published to Ag Data Commons (DOI: 10.15482/USDA.ADC/1521161)Publish a data paper describing these spatial datasetsThis web map will be used to inform on progress with these datasets and will be a reference for the final review process for the 6 layers. An exploratory dashboard has also been created to navigate the content of the 6 layers: https://usdaars.maps.arcgis.com/apps/dashboards/7c10436a571b4816a28867271f66ae09#mode=edit
The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Important Note: This item is in mature support as of September 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.
The USGS Protected Areas Database of the United States (PAD-US) is the official inventory of public parks and other protected open space. The spatial data in PAD-US represents public lands held in trust by thousands of national, state and regional/local governments, as well as non-profit conservation organizations.Manager Type provides a coarse level land manager description from the PAD-US "Agency Type" Domain, "Manager Type" Field (for example, Federal, State, Local Government, Private).PAD-US is published by the U.S. Geological Survey (USGS) Science Analytics and Synthesis (SAS), Gap Analysis Project (GAP). GAP produces data and tools that help meet critical national challenges such as biodiversity conservation, recreation, public health, climate change adaptation, and infrastructure investment. See the GAP webpage for more information about GAP and other GAP data including species and land cover.Dataset SummaryPhenomenon Mapped: This layer displays protected areas symbolized by manager type.Coordinate System: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, the Northern Mariana Islands and other Pacific Ocean IslandsVisible Scale: 1:1,000,000 and largerSource: U.S. Geological Survey (USGS) Science Analytics and Synthesis (SAS), Gap Analysis Project (GAP) PAD-US version 3.0Publication Date: July 2022Attributes included in this layer are: CategoryOwner TypeOwner NameLocal OwnerManager TypeManager NameLocal ManagerDesignation TypeLocal DesignationUnit NameLocal NameSourcePublic AccessGAP Status - Status 1, 2, 3 or 4GAP Status DescriptionInternational Union for Conservation of Nature (IUCN) Description - I: Strict Nature Reserve, II: National Park, III: Natural Monument or Feature, IV: Habitat/Species Management Area, V: Protected Landscape/Seascape, VI: Protected area with sustainable use of natural resources, Other conservation area, UnassignedDate of EstablishmentThe source data for this layer are available here. What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter for Gap Status Code = 3 to create a map of only the GAP Status 3 areas.Add labels and set their propertiesCustomize the pop-upArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Note that many features in the PAD-US database overlap. For example wilderness area designations overlap US Forest Service and other federal lands. Any analysis should take this into consideration. An imagery layer created from the same data set can be used for geoprocessing analysis with larger extents and eliminates some of the complications arising from overlapping polygons.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
WARNING: This is a pre-release dataset and its fields names and data structures are subject to change. It should be considered pre-release until the end of 2024. Expected changes:
Purpose
County and incorporated place (city) boundaries along with third party identifiers used to join in external data. Boundaries are from the authoritative source the California Department of Tax and Fee Administration (CDTFA), altered to show the counties as one polygon. This layer displays the city polygons on top of the County polygons so the area isn"t interrupted. The GEOID attribute information is added from the US Census. GEOID is based on merged State and County FIPS codes for the Counties. Abbreviations for Counties and Cities were added from Caltrans Division of Local Assistance (DLA) data. Place Type was populated with information extracted from the Census. Names and IDs from the US Board on Geographic Names (BGN), the authoritative source of place names as published in the Geographic Name Information System (GNIS), are attached as well. Finally, the coastline is used to separate coastal buffers from the land-based portions of jurisdictions. This feature layer is for public use.
Related Layers
This dataset is part of a grouping of many datasets:
Point of Contact
California Department of Technology, Office of Digital Services, odsdataservices@state.ca.gov
Field and Abbreviation Definitions
Accuracy
CDTFA"s source data notes the following about accuracy:
City boundary changes and county boundary line adjustments filed with the Board of Equalization per Government Code 54900. This GIS layer contains the boundaries of the unincorporated county and incorporated cities within the state of California. The initial dataset was created in March of 2015 and was based on the State Board of Equalization tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax rates. The boundaries are continuously being revised to align with aerial imagery when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions for the purpose of determining sales and use tax rates and should not be used to determine precise city or county boundary line locations. COUNTY = county name; CITY = city name or unincorporated
Water bodies are a key element in the landscape. This layer provides a global map of large water bodies for use inlandscape-scale analysis. Dataset SummaryThis layer provides access to a 250m cell-sized raster of surface water created by extracting pixels coded as water in the Global Lithological Map and the Global Landcover Map. The layer was created by Esri in 2014. Analysis: Restricted single source analysis. Maximum size of analysis is 16,000 x 16,000 pixels. What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. Restricted single source analysis means this layer has size constraints for analysis and it is not recommended for use with other layers in multisource analysis.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometerson a side or an area approximately the size of Europe.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many otherbeautiful and authoritative maps on hundreds of topics. Geonetis a good resource for learning more aboutlandscape layers and the Living Atlas of the World. To get started see theLiving Atlas Discussion Group. TheEsri Insider Blogprovides an introduction to the Ecophysiographic Mapping project.
This web map created by the Colorado Governor's Office of Information Technology GIS team, serves as a basemap specific to the state of Colorado. The basemap includes general layers such as counties, municipalities, roads, waterbodies, state parks, national forests, national wilderness areas, and trails.Layers:Layer descriptions and sources can be found below. Layers have been modified to only represent features within Colorado and are not up to date. Layers last updated February 23, 2023. Colorado State Extent: Description: “This layer provides generalized boundaries for the 50 States and the District of Columbia.” Notes: This layer was filtered to only include the State of ColoradoSource: Esri Living Atlas USA States Generalized Boundaries Feature LayerState Wildlife Areas:Description: “This data was created by the CPW GIS Unit. Property boundaries are created by dissolving CDOWParcels by the property name, and property type and appending State Park boundaries designated as having public access. All parcel data correspond to legal transactions made by the CPW Real Estate Unit. The boundaries of the CDOW Parcels were digitized using metes and bounds, BLM's GCDB dataset, the PLSS dataset (where the GCDB dataset was unavailable) and using existing digital data on the boundaries.” Notes: The state wildlife areas layer in this basemap is filtered from the CPW Managed Properties (public access only) layer from this feature layer hosted in ArcGIS Online Source: Colorado Parks and Wildlife CPW Admin Data Feature LayerMunicipal Boundaries:Description: "Boundaries data from the State Demography Office of Colorado Municipalities provided by the Department of Local Affairs (DOLA)"Source: Colorado Information Marketplace Municipal Boundaries in ColoradoCounties:Description: “This layer presents the USA 2020 Census County (or County Equivalent) boundaries of the United States in the 50 states and the District of Columbia. It is updated annually as County (or County Equivalent) boundaries change. The geography is sources from US Census Bureau 2020 TIGER FGDB (National Sub-State) and edited using TIGER Hydrology to add a detailed coastline for cartographic purposes. Geography last updated May 2022.” Notes: This layer was filtered to only include counties in the State of ColoradoSource: Esri USA Census Counties Feature LayerInterstates:Description: Authoritative data from the Colorado Department of Transportation representing Highways Notes: Interstates are filtered by route sign from this CDOT Highways layer Source: Colorado Department of Transportation Highways REST EndpointU.S. Highways:Description: Authoritative data from the Colorado Department of Transportation representing Highways Notes: U.S. Highways are filtered by route sign from this CDOT Highways layer Source: Colorado Department of Transportation Highways REST EndpointState Highways:Description: Authoritative data from the Colorado Department of Transportation representing Highways Notes: State Highways are filtered by route sign from this CDOT Highways layer Source: Colorado Department of Transportation Highways REST EndpointMajor Roads:Description: Authoritative data from the Colorado Department of Transportation representing major roads Source: Colorado Department of Transportation Major Roads REST EndpointLocal Roads:Description: Authoritative data from the Colorado Department of Transportation representing local roads Source: Colorado Department of Transportation Local Roads REST EndpointRail Lines:Description: Authoritative data from the Colorado Department of Transportation representing rail lines Source: Colorado Department of Transportation Rail Lines REST EndpointCOTREX Trails:Description: “The Colorado Trail System, now titled the Colorado Trail Explorer (COTREX), endeavors to map every trail in the state of Colorado. Currently their are nearly 40,000 miles of trails mapped. Trails come from a variety of sources (USFS, BLM, local parks & recreation departments, local governments). Responsibility for accuracy of the data rests with the source.These data were last updated on 2/5/2019” Source: Colorado Parks and Wildlife CPW Admin Data Feature LayerNHD Waterbodies:Description: “The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.”Notes: This layer was filtered to only include waterbodies in the State of ColoradoSource: National Hydrography Dataset Plus Version 2.1 Feature LayerNHD Flowlines:Description: “The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.”Notes: This layer was filtered to only include flowline features in the State of ColoradoSource: National Hydrography Dataset Plus Version 2.1 Feature LayerState Parks:Description: “This data was created by the CPW GIS Unit. Property boundaries are created by dissolving CDOWParcels by the property name, and property type and appending State Park boundaries designated as having public access. All parcel data correspond to legal transactions made by the CPW Real Estate Unit. The boundaries of the CDOW Parcels were digitized using metes and bounds, BLM's GCDB dataset, the PLSS dataset (where the GCDB dataset was unavailable) and using existing digital data on the boundaries.” Notes: The state parks layer in this basemap is filtered from the CPW Managed Properties (public access only) layer from this feature layer Source: Colorado Parks and Wildlife CPW Admin Data Feature LayerDenver Parks:Description: "This dataset should be used as a reference to locate parks, golf courses, and recreation centers managed by the Department of Parks and Recreation in the City and County of Denver. Data is based on parcel ownership and does not include other areas maintained by the department such as medians and parkways. The data should be used for planning and design purposes and cartographic purposes only."Source: City and County of Denver Parks REST EndpointNational Wilderness Areas:Description: “A parcel of Forest Service land congressionally designated as wilderness such as National Wilderness Area.”Notes: This layer was filtered to only include National Wilderness Areas in the State of ColoradoSource: United States Department of Agriculture National Wilderness Areas REST EndpointNational Forests: Description: “A depiction of the boundaries encompassing the National Forest System (NFS) lands within the original proclaimed National Forests, along with subsequent Executive Orders, Proclamations, Public Laws, Public Land Orders, Secretary of Agriculture Orders, and Secretary of Interior Orders creating modifications thereto, along with lands added to the NFS which have taken on the status of 'reserved from the public domain' under the General Exchange Act. The following area types are included: National Forest, Experimental Area, Experimental Forest, Experimental Range, Land Utilization Project, National Grassland, Purchase Unit, and Special Management Area.”Notes: This layer was filtered to only include National Forests in the State of ColoradoSource: United States Department of Agriculture Original Proclaimed National Forests REST Endpoint
WARNING: This is a pre-release dataset and its fields names and data structures are subject to change. It should be considered pre-release until the end of 2024. Expected changes:
Purpose
County and incorporated place (city) boundaries along with third party identifiers used to join in external data. Boundaries are from the authoritative source the California Department of Tax and Fee Administration (CDTFA), altered to show the counties as one polygon. This layer displays the city polygons on top of the County polygons so the area isn"t interrupted. The GEOID attribute information is added from the US Census. GEOID is based on merged State and County FIPS codes for the Counties. Abbreviations for Counties and Cities were added from Caltrans Division of Local Assistance (DLA) data. Place Type was populated with information extracted from the Census. Names and IDs from the US Board on Geographic Names (BGN), the authoritative source of place names as published in the Geographic Name Information System (GNIS), are attached as well. Finally, coastal buffers are removed, leaving the land-based portions of jurisdictions. This feature layer is for public use.
Related Layers
This dataset is part of a grouping of many datasets:
Point of Contact
California Department of Technology, Office of Digital Services, odsdataservices@state.ca.gov
Field and Abbreviation Definitions
Accuracy
CDTFA"s source data notes the following about accuracy:
City boundary changes and county boundary line adjustments filed with the Board of Equalization per Government Code 54900. This GIS layer contains the boundaries of the unincorporated county and incorporated cities within the state of California. The initial dataset was created in March of 2015 and was based on the State Board of Equalization tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax rates. The boundaries are continuously being revised to align with aerial imagery when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions for the purpose of determining sales and use tax rates and should not be used to determine precise city or county boundary line locations. COUNTY = county name; CITY = city name or unincorporated territory; COPRI =
The roads layer is a linear centerline representation of all routes within the State of Alaska in a linear referencing format. They’re a foundational layer in the GIS database from which other events are layered on top of. The layer does not assign ownership but is meant to represent all public roads within the state. The roads are reviewed once every 5 years except for known changes such as re-alignments. Those changes are updated immediately in the GIS database once the road change become open to the general public. In the building of the roads layer there are some roads that got added that are not publicly accessible or not actually considered roads drivable by a standard car. To determine which roads are open to the general public, please refer to event layer called Facility Type. Authoritative roads from Alaska Department of Transportation & Public Facilities.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Resource Description: This file geodatabase consists of authoritative GIS data layers of the Long-Term Agroecosystem Research Network. Data layers include: LTAR site locations, LTAR site points of contact and street addresses, LTAR experimental boundaries, LTAR site "legacy region" boundaries, LTAR eddy flux tower locations, and LTAR phenocam locations.Resource Software Recommended: ArcGIS,url: esri.com Resource Title: LTAR Standard GIS Data Layers, 2020 version, GeoJSON files. File Name: LTAR_Standard_GIS_Layers_v2020_GeoJSON_ADC.zipResource Description: The contents of the LTAR Standard GIS Data Layers includes geospatial data that represent locations and areas associated with the LTAR Network as of late 2020. This collection of geojson files includes spatial data describing LTAR site locations, addresses, experimental plots, fields and watersheds, eddy flux towers, and phenocams. There are six data layers in the geodatabase available to the public. This dataset was created in 2019-2020 by the LTAR network as a national collaborative effort among working groups and LTAR sites.
The arrangement of water in the landscape affects the distribution of many species including the distribution of humans. This layer provides a landscape-scale estimate of the distance from large water bodies. This layer provides access to a 250m cell-sized raster of distance to surface water. To facilitate mapping, the values are in units of pixels. To convert this value to meters multiply by 250. The layer was created by extracting surface water values from the World Lithology and World Land Cover layers to produce a surface water layer. The distance from water was calculated using the ArcGIS Euclidian Distance Tool. The layer was created by Esri in 2014. Dataset SummaryAnalysis: Restricted single source analysis. Maximum size of analysis is 16,000 x 16,000 pixels. What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. Restricted single source analysis means this layer has size constraints for analysis and it is not recommended for use with other layers in multisource analysis. This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks. The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics. Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group. The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
The tree canopy layer displays the proportion of the land surface covered by trees for the years 2011 to 2021 from the National Land Cover Database. Source: https://www.mrlc.govPhenomenon Mapped: Proportion of the landscape covered by trees.Time Extent: 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021Units: Percent (of each pixel that is covered by tree canopy)Cell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate Systems: North America Albers Equal Area ConicMosaic Projection: WGS 1984 Web Mercator Auxiliary SphereExtent: CONUS, Southeastern Alaska, Hawaii, Puerto Rico and the US Virgin IslandsSource: Multi-Resolution Land Characteristics ConsortiumPublication Date: April 1, 2023ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/Time SeriesBy default, this layer will appear in your client with a time slider which allows you to play the series as an animation. The animation will advance year by year changing appearance every year in the lower 48 states from 2011 to 2021. (In Alaska, Hawaii, Puerto Rico and the US Virgin Islands, the animation will only show a change between 2011 and 2016.) To select just one year in the series, first turn the time series off on the time slider, then create a definition query on the layer which selects only the desired year.Alaska, Hawaii, Puerto Rico, and the US Virgin IslandsAt this time Alaska, Hawaii, Puerto Rico, and the US Virgin Islands do not have tree canopy cover for every year in the series like MRLC produced for the Lower 48 states. Furthermore, only a portion of coastal Southeastern Alaska from Kodiak to the Panhandle is available, but not the entire state. Alaska, Hawaii, Puerto Rico, and the US Virgin Islands have data in the series only from 2011 and 2016. Dataset SummaryThe National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service.What can you do with this layer?This layer can be used to create maps and to visualize the underlying data. This layer can be used as an analytic input in ArcGIS Desktop.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
The Calls for Service dataset includes police service requests for which patrol officers, traffic officers, bike officers and, on occasion, detectives will be dispatched to public safety response. It also includes self-initiated calls for service where an officer witnesses a violation or suspicious activity for which they would respond. This item represents a consolidated item of all records.Why the Datasets are Organized into Separate Layers In January of 2022, the Tempe Police Department completed a major transition in how crimes data is reported, moving from the FBI Uniform Crime Report program to the enhanced National-Incident Based Reporting System, or NIBRS. NIBRS is now the required reporting method for the FBI. The Uniform Crime Report (UCR) Program's traditional Summary Reporting System (SRS) was limited in comparison to NIBRS, which offers more detailed data collection that provides a deeper understanding of crime and its circumstances. NIBRS captures a wider range of details on crime incidents and can reflect separate offenses occurring during the same event, including information on victims, known offenders, relationships between victims and offenders, arrestees, and property involved in the crimes. With greater specificity in reporting offenses, NIBRS provides for more accurate and detailed crime-related information, and helps give context to specific crime issues while affording greater analytic capability of crime. Below is the link to Tempe-specific NIBRS reports. Use the drop-down filters to select Tempe PD, the year, and the type of report. Because of these differences, trends and numbers between the two systems should not be directly compared. That’s why we treat 2022 and later (NIBRS) separately from 2021 and earlier (UCR). To make the older data easier to browse, we grouped the data from 2021 and earlier into year ranges instead of showing it all at once. This helps with performance and loading speed due to the large count of records. Additional InformationContact Email: PD_DataRequest@tempe.govContact Phone: N/ALink: N/AData Source: Versaterm Informix RMSData Source Type: Informix and/or SQL ServerPreparation Method: Automated processPublish Frequency: DailyPublish Method: AutomaticData Dictionary
Soil is the foundation of life on earth. More living things by weight live in the soil than upon it. It determines what crops we can grow, what structures we can build, what forests can take root.This layer contains the physical soil variable percent clay (clay).Within the subset of soil that is smaller than 2mm in size, also known as the fine earth portion, clay is defined as particles that are smaller than 0.002mm, making them only visible in an electron microscope. Clay soils contain low amounts of air, and water drains through them very slowly.This layer is a general, medium scale global predictive soil layer suitable for global mapping and decision support. In many places samples of soils do not exist so this map represents a prediction of what is most likely in that location. The predictions are made in six depth ranges by soilgrids.org, funded by ISRIC based in Wageningen, Netherlands.Each 250m pixel contains a value predicted for that area by soilgrids.org from best available data worldwide. Data for percent clay are provided at six depth ranges from the surface to 2 meters below the surface. Each variable and depth range may be accessed in the layer's multidimensional properties.Dataset SummaryPhenomenon Mapped: Proportion of clay particles (< 0.002 mm) in the fine earth fraction in g/100g (%)Cell Size: 250 metersPixel Type: 32 bit float, converted from online data that is 16 Bit Unsigned IntegerCoordinate System: Web Mercator Auxiliary Sphere, projected via nearest neighbor from goode's homolosine land (250m)Extent: World land area except AntarcticaVisible Scale: All scales are visibleNumber of Columns and Rows: 160300, 100498Source: Soilgrids.orgPublication Date: May 2020Data from the soilgrids.org mean predictions for clay were used to create this layer. You may access the percent clay in one of six depth ranges. To select one choose the depth variable in the multidimensional selector in your map client.Mean depth (cm)Actual depth range of data-2.50-5cm depth range-105-15cm depth range-22.515-30cm depth range-4530-60cm depth range-8060-100cm depth range-150100-200cm depth rangeWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map: In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "world soils soilgrids" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "world soils soilgrids" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.More information about soilgrids layersAnswers to many questions may be found at soilgrids.org (ISRIC) frequently asked questions (faq) page about the data.To make this layer, Esri reprojected the expected value of ISRIC soil grids from soilgrids' source projection (goode's land WKID 54052) to web mercator projection, nearest neighbor, to facilitate online mapping. The resolution in web mercator projection is the same as the original projection, 250m. But keep in mind that the original dataset has been reprojected to make this web mercator version.This multidimensional soil collection serves the mean or expected value for each soil variable as calculated by soilgrids.org. For all other distributions of the soil variable, be sure to download the data directly from soilgrids.org. The data are available in VRT format and may be converted to other image formats within ArcGIS Pro.Accessing this layer's companion uncertainty layerBecause data quality varies worldwide, the uncertainty of the predicted value varies worldwide. A companion uncertainty layer exists for this layer which you can use to qualify the values you see in this map for analysis. Choose a variable and depth in the multidimensional settings of your map client to access the companion uncertainty layer.
The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
This feature service is derived from the Esri "United States Zip Code Boundaries" layer, queried to only CA data.For the original data see: https://esri.maps.arcgis.com/home/item.html?id=5f31109b46d541da86119bd4cf213848Published by the California Department of Technology Geographic Information Services Team.The GIS Team can be reached at ODSdataservices@state.ca.gov.U.S. ZIP Code Boundaries represents five-digit ZIP Code areas used by the U.S. Postal Service to deliver mail more effectively. The first digit of a five-digit ZIP Code divides the United States into 10 large groups of states (or equivalent areas) numbered from 0 in the Northeast to 9 in the far West. Within these areas, each state is divided into an average of 10 smaller geographical areas, identified by the second and third digits. These digits, in conjunction with the first digit, represent a Sectional Center Facility (SCF) or a mail processing facility area. The fourth and fifth digits identify a post office, station, branch or local delivery area.As of the time this layer was published, in January 2025, Esri's boundaries are sourced from TomTom (June 2024) and the 2023 population estimates are from Esri Demographics. Esri updates its layer annually and those changes will immediately be reflected in this layer. Note that, because this layer passes through Esri's data, if you want to know the true date of the underlying data, click through to Esri's original source data and look at their metadata for more information on updates.Cautions about using Zip Code boundary dataZip code boundaries have three characteristics you should be aware of before using them:Zip code boundaries change, in ways small and large - these are not a stable analysis unit. Data you received keyed to zip codes may have used an earlier and very different boundary for your zip codes of interest.Historically, the United States Postal Service has not published zip code boundaries, and instead, boundary datasets are compiled by third party vendors from address data. That means that the boundary data are not authoritative, and any data you have keyed to zip codes may use a different, vendor-specific method for generating boundaries from the data here.Zip codes are designed to optimize mail delivery, not social, environmental, or demographic characteristics. Analysis using zip codes is subject to create issues with the Modifiable Areal Unit Problem that will bias any results because your units of analysis aren't designed for the data being studied.As of early 2025, USPS appears to be in the process of releasing boundaries, which will at least provide an authoritative source, but because of the other factors above, we do not recommend these boundaries for many use cases. If you are using these for anything other than mailing purposes, we recommend reconsideration. We provide the boundaries as a convenience, knowing people are looking for them, in order to ensure that up-to-date boundaries are available.
The Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) dataset provides a 7.5 arcsecond (approximately 250 meter resolution) digital elevation model with world-wide coverage at a resolution suitable for regional to continental scale analyses. Dataset SummaryThis layer provides access to a 250m cell-sized raster created from the Global Multi-resolution Terrain Elevation Data 2010 7.5 arcsecond mean elevation product. The dataset represents a compilation and synthesis of 11 different existing raster data sources. The data were published in 2011 by the USGS and the National Geospatial-Intelligence Agency.The dataset is documented in the publication: Danielson and Gesch. 2011. Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). U.S. Geological Survey Open-File Report 2011–1073, 26 p.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. The source data for this layer are available here.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains the common names of the national forests and grasslands and their respective FS WWW URL information that is used for both display of the national forest and national grassland boundaries on any map product and for dynamic interactivity of the map. This dataset exhibits the following characteristics: 1. Granularity of the polygon features - The spatial extent of the national forests and the grasslands match the way the agency would like to communicate with the public. 2. Preferred /Common Name of the National Forest Units - The common names of the national forest and grassland match the preferred name column that is present in the common names decision table maintained by the FS Office of Communication. 3. Hyperlinks to FS WWW Home page - This column contains the national forest and their respective FS WWW URL information. This URL could be used on any interactive map applications to link users directly to a forest's home page. Data Source - This dataset is derived from the following FS ALP (Automated Lands Program) Land Status Records System authoritative data sources: 1. Administrative Forest Boundaries 2. Proclaimed Forest Boundaries 3. Ranger District Boundaries 4. National Grassland Areas. The common names decision table maintained by the FS Office of Communication contains the common name and its respective Land Status Records System authoritative data source to be used for building the spatial polygon. The spatial polygons for every feature in this dataset comes from one or more authoritative data sources listed above. The process to create the common names dataset is reusing the already existing ALP names from the data sources listed above.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService OGC WMS CSV Shapefile GeoJSON KML https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_ForestCommonNames_01/MapServer/1 http://data.fs.usda.gov/geodata/edw/datasets.php For complete information, please visit https://data.gov.
Interagency Wildland Fire Perimeter History (IFPH) Overview This national fire history perimeter data layer of conglomerated agency perimeters was developed in support of the WFDSS application and wildfire decision support. The layer encompasses the fire perimeter datasets of the USDA Forest Service, US Department of Interior Bureau of Land Management, Bureau of Indian Affairs, Fish and Wildlife Service, and National Park Service, the Alaska Interagency Fire Center, CalFire, and WFIGS History. Perimeters are included thru the 2024 fire season. Requirements for fire perimeter inclusion, such as minimum acreage requirements, are set by the contributing agencies. WFIGS, NPS and CALFIRE data now include Prescribed Burns. Data InputSeveral data sources were used in the development of this layer, links are provided where possible below. In addition, many agencies are now using WFIGS as their authoritative source, beginning in mid-2020.Alaska fire history (WFIGS pull for updates began 2022)USDA FS Regional Fire History Data (WFIGS pull for updates began 2024)BLM Fire Planning and Fuels (WFIGS pull for updates began 2020)National Park Service - Includes Prescribed Burns (WFIGS pull for updates began 2020)Fish and Wildlife Service (WFIGS pull for updates began 2024)Bureau of Indian Affairs (Incomplete, 2017-2018 from BIA, WFIGS pull for updates began 2020)CalFire FRAS - Includes Prescribed Burns (CALFIRE only source, non-fed fires)WFIGS - updates included since mid-2020, unless otherwise noted Data LimitationsFire perimeter data are often collected at the local level, and fire management agencies have differing guidelines for submitting fire perimeter data. Often data are collected by agencies only once annually. If you do not see your fire perimeters in this layer, they were not present in the sources used to create the layer at the time the data were submitted. A companion service for perimeters entered into the WFDSS application is also available, if a perimeter is found in the WFDSS service that is missing in this Agency Authoritative service or a perimeter is missing in both services, please contact the appropriate agency Fire GIS Contact listed in the table below.Attributes This dataset implements the NWCG Wildland Fire Perimeters (polygon) data standard.https://www.nwcg.gov/sites/default/files/stds/WildlandFirePerimeters_definition.pdfIRWINID - Primary key for linking to the IRWIN Incident dataset. The origin of this GUID is the wildland fire locations point data layer maintained by IrWIN. (This unique identifier may NOT replace the GeometryID core attribute) FORID - Unique identifier assigned to each incident record in the Fire Occurence Data Records system. (This unique identifier may NOT replace the GeometryID core attribute) INCIDENT - The name assigned to an incident; assigned by responsible land management unit. (IRWIN required). Officially recorded name. FIRE_YEAR (Alias) - Calendar year in which the fire started. Example: 2013. Value is of type integer (FIRE_YEAR_INT). AGENCY - Agency assigned for this fire - should be based on jurisdiction at origin. SOURCE - System/agency source of record from which the perimeter came. DATE_CUR - The last edit, update, or other valid date of this GIS Record. Example: mm/dd/yyyy. MAP_METHOD - Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality.GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; Digitized-Topo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; Other GIS_ACRES - GIS calculated acres within the fire perimeter. Not adjusted for unburned areas within the fire perimeter. Total should include 1 decimal place. (ArcGIS: Precision=10; Scale=1). Example: 23.9 UNQE_FIRE_ - Unique fire identifier is the Year-Unit Identifier-Local Incident Identifier (yyyy-SSXXX-xxxxxx). SS = State Code or International Code, XXX or XXXX = A code assigned to an organizational unit, xxxxx = Alphanumeric with hyphens or periods. The unit identifier portion corresponds to the POINT OF ORIGIN RESPONSIBLE AGENCY UNIT IDENTIFIER (POOResonsibleUnit) from the responsible unit’s corresponding fire report. Example: 2013-CORMP-000001 LOCAL_NUM - Local incident identifier (dispatch number). A number or code that uniquely identifies an incident for a particular local fire management organization within a particular calendar year. Field is string to allow for leading zeros when the local incident identifier is less than 6 characters. (IRWIN required). Example: 123456. UNIT_ID - NWCG Unit Identifier of landowner/jurisdictional agency unit at the point of origin of a fire. (NFIRS ID should be used only when no NWCG Unit Identifier exists). Example: CORMP COMMENTS - Additional information describing the feature. Free Text.FEATURE_CA - Type of wildland fire polygon: Wildfire (represents final fire perimeter or last daily fire perimeter available) or Prescribed Fire or Unknown GEO_ID - Primary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature. Globally Unique Identifier (GUID). Cross-Walk from sources (GeoID) and other processing notesAK: GEOID = OBJECT ID of provided file geodatabase (4,781 Records thru 2021), other federal sources for AK data removed. No RX data included.CA: GEOID = OBJECT ID of downloaded file geodatabase (8,480 Records, federal fires removed, includes RX. Significant cleanup occurred between 2023 and 2024 data pulls resulting in fewer perimeters).FWS: GEOID = OBJECTID of service download combined history 2005-2021 (2,959 Records), includes RX.BIA: GEOID = "FireID" 2017/2018 data (382 records). No RX data included.NPS: GEOID = EVENT ID 15,237 records, includes RX. In 2024/2023 dataset was reduced by combining singlepart to multpart based on valid Irwin, FORID or Unique Fire IDs. RX data included.BLM: GEOID = GUID from BLM FPER (23,730 features). No RX data included.USFS: GEOID=GLOBALID from EDW records (48,569 features), includes RXWFIGS: GEOID=polySourceGlobalID (9724 records added or replaced agency record since mid-2020)Attempts to repair Unique Fire ID not made. Attempts to repair dates not made. Verified all IrWIN IDs and FODRIDs present via joins and cross checks to the respective dataset. Stripped leading and trailing spaces, fixed empty values to
Aquifers are underground layers of gravel, sand, or permeable rock that contain ground water. This water can be extracted using a well and provides an important source of water in many regions of the world.This layer, produced as part of the Ground Water Atlas of the United States, provides access to the areal extent of the principal aquifers of the United States. In areas where multiple aquifers exist at different depths below the surface only the shallowest aquifer is included.This layer does not display all areas where ground water exists. The U.S. Geologic Survey (USGS) mapped these aquifers by interpreting surface features and aquifers may extend beyond these features. Ground water areas along watercourses and ground water in unconsolidated glacial sand and gravel deposits are not included in this layer. Data on these areas are provided in the layer Aquifers of Alluvial and Glacial Origin from the USGS.Dataset SummaryPhenomenon Mapped: Aquifers of the United StatesCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United States, Hawaii, Puerto Rico, and the U.S. Virgin IslandsVisible Scale: All ScalesSource: Groundwater Atlas of the United StatesPublication Date: October 1, 2003Please note: "This dataset, published in 2003, contains the shallowest principal aquifers of the conterminous United States, Hawaii, Puerto Rico, and the U.S. Virgin Islands, portrayed as polygons. The map layer was developed as part of the effort to produce the maps published at 1:2,500,000 in the printed series Ground Water Atlas of the United States. The published maps contain base and cultural features not included in these data. Please note that the maps do not show the entire extent of an aquifer, only its subcrop or outcrop area. Refer to the metadata for a complete description of the files and how they were generated." (Source USGS)What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.
The USDA Long-Term Agroecosystem Research was established to develop national strategies for sustainable intensification of agricultural production. As part of the Agricultural Research Service, the LTAR Network incorporates numerous geographies consisting of experimental areas and locations where data are being gathered. Starting in early 2019, two working groups of the LTAR Network (Remote Sensing and GIS, and Data Management) set a major goal to jointly develop a geodatabase of LTAR Standard GIS Data Layers. The purpose of the geodatabase was to enhance the Network's ability to utilize coordinated, harmonized datasets and reduce redundancy and potential errors associated with multiple copies of similar datasets. Project organizers met at least twice with each of the 18 LTAR sites from September 2019 through December 2020, compiling and editing a set of detailed geospatial data layers comprising a geodatabase, describing essential data collection areas within the LTAR Network. The LTAR Standard GIS Data Layers geodatabase consists of geospatial data that represent locations and areas associated with the LTAR Network as of late 2020, including LTAR site locations, addresses, experimental plots, fields and watersheds, eddy flux towers, and phenocams. There are six data layers in the geodatabase available to the public. This geodatabase was created in 2019-2020 by the LTAR network as a national collaborative effort among working groups and LTAR sites. The creation of the geodatabase began with initial requests to LTAR site leads and data managers for geospatial data, followed by meetings with each LTAR site to review the initial draft. Edits were documented, and the final draft was again reviewed and certified by LTAR site leads or their delegates. Revisions to this geodatabase will occur biennially, with the next revision scheduled to be published in 2023. Resources in this dataset:Resource Title: LTAR Standard GIS Data Layers, 2020 version, File Geodatabase. File Name: LTAR_Standard_GIS_Layers_v2020.zipResource Description: This file geodatabase consists of authoritative GIS data layers of the Long-Term Agroecosystem Research Network. Data layers include: LTAR site locations, LTAR site points of contact and street addresses, LTAR experimental boundaries, LTAR site "legacy region" boundaries, LTAR eddy flux tower locations, and LTAR phenocam locations.Resource Software Recommended: ArcGIS,url: esri.com Resource Title: LTAR Standard GIS Data Layers, 2020 version, GeoJSON files. File Name: LTAR_Standard_GIS_Layers_v2020_GeoJSON_ADC.zipResource Description: The contents of the LTAR Standard GIS Data Layers includes geospatial data that represent locations and areas associated with the LTAR Network as of late 2020. This collection of geojson files includes spatial data describing LTAR site locations, addresses, experimental plots, fields and watersheds, eddy flux towers, and phenocams. There are six data layers in the geodatabase available to the public. This dataset was created in 2019-2020 by the LTAR network as a national collaborative effort among working groups and LTAR sites. Resource Software Recommended: QGIS,url: https://qgis.org/en/site/