This layer presents detectable thermal activity from VIIRS satellites for the last 7 days. VIIRS Thermal Hotspots and Fire Activity is a product of NASA’s Land, Atmosphere Near real-time Capability for EOS (LANCE) Earth Observation Data, part of NASA's Earth Science Data.Consumption Best Practices: As a service that is subject to Viral loads (very high usage), avoid adding Filters that use a Date/Time type field. These queries are not cacheable and WILL be subject to Rate Limiting by ArcGIS Online. To accommodate filtering events by Date/Time, we encourage using the included "Age" fields that maintain the number of Days or Hours since a record was created or last modified compared to the last service update. These queries fully support the ability to cache a response, allowing common query results to be supplied to many users without adding load on the service.When ingesting this service in your applications, avoid using POST requests, these requests are not cacheable and will also be subject to Rate Limiting measures.Source: NASA LANCE - VNP14IMG_NRT active fire detection - WorldScale/Resolution: 375-meterUpdate Frequency: Hourly using the aggregated live feed methodologyArea Covered: WorldWhat can I do with this layer?This layer represents the most frequently updated and most detailed global remotely sensed wildfire information. Detection attributes include time, location, and intensity. It can be used to track the location of fires from the recent past, a few hours up to seven days behind real time. This layer also shows the location of wildfire over the past 7 days as a time-enabled service so that the progress of fires over that timeframe can be reproduced as an animation.The VIIRS thermal activity layer can be used to visualize and assess wildfires worldwide. However, it should be noted that this dataset contains many “false positives” (e.g., oil/natural gas wells or volcanoes) since the satellite will detect any large thermal signal.Fire points in this service are generally available within 3 1/4 hours after detection by a VIIRS device. LANCE estimates availability at around 3 hours after detection, and esri livefeeds updates this feature layer every 15 minutes from LANCE.Even though these data display as point features, each point in fact represents a pixel that is >= 375 m high and wide. A point feature means somewhere in this pixel at least one "hot" spot was detected which may be a fire.VIIRS is a scanning radiometer device aboard the Suomi NPP and NOAA-20 satellites that collects imagery and radiometric measurements of the land, atmosphere, cryosphere, and oceans in several visible and infrared bands. The VIIRS Thermal Hotspots and Fire Activity layer is a livefeed from a subset of the overall VIIRS imagery, in particular from NASA's VNP14IMG_NRT active fire detection product. The downloads are automatically downloaded from LANCE, NASA's near real time data and imagery site, every 15 minutes.The 375-m data complements the 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) Thermal Hotspots and Fire Activity layer; they both show good agreement in hotspot detection but the improved spatial resolution of the 375 m data provides a greater response over fires of relatively small areas and provides improved mapping of large fire perimeters.Attribute informationLatitude and Longitude: The center point location of the 375 m (approximately) pixel flagged as containing one or more fires/hotspots.Satellite: Whether the detection was picked up by the Suomi NPP satellite (N) or NOAA-20 satellite (1). For best results, use the virtual field WhichSatellite, redefined by an arcade expression, that gives the complete satellite name.Confidence: The detection confidence is a quality flag of the individual hotspot/active fire pixel. This value is based on a collection of intermediate algorithm quantities used in the detection process. It is intended to help users gauge the quality of individual hotspot/fire pixels. Confidence values are set to low, nominal and high. Low confidence daytime fire pixels are typically associated with areas of sun glint and lower relative temperature anomaly (<15K) in the mid-infrared channel I4. Nominal confidence pixels are those free of potential sun glint contamination during the day and marked by strong (>15K) temperature anomaly in either day or nighttime data. High confidence fire pixels are associated with day or nighttime saturated pixels.Please note: Low confidence nighttime pixels occur only over the geographic area extending from 11 deg E to 110 deg W and 7 deg N to 55 deg S. This area describes the region of influence of the South Atlantic Magnetic Anomaly which can cause spurious brightness temperatures in the mid-infrared channel I4 leading to potential false positive alarms. These have been removed from the NRT data distributed by FIRMS.FRP: Fire Radiative Power. Depicts the pixel-integrated fire radiative power in MW (MegaWatts). FRP provides information on the measured radiant heat output of detected fires. The amount of radiant heat energy liberated per unit time (the Fire Radiative Power) is thought to be related to the rate at which fuel is being consumed (Wooster et. al. (2005)).DayNight: D = Daytime fire, N = Nighttime fireHours Old: Derived field that provides age of record in hours between Acquisition date/time and latest update date/time. 0 = less than 1 hour ago, 1 = less than 2 hours ago, 2 = less than 3 hours ago, and so on.Additional information can be found on the NASA FIRMS site FAQ.Note about near real time data:Near real time data is not checked thoroughly before it's posted on LANCE or downloaded and posted to the Living Atlas. NASA's goal is to get vital fire information to its customers within three hours of observation time. However, the data is screened by a confidence algorithm which seeks to help users gauge the quality of individual hotspot/fire points. Low confidence daytime fire pixels are typically associated with areas of sun glint and lower relative temperature anomaly (<15K) in the mid-infrared channel I4. Medium confidence pixels are those free of potential sun glint contamination during the day and marked by strong (>15K) temperature anomaly in either day or nighttime data. High confidence fire pixels are associated with day or nighttime saturated pixels.RevisionsSeptember 15, 2022: Updated to include 'Hours_Old' field. Time series has been disabled by default, but still available.July 5, 2022: Terms of Use updated to Esri Master License Agreement, no longer stating that a subscription is required!This layer is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!
This layer presents detectable thermal activity from MODIS satellites for the last 7 days. MODIS Global Fires is a product of NASA’s Earth Observing System Data and Information System (EOSDIS), part of NASA's Earth Science Data. EOSDIS integrates remote sensing and GIS technologies to deliver global MODIS hotspot/fire locations to natural resource managers and other stakeholders around the World.Consumption Best Practices: As a service that is subject to Viral loads (very high usage), avoid adding Filters that use a Date/Time type field. These queries are not cacheable and WILL be subject to Rate Limiting by ArcGIS Online. To accommodate filtering events by Date/Time, we encourage using the included "Age" fields that maintain the number of Days or Hours since a record was created or last modified compared to the last service update. These queries fully support the ability to cache a response, allowing common query results to be supplied to many users without adding load on the service.When ingesting this service in your applications, avoid using POST requests, these requests are not cacheable and will also be subject to Rate Limiting measures.Source: NASA FIRMS - Active Fire Data - for WorldScale/Resolution: 1kmUpdate Frequency: 1/2 Hour (every 30 minutes) using the Aggregated Live Feed MethodologyArea Covered: WorldWhat can I do with this layer?The MODIS thermal activity layer can be used to visualize and assess wildfires worldwide. However, it should be noted that this dataset contains many “false positives” (e.g., oil/natural gas wells or volcanoes) since the satellite will detect any large thermal signal.Additional InformationMODIS stands for MODerate resolution Imaging Spectroradiometer. The MODIS instrument is on board NASA’s Earth Observing System (EOS) Terra (EOS AM) and Aqua (EOS PM) satellites. The orbit of the Terra satellite goes from north to south across the equator in the morning and Aqua passes south to north over the equator in the afternoon resulting in global coverage every 1 to 2 days. The EOS satellites have a ±55 degree scanning pattern and orbit at 705 km with a 2,330 km swath width.It takes approximately 2 – 4 hours after satellite overpass for MODIS Rapid Response to process the data, and for the Fire Information for Resource Management System (FIRMS) to update the website. Occasionally, hardware errors can result in processing delays beyond the 2-4 hour range. Additional information on the MODIS system status can be found at MODIS Rapid Response.Attribute InformationLatitude and Longitude: The center point location of the 1km (approx.) pixel flagged as containing one or more fires/hotspots (fire size is not 1km, but variable). Stored by Point Geometry. See What does a hotspot/fire detection mean on the ground?Brightness: The brightness temperature measured (in Kelvin) using the MODIS channels 21/22 and channel 31.Scan and Track: The actual spatial resolution of the scanned pixel. Although the algorithm works at 1km resolution, the MODIS pixels get bigger toward the edge of the scan. See What does scan and track mean?Date and Time: Acquisition date of the hotspot/active fire pixel and time of satellite overpass in UTC (client presentation in local time). Stored by Acquisition Date.Acquisition Date: Derived Date/Time field combining Date and Time attributes.Satellite: Whether the detection was picked up by the Terra or Aqua satellite.Confidence: The detection confidence is a quality flag of the individual hotspot/active fire pixel.Version: Version refers to the processing collection and source of data. The number before the decimal refers to the collection (e.g. MODIS Collection 6). The number after the decimal indicates the source of Level 1B data; data processed in near-real time by MODIS Rapid Response will have the source code “CollectionNumber.0”. Data sourced from MODAPS (with a 2-month lag) and processed by FIRMS using the standard MOD14/MYD14 Thermal Anomalies algorithm will have a source code “CollectionNumber.x”. For example, data with the version listed as 5.0 is collection 5, processed by MRR, data with the version listed as 5.1 is collection 5 data processed by FIRMS using Level 1B data from MODAPS.Bright.T31: Channel 31 brightness temperature (in Kelvins) of the hotspot/active fire pixel.FRP: Fire Radiative Power. Depicts the pixel-integrated fire radiative power in MW (MegaWatts). FRP provides information on the measured radiant heat output of detected fires. The amount of radiant heat energy liberated per unit time (the Fire Radiative Power) is thought to be related to the rate at which fuel is being consumed (Wooster et. al. (2005)).DayNight: The standard processing algorithm uses the solar zenith angle (SZA) to threshold the day/night value; if the SZA exceeds 85 degrees it is assigned a night value. SZA values less than 85 degrees are assigned a day time value. For the NRT algorithm the day/night flag is assigned by ascending (day) vs descending (night) observation. It is expected that the NRT assignment of the day/night flag will be amended to be consistent with the standard processing.Hours Old: Derived field that provides age of record in hours between Acquisition date/time and latest update date/time. 0 = less than 1 hour ago, 1 = less than 2 hours ago, 2 = less than 3 hours ago, and so on.RevisionsJune 22, 2022: Added 'HOURS_OLD' field to enhance Filtering data. Added 'Last 7 days' Layer to extend data to match time range of VIIRS offering. Added Field level descriptions.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!
This layer presents detectable thermal activity from MODIS satellites for the last 7 days. MODIS Global Fires is a product of NASA’s Earth Observing System Data and Information System (EOSDIS), part of NASA's Earth Science Data.
EOSDIS integrates remote sensing and GIS technologies to deliver global
MODIS hotspot/fire locations to natural resource managers and other
stakeholders around the World.
Consumption Best Practices:
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This Archaeological Survey of Ireland dataset is published from the database of the National Monuments Service Sites and Monuments Record (SMR). This dataset also can be viewed and interrogated through the online Historic Environment Viewer: https://heritagedata.maps.arcgis.com/apps/webappviewer/index.html?id=0c9eb9575b544081b0d296436d8f60f8 A Sites and Monuments Record (SMR) was issued for all counties in the State between 1984 and 1992. The SMR is a manual containing a numbered list of certain and possible monuments accompanied by 6-inch Ordnance Survey maps (at a reduced scale). The SMR formed the basis for issuing the Record of Monuments and Places (RMP) - the statutory list of recorded monuments established under Section 12 of the National Monuments (Amendment) Act 1994. The RMP was issued for each county between 1995 and 1998 in a similar format to the existing SMR. The RMP differs from the earlier lists in that, as defined in the Act, only monuments with known locations or places where there are believed to be monuments are included. The large Archaeological Survey of Ireland archive and supporting database are managed by the National Monuments Service and the records are continually updated and supplemented as additional monuments are discovered. On the Historic Environment viewer an area around each monument has been shaded, the scale of which varies with the class of monument. This area does not define the extent of the monument, nor does it define a buffer area beyond which ground disturbance should not take place – it merely identifies an area of land within which it is expected that the monument will be located. It is not a constraint area for screening – such must be set by the relevant authority who requires screening for their own purposes. This data has been released for download as Open Data under the DPER Open Data Strategy and is licensed for re-use under the Creative Commons Attribution 4.0 International licence. http://creativecommons.org/licenses/by/4.0 Please note that the centre point of each record is not indicative of the geographic extent of the monument. The existing point centroids were digitised relative to the OSI 6-inch mapping and the move from this older IG-referenced series to the larger-scale ITM mapping will necessitate revisions. The accuracy of the derived ITM co-ordinates is limited to the OS 6-inch scale and errors may ensue should the user apply the co-ordinates to larger scale maps. Records that do not refer to 'monuments' are designated 'Redundant record' and are retained in the archive as they may relate to features that were once considered to be monuments but which on investigation proved otherwise. Redundant records may also refer to duplicate records or errors in the data structure of the Archaeological Survey of Ireland. This dataset is provided for re-use in a number of ways and the technical options are outlined below. For a live and current view of the data, please use the web services or the data extract tool in the Historic Environment Viewer. The National Monuments Service also provide an Open Data snapshot of its national dataset in CSV as a bulk data download. Users should consult the National Monument Service website https://www.archaeology.ie/ for further information and guidance on the National Monument Act(s) and the legal significance of this dataset. Open Data Bulk Data Downloads (version date: 23/08/2023) The Sites and Monuments Record (SMR) is provided as a national download in Comma Separated Value (CSV) format. This format can be easily integrated into a number of software clients for re-use and analysis. The Longitude and Latitude coordinates are also provided to aid its re-use in web mapping systems, however, the ITM easting/northings coordinates should be quoted for official purposes. ERSI Shapefiles of the SMR points and SMRZone polygons are also available The SMRZones represent an area around each monument, the scale of which varies with the class of monument. This area does not define the extent of the monument, nor does it define a buffer area beyond which ground disturbance should not take place – it merely identifies an area of land within which it is expected that the monument will be located. It is not a constraint area for screening – such must be set by the relevant authority who requires screening for their own purposes. GIS Web Service APIs (live views): For users with access to GIS software please note that the Archaeological Survey of Ireland data is also available spatial data web services. By accessing and consuming the web service users are deemed to have accepted the Terms and Conditions. The web services are available at the URL endpoints advertised below: SMR; https://services-eu1.arcgis.com/HyjXgkV6KGMSF3jt/arcgis/rest/services/SMROpenData/FeatureServer SMRZone; https://services-eu1.arcgis.com/HyjXgkV6KGMSF3jt/arcgis/rest/services/SMRZoneOpenData/FeatureServer Historic Environment Viewer - Query Tool The "Query" tool can alternatively be used to selectively filter and download the data represented in the Historic Environment Viewer. The instructions for using this tool in the Historic Environment Viewer are detailed in the associated Help file: https://www.archaeology.ie/sites/default/files/media/pdf/HEV_UserGuide_v01.pdf
This layer presents detectable thermal activity from MODIS satellites for the last 7 days. MODIS Global Fires is a product of NASA’s Earth Observing System Data and Information System (EOSDIS), part of NASA's Earth Science Data. EOSDIS integrates remote sensing and GIS technologies to deliver global MODIS hotspot/fire locations to natural resource managers and other stakeholders around the World.Consumption Best Practices:As a service that is subject to Viral loads (very high usage), avoid adding Filters that use a Date/Time type field. These queries are not cacheable and WILL be subject to Rate Limiting by ArcGIS Online. To accommodate filtering events by Date/Time, we encourage using the included "Age" fields that maintain the number of Days or Hours since a record was created or last modified compared to the last service update. These queries fully support the ability to cache a response, allowing common query results to be supplied to many users without adding load on the service.When ingesting this service in your applications, avoid using POST requests, these requests are not cacheable and will also be subject to Rate Limiting measures.Source: NASA FIRMS - Active Fire Data - for WorldScale/Resolution: 1kmUpdate Frequency: 1/2 Hour (every 30 minutes) using the Aggregated Live Feed MethodologyArea Covered: WorldWhat can I do with this layer?The MODIS thermal activity layer can be used to visualize and assess wildfires worldwide. However, it should be noted that this dataset contains many “false positives” (e.g., oil/natural gas wells or volcanoes) since the satellite will detect any large thermal signal.
In addition to displaying earthquakes by magnitude, this service also provide earthquake impact details. Impact is measured by population as well as models for economic and fatality loss. For more details, see: PAGER Alerts. Consumption Best Practices:As a service that is subject to very high usage, ensure peak performance and accessibility of your maps and apps by avoiding the use of non-cache-able relative Date/Time field filters. To accommodate filtering events by Date/Time, we suggest using the included "Age" fields that maintain the number of days or hours since a record was created or last modified, compared to the last service update. These queries fully support the ability to cache a response, allowing common query results to be efficiently provided to users in a high demand service environment.When ingesting this service in your applications, avoid using POST requests whenever possible. These requests can compromise performance and scalability during periods of high usage because they too are not cache-able. Update Frequency: Events are updated as frequently as every 5 minutes and are available up to 30 days with the following exceptions:Events with a Magnitude LESS than 4.5 are retained for 7 daysEvents with a Significance value, "sig" field, of 600 or higher are retained for 90 days In addition to event points, ShakeMaps are also provided. These have been dissolved by Shake Intensity to reduce the Layer Complexity.The specific layers provided in this service have been Time Enabled and include:Events by Magnitude: The event’s seismic magnitude value.Contains PAGER Alert Level: USGS PAGER (Prompt Assessment of Global Earthquakes for Response) system provides an automated impact level assignment that estimates fatality and economic loss.Contains Significance Level: An event’s significance is determined by factors like magnitude, max MMI, ‘felt’ reports, and estimated impact.Shake Intensity: The Instrumental Intensity or Modified Mercalli Intensity (MMI) for available events. For field terms and technical details, see: ComCat Documentation Alternate SymbologiesVisit the Classic USGS Feature Layer item for a Rainbow view of Shakemap features. RevisionsAug 14, 2024: Added a default Minimum scale suppression of 1:6,000,000 on Shake Intensity layer. Jul 11, 2024: Updated event popup, setting "Tsunami Warning" text to "Alert Possible" when flag is present. Also included hyperlink to tsunami warning center. Feb 13, 2024: Updated feed logic to remove Superseded events This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency. Always refer to USGS source for official guidance. If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!
Not seeing a result you expected?
Learn how you can add new datasets to our index.
This layer presents detectable thermal activity from VIIRS satellites for the last 7 days. VIIRS Thermal Hotspots and Fire Activity is a product of NASA’s Land, Atmosphere Near real-time Capability for EOS (LANCE) Earth Observation Data, part of NASA's Earth Science Data.Consumption Best Practices: As a service that is subject to Viral loads (very high usage), avoid adding Filters that use a Date/Time type field. These queries are not cacheable and WILL be subject to Rate Limiting by ArcGIS Online. To accommodate filtering events by Date/Time, we encourage using the included "Age" fields that maintain the number of Days or Hours since a record was created or last modified compared to the last service update. These queries fully support the ability to cache a response, allowing common query results to be supplied to many users without adding load on the service.When ingesting this service in your applications, avoid using POST requests, these requests are not cacheable and will also be subject to Rate Limiting measures.Source: NASA LANCE - VNP14IMG_NRT active fire detection - WorldScale/Resolution: 375-meterUpdate Frequency: Hourly using the aggregated live feed methodologyArea Covered: WorldWhat can I do with this layer?This layer represents the most frequently updated and most detailed global remotely sensed wildfire information. Detection attributes include time, location, and intensity. It can be used to track the location of fires from the recent past, a few hours up to seven days behind real time. This layer also shows the location of wildfire over the past 7 days as a time-enabled service so that the progress of fires over that timeframe can be reproduced as an animation.The VIIRS thermal activity layer can be used to visualize and assess wildfires worldwide. However, it should be noted that this dataset contains many “false positives” (e.g., oil/natural gas wells or volcanoes) since the satellite will detect any large thermal signal.Fire points in this service are generally available within 3 1/4 hours after detection by a VIIRS device. LANCE estimates availability at around 3 hours after detection, and esri livefeeds updates this feature layer every 15 minutes from LANCE.Even though these data display as point features, each point in fact represents a pixel that is >= 375 m high and wide. A point feature means somewhere in this pixel at least one "hot" spot was detected which may be a fire.VIIRS is a scanning radiometer device aboard the Suomi NPP and NOAA-20 satellites that collects imagery and radiometric measurements of the land, atmosphere, cryosphere, and oceans in several visible and infrared bands. The VIIRS Thermal Hotspots and Fire Activity layer is a livefeed from a subset of the overall VIIRS imagery, in particular from NASA's VNP14IMG_NRT active fire detection product. The downloads are automatically downloaded from LANCE, NASA's near real time data and imagery site, every 15 minutes.The 375-m data complements the 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) Thermal Hotspots and Fire Activity layer; they both show good agreement in hotspot detection but the improved spatial resolution of the 375 m data provides a greater response over fires of relatively small areas and provides improved mapping of large fire perimeters.Attribute informationLatitude and Longitude: The center point location of the 375 m (approximately) pixel flagged as containing one or more fires/hotspots.Satellite: Whether the detection was picked up by the Suomi NPP satellite (N) or NOAA-20 satellite (1). For best results, use the virtual field WhichSatellite, redefined by an arcade expression, that gives the complete satellite name.Confidence: The detection confidence is a quality flag of the individual hotspot/active fire pixel. This value is based on a collection of intermediate algorithm quantities used in the detection process. It is intended to help users gauge the quality of individual hotspot/fire pixels. Confidence values are set to low, nominal and high. Low confidence daytime fire pixels are typically associated with areas of sun glint and lower relative temperature anomaly (<15K) in the mid-infrared channel I4. Nominal confidence pixels are those free of potential sun glint contamination during the day and marked by strong (>15K) temperature anomaly in either day or nighttime data. High confidence fire pixels are associated with day or nighttime saturated pixels.Please note: Low confidence nighttime pixels occur only over the geographic area extending from 11 deg E to 110 deg W and 7 deg N to 55 deg S. This area describes the region of influence of the South Atlantic Magnetic Anomaly which can cause spurious brightness temperatures in the mid-infrared channel I4 leading to potential false positive alarms. These have been removed from the NRT data distributed by FIRMS.FRP: Fire Radiative Power. Depicts the pixel-integrated fire radiative power in MW (MegaWatts). FRP provides information on the measured radiant heat output of detected fires. The amount of radiant heat energy liberated per unit time (the Fire Radiative Power) is thought to be related to the rate at which fuel is being consumed (Wooster et. al. (2005)).DayNight: D = Daytime fire, N = Nighttime fireHours Old: Derived field that provides age of record in hours between Acquisition date/time and latest update date/time. 0 = less than 1 hour ago, 1 = less than 2 hours ago, 2 = less than 3 hours ago, and so on.Additional information can be found on the NASA FIRMS site FAQ.Note about near real time data:Near real time data is not checked thoroughly before it's posted on LANCE or downloaded and posted to the Living Atlas. NASA's goal is to get vital fire information to its customers within three hours of observation time. However, the data is screened by a confidence algorithm which seeks to help users gauge the quality of individual hotspot/fire points. Low confidence daytime fire pixels are typically associated with areas of sun glint and lower relative temperature anomaly (<15K) in the mid-infrared channel I4. Medium confidence pixels are those free of potential sun glint contamination during the day and marked by strong (>15K) temperature anomaly in either day or nighttime data. High confidence fire pixels are associated with day or nighttime saturated pixels.RevisionsSeptember 15, 2022: Updated to include 'Hours_Old' field. Time series has been disabled by default, but still available.July 5, 2022: Terms of Use updated to Esri Master License Agreement, no longer stating that a subscription is required!This layer is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!