Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This series of datasets has been created by AAFC’s National Agroclimate Information Service (NAIS) of the Agro-Climate, Geomatics and Earth Observations (ACGEO) Division of the Science and Technology Branch. The Canadian Drought Monitor (CDM) is a composite product developed from a wide assortment of information such as the Normalized Difference Vegetation Index (NDVI), streamflow values, Palmer Drought Index, and drought indicators used by the agriculture, forest and water management sectors. Drought prone regions are analyzed based on precipitation, temperature, drought model index maps, and climate data and are interpreted by federal, provincial and academic scientists. Once a consensus is reached, a monthly map showing drought designations for Canada is digitized. AAFC’s National Agroclimate Information Service (NAIS) updates this dataset on a monthly basis, usually by the 10th of every month to correspond to the end of the previous month, and subsequent Canadian input into the larger North American Drought Monitor (NA-DM). The drought areas are classified as follows: D0 (Abnormally Dry) – represents an event that occurs once every 3-5 years; D1 (Moderate Drought) – represents an event that occurs every 5-10 years; D2 (Severe Drought) – represents an event that occurs every 10-20 years; D3 (Extreme Drought) – represents an event that occurs every 20-25 years; and D4 (Exceptional Drought) – represents an event that occurs every 50 years. Impact lines highlight areas that have been physically impacted by drought. Impact labels specify the longitude and magnitude of impacts. The impact labels are classified as follows: S – Short-Term, typically less than 6 months (e.g. agriculture, grasslands). L – Long-Term, typically more than 6 months (e.g. hydrology, ecology).
The Canadian Drought Monitor (CDM) brings together Agriculture and Agri-Food Canada’s drought monitoring capabilities and collaboration with external agencies (federal and provincial) to produce, through analysis and consolidation of multiple indices and indicators, an easily understood comprehensive national drought severity map and report each month. The monitor provides specific details on agricultural impacts of the current drought situation, including statistics on land area, cattle, and the number of producers impacted.
The Canadian Drought Monitors are based on a five class system ranking the severity of the drought condition. The Monitor map identifies general drought areas, labelling droughts by intensity, with D1 being the least intense and D4 being the most intense. The classifications are as follows:
• D0 (Abnormally Dry) – represents an event that occurs once every 3-5 years;
• D1 (Moderate Drought) – represents an event that occurs every 5-10 years;
• D2 (Severe Drought) – represents an event that occurs every 10-20 years;
• D3 (Extreme Drought) – represents an event that occurs every 20-25 years; and
• D4 (Exceptional Drought) – represents an event that occurs every 50 years.
D0 is not recognized as a drought classification; however, it provides a warning of areas that are currently vulnerable to drought or areas that are recovering from drought.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This web mapping application shows the monitoring networks used to track drought conditions across Manitoba. Each tab displays a different source of data, including: streamflow and water level, groundwater, precipitation, reservoir supply status, and Canadian and United States Drought Monitor contours. Each of the data sources are explained in more detail below. Please note the following information when using the web mapping application: When you click on a data point on the River and Lake, Groundwater or Reservoir maps, a pop-up box will appear. This pop-up box contains information on the streamflow (in cubic feet per second; ft3/s), water level (in feet), groundwater level (in metres), storage volume (acre-feet), or supply status (in per cent of full supply level; %) for that location. Click on the Percentile Plot link at the bottom of the pop-up box to view a three-year time series of observed conditions (available for river and lake and groundwater conditions only). A toolbar is located in the top right corner of the web mapping application. The Query Tool can be used to search for a specific river, lake or reservoir monitoring station by name or aquifer type by location. The Layer List enables the user to toggle between precipitation conditions layers (1-month, 3-month, and 12-month) and increase or decrease the transparency of the layer. Data is current for the date indicated on the pop-up box, percentile plot, or map product. Near-real time data are preliminary and subject to change upon review. River and lake conditions are monitored to determine the severity of hydrological dryness in a watershed. River and lake measurements are converted to percentiles by comparing daily measurements from a specified day to historical measurements over the monitoring station’s period of record for that particular day. A percentile is a value on a scale of zero to 100 that indicates the percent of a distribution that is equal to or below it. In general: Streamflow (or lake level) which is greater than the 90th percentile is classified as “much above normal”. Streamflow (or lake level) which is between the 75th and 90th percentile is classified as “above normal”. Streamflow (or lake level) which is between the 25th and 75th percentiles is classified as “normal”. Streamflow (or lake level) which is between the 10th and 25th percentile is classified as “below normal”. Streamflow (or lake level) which is less than the 10th percentile is classified as “much below normal”. "Median" indicates the midpoint (or 50th percentile) of the distribution, whereby 50 per cent of the data falls below the given point, and 50 per cent falls above. Other flow categories include: "Lowest" indicates that the estimated streamflow (or lake level) is the lowest value ever measured for the day of the year. "Highest" indicates that the estimated streamflow (or lake level) is the highest value ever measured for the day of the year. Monitoring stations classified as “No Data” do not have current estimates of streamflow (or lake level) available. Click on the Percentile Plot link at the bottom of the pop-up box to view a graph (in PDF format) displaying a three-year time series of observed conditions relative to the historical percentiles described above. The period of record used to compute the percentiles is stated, alongside the station ID, and if the river or lake is regulated (i.e. controlled) or natural. Hydrometric data are obtained from Water Survey of Canada, Manitoba Infrastructure, and the United States Geological Survey. Near real-time data are preliminary as they can be impacted by ice, wind, or equipment malfunction. Preliminary data are subject to change upon review. Groundwater conditions are monitored to determine the severity of hydrological dryness in an aquifer. Water levels are converted to percentiles by comparing daily measurements from a specified day to historical measurements over the monitoring station’s period of record for that particular day. A percentile is a value on a scale of zero to 100 that indicates the percent of a distribution that is equal to or below it. In general: A groundwater level which is greater than the 90th percentile is classified as “much above normal”. A groundwater level which is between the 75th and 90th percentile is classified as “above normal”. A groundwater level which is between the 25th and 75th percentiles is classified as “normal”. A groundwater level which is between the 10th and 25th percentile is classified as “below normal”. A groundwater level which is less than the 10th percentile is classified as “much below normal”. Monitoring stations classified as “No Data” do not have current measurements of groundwater level available. "Median" indicates the midpoint (or 50th percentile) of the distribution, whereby 50 per cent of the data falls below the given point, and 50 per cent falls above. Click on the Percentile Plot link at the bottom of the pop-up box to view a graph (in PDF format) displaying a three-year time series of observed conditions relative to the historical percentiles described above. The period of record used to compute the percentiles is stated, alongside the station ID. Precipitation conditions maps are developed to determine the severity of meteorological dryness and are also an indirect measurement of agricultural dryness. Precipitation indicators are calculated at over 40 locations by comparing total precipitation over the time period to long-term (1971 – 2015) medians. Three different time periods are used to represent: (1) short-term conditions (the past month), (2) medium-term conditions (the past three months), and (3) long-term conditions (the past twelve months). These indicator values are then interpolated across the province to produce the maps provided here. Long-term and medium-term precipitation indicators provide the most appropriate assessment of dryness as the short term indicator is influenced by significant rainfall events and spatial variability in rainfall, particularly during summer storms. Due to large distances between meteorological stations in northern Manitoba, the interpolated contours in this region are based on limited observations and should be interpreted with caution. Precipitation conditions are classified as follows: Per cent of median greater than 115 per cent is classified as “above normal”. Per cent of median between 85 per cent and 115 per cent is classified as “normal”. Per cent of median between 60 per cent and 85 per cent is classified as “moderately dry”. Per cent of median between 40 per cent and 60 per cent is classified as a “severely dry”. Per cent of median less than 40 per cent is classified as an “extremely dry”. Precipitation data is obtained from Environment and Climate Change Canada, Manitoba Agriculture, and Manitoba Sustainable Development’s Fire Program. Reservoir conditions are monitored at 15 locations across southern Manitoba to track water availability, including possible water shortages. Conditions are reported both as a water level and as a “supply status”. The supply status is the current amount of water stored in the reservoir compared to the target storage volume of the reservoir (termed “full supply level”). A supply status greater than 100 per cent represents a reservoir that is exceeding full supply level. Canadian and U.S Drought Monitors: Several governments, agencies, and universities monitor the spatial extent and intensity of drought conditions across Canada and the United States, producing maps and data products available through the Canadian Drought Monitor and United States Drought Monitor websites. The Canadian Drought Monitor is managed through Agriculture and Agri-Food Canada, while the United States Drought Monitor is a joint effort between The National Drought Mitigation Centre (at the University of Nebraska-Lincoln), the United States Department of Agriculture, and the National Oceanic and Atmospheric Administration. The drought monitor assessments are based on a suite of drought indicators, impacts data and local reports as interpreted by federal, provincial/state and academic scientists. Both the Canadian and United States drought assessments have been amalgamated to form this map, and use the following drought classification system: D0 (Abnormally Dry) – represents an event that occurs every 3 - 5 years; D1 (Moderate Drought) – 5 to 10 year event; D2 (Severe Drought) – 10 to 20 year event; D3 (Extreme Drought) – 20 to 50 year event; and D4 (Exceptional Drought) – 50+ year event. Additionally, the map indicates whether drought impacts are: (1) short-term (S); typically less than six months, such as impacts to agriculture and grasslands, (2) long-term (L); typically more than six months, such as impacts to hydrology and ecology, or (3) a combination of both short-term and long-term impacts (SL). The Canadian Drought Monitor publishes its assessments monthly, and United States Drought Monitor maps are released weekly on Thursday mornings. The amalgamated map provided here will be updated on a monthly basis corresponding to the release of the Canadian Drought Monitor map. Care will be taken to ensure both maps highlight drought conditions for the same point in time; however the assessment dates may differ between Canada and the United States due to when the maps are published. Please click on an area of drought on the map to confirm the assessment date. Canadian Drought Monitor data are subject to the Government of Canada Open Data Licence Agreement: https://open.canada.ca/en/open-government-licence-canada. United States Drought Monitor data are available on the United States Drought Monitor website: https://droughtmonitor.unl.edu. For more information, please visit the Manitoba Drought Monitor website.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This series of datasets has been created by AAFC’s National Agroclimate Information Service (NAIS) of the Agro-Climate, Geomatics and Earth Observations (ACGEO) Division of the Science and Technology Branch. The Canadian Drought Monitor (CDM) is a composite product developed from a wide assortment of information such as the Normalized Difference Vegetation Index (NDVI), streamflow values, Palmer Drought Index, and drought indicators used by the agriculture, forest and water management sectors. Drought prone regions are analyzed based on precipitation, temperature, drought model index maps, and climate data and are interpreted by federal, provincial and academic scientists. Once a consensus is reached, a monthly map showing drought designations for Canada is digitized. AAFC’s National Agroclimate Information Service (NAIS) updates this dataset on a monthly basis, usually by the 10th of every month to correspond to the end of the previous month, and subsequent Canadian input into the larger North American Drought Monitor (NA-DM). The drought areas are classified as follows: D0 (Abnormally Dry) – represents an event that occurs once every 3-5 years; D1 (Moderate Drought) – represents an event that occurs every 5-10 years; D2 (Severe Drought) – represents an event that occurs every 10-20 years; D3 (Extreme Drought) – represents an event that occurs every 20-25 years; and D4 (Exceptional Drought) – represents an event that occurs every 50 years. Impact lines highlight areas that have been physically impacted by drought. Impact labels specify the longitude and magnitude of impacts. The impact labels are classified as follows: S – Short-Term, typically less than 6 months (e.g. agriculture, grasslands). L – Long-Term, typically more than 6 months (e.g. hydrology, ecology).
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Agriculture is an important primary production sector in Canada. Agricultural production, profitability, sustainability and food security depend on many agrometeorological factors, including drought. The Canadian Drought Outlook predicts whether drought across Canada will emerge, stay the same or get better over the target month. The drought outlook is issued on the first Thursday of each calendar month and is valid for 32 days from that date. This series of datasets has been created by AAFC’s National Agroclimate Information Service (NAIS) of the Agro-Climate, Geomatics and Earth Observations (ACGEO) Division of the Science and Technology Branch. The Canadian Drought Outlook maps are generated using Environment and Climate Change Canada’s (ECCC) Global Ensemble Prediction (GEPs) forecast data. Agroclimate indices, such as the Standard Precipitation Index (SPI), the Standard Precipitation Evaporation Index (SPEI), and the Palmer Drought Severity Index (PDSI) are calculated using the GEPs forecast data. These indices are then combined with the current Canadian drought assessment to predict future changes in drought.
The Canadian Drought Monitor (CDM) is a composite product developed from a wide assortment of information such as the Normalized Difference Vegetation Index (NDVI), streamflow values, Palmer Drought Index, and drought indicators used by the agriculture, forest and water management sectors. Drought prone regions are analyzed based on precipitation, temperature, drought model index maps, and climate data and are interpreted by federal, provincial and academic scientists. Once a consensus is reached, a monthly map showing drought designations for Canada is digitized. AAFC's National Agroclimate Information Service (NAIS) updates this dataset on a monthly basis, usually by the 10th of every month to correspond to the end of the previous month, and subsequent Canadian input into the larger North American Drought Monitor (NA-DM). For more information, visit: http://open.canada.ca/data/en/dataset/292646cd-619f-4200-afb1-8b2c52f984a2
This webmap shows the latest analyzed drought conditions across the United States and Canada. More information on Drought monitor can be found here: http://droughtmonitor.unl.edu/
The North America Drought Monitor (NADM) is a cooperative effort between drought experts in Canada, Mexico and the United States to monitor drought across the continent on an ongoing basis. The Drought Monitor was developed as a process that synthesizes multiple indices, outlooks and local impacts, into an assessment that best represents current drought conditions. The final outcome of each Drought Monitor is a consensus of federal, state and academic scientists. Major U.S. participants in the NADM program include NOAA's National Climatic Data Center, NOAA's Climate Prediction Center, the U.S. Department of Agriculture, and the National Drought Mitigation Center. Major participants in Canada and Mexico include Agriculture and Agrifood Canada, the Meteorological Service of Canada, and the National Meteorological Service of Mexico (SMN - Servicio Meteorologico Nacional), respectively.
The North America Drought Monitor (NADM) is a cooperative effort between drought experts in Canada, Mexico and the United States to monitor drought across the continent on an ongoing basis. The program was initiated at a three-day workshop in late April 2002 and is part of a larger effort to improve the monitoring of climate extremes on the continent. The NADM is based on the highly successful U.S. Drought Monitor (US-DM), and as such, is being developed to provide an ongoing comprehensive and integrated assessment of drought throughout all three countries.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Agriculture is an important primary production sector in Canada. Agricultural production, profitability, sustainability and food security depend on many agrometeorological factors, including drought. The Canadian Drought Outlook predicts whether drought across Canada will emerge, stay the same or get better over the target month. The drought outlook is issued on the first Thursday of each calendar month and is valid for 32 days from that date. This series of datasets has been created by AAFC’s National Agroclimate Information Service (NAIS) of the Agro-Climate, Geomatics and Earth Observations (ACGEO) Division of the Science and Technology Branch. The Canadian Drought Outlook maps are generated using Environment and Climate Change Canada’s (ECCC) Global Ensemble Prediction (GEPs) forecast data. Agroclimate indices, such as the Standard Precipitation Index (SPI), the Standard Precipitation Evaporation Index (SPEI), and the Palmer Drought Severity Index (PDSI) are calculated using the GEPs forecast data. These indices are then combined with the current Canadian drought assessment to predict future changes in drought.
These data were compiled using a new multivariate matching algorithm that transfers simulated soil moisture conditions (Bradford et al. 2020) from an original 10-km resolution to a 30-arcsec spatial resolution. Also, these data are a supplement to a previously published journal article (Bradford et al., 2020) and USGS data release (Bradford and Schlaepfer, 2020). The objectives of our study were to (1) characterize geographic patterns in ecological drought under historical climate, (2) quantify the direction and magnitude of projected responses in ecological drought under climate change, (3) identify areas and drought metrics with projected changes that are robust across climate models for a representative set of climate scenarios. These data represent geographic patterns in simulated ecological drought metrics based on SOILWAT2 simulations under climate conditions representing historical (current) time period (1980-2010) and two future projected time periods (2020-2050, d40yrs) and (2070-2100, d90yrs) for two representative concentration pathways (RCP4.5, RCP8.5) as medians across simulation runs based on output from each of the available downscaled global circulation models that participated in CMIP5 (RCP4.5, 37 GCMs; RCP8.5, 35 GCMs; Maurer et al. 2007). Additional information about the setup of SOILWAT2 simulation experiments can be found in Bradford et al. 2020. These data were created in 2020 and 2021 for the area of the sagebrush region in the western North America. These data were created by a collaborative research project between the U.S. Geological Survey and Yale University. These data can be used with the high-resolution matching algorithm (Renne et al., 202X), within the scope of Bradford et al. 2020, and as defined by the study. These data may also be used to evaluate the potential impact of changing climate conditions on robust ecological drought metrics within the scope defined by the study.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This app shows short-term (1-month), medium-term (3-month) and long-term (12-month) precipitation conditions for Manitoba. This app shows precipitation conditions for Manitoba. Precipitation conditions maps are developed to determine the severity of meteorological dryness and are also an indirect measurement of agricultural dryness. Precipitation indicators are calculated at over 40 locations by comparing total precipitation over the time period to long-term (1971 – 2015) medians. Three different time periods are used to represent: (1) short-term conditions (the past one month), (2) medium-term conditions (the past three months), and (3) long-term conditions (the past twelve months). These 1-month, 3-month, and 12-month indicator values are then interpolated across the province to produce the layers in this web map.Long-term and medium-term precipitation indicators provide the most appropriate assessment of dryness as the short term indicator is influenced by significant rainfall events and spatial variability in rainfall, particularly during summer storms. Due to large distances between meteorological stations in northern Manitoba, the interpolated contours in this region are based on limited observations and should be interpreted with caution.Precipitation data is obtained from Environment and Climate Change Canada, Manitoba Agriculture, and Manitoba Sustainable Development's Fire Program.Pop-ups include the following information:Precipitation Indicator NameDate: Precipitation conditions correspond to the specified date.Class: Precipitation class. Precipitation conditions classified as follows:Per cent of median greater than 115 per cent is classified as “above normal”. Per cent of median between 85 per cent and 115 per cent is classified as “normal”. Per cent of median between 60 per cent and 85 per cent is classified as “moderately dry”. Per cent of median between 40 per cent and 60 per cent is classified as “severely dry”. Per cent of median less than 40 per cent is classified as “extremely dry”.For more information, please visit the Manitoba Drought Monitor website.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Drought is a deficiency in precipitation over an extended period, usually a season or more, resulting in a water shortage that has adverse impacts on vegetation, animals and/or people. The Climate Moisture Index (CMI) was calculated as the difference between annual precipitation and potential evapotranspiration (PET) – the potential loss of water vapour from a landscape covered by vegetation. Positive CMI values indicate wet or moist conditions and show that precipitation is sufficient to sustain a closed-canopy forest. Negative CMI values indicate dry conditions that, at best, can support discontinuous parkland-type forests. The CMI is well suited to evaluating moisture conditions in dry regions such as the Prairie Provinces and has been used for other ecological studies. Mean annual potential evapotranspiration (PET) was estimated for 30-year periods using the modified Penman-Monteith formulation of Hogg (1997), based on monthly 10-km gridded temperature data. Data shown on maps are 30-year averages. Historical values of CMI (1981-2010) were created by averaging annual CMI calculated from interpolated monthly temperature and precipitation data produced from climate station records. Future values of CMI were projected from downscaled monthly values of temperature and precipitation simulated using the Canadian Earth System Model version 2 (CanESM2) for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Multiple layers are provided. First, the mean annual Climate Moisture Index is shown across Canada for a reference period (1981-2010). Projected mean annual Climate Moisture Index is available for the short- (2011-2040), medium- (2041-2070), and long-term (2071-2100) under the RCP 8.5 (continued emissions increases) and, for the long-term (2071-2100), under RCP 2.6 (rapid emissions reductions). Reference: Hogg, E.H. 1997. Temporal scaling of moisture and the forest-grassland boundary in western Canada. Agricultural and Forest Meteorology 84,115–122.
The project will include four phases: (1) preparation and training, (2) data collection, (3) data analysis, and (4) sharing results. During the preparatory phase, TCV will establish an advisory committee made up of community members from each of the six TCV communities. The advisory committee will aid in the preparation of a data gathering plan and team members will be trained on using the web-based mapping technology called "Community Mapper". Interviews and focus groups with elders, hunters, fishers, and gatherers will take place in each First Nation on the changes to the landscape in their lifetime. Sessions will be digitally recorded, while documenting sites of observed change on Community Mapper. Community infrastructure (e.g. bridges, health centers, water treatment facilities, schools, etc.) will be documented through workshops with local band members and TCV staff. Data analysis and modelling will then be conducted and applied to Community Mapper to view possible climate scenarios overlaying infrastructure and observed climate changes. Results will be shared with communities in small workshops, to show the cumulative layers of community effort to create a complete map of observed changes and possible climate projections.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This series of datasets has been created by AAFC’s National Agroclimate Information Service (NAIS) of the Agro-Climate, Geomatics and Earth Observations (ACGEO) Division of the Science and Technology Branch. The Canadian Drought Monitor (CDM) is a composite product developed from a wide assortment of information such as the Normalized Difference Vegetation Index (NDVI), streamflow values, Palmer Drought Index, and drought indicators used by the agriculture, forest and water management sectors. Drought prone regions are analyzed based on precipitation, temperature, drought model index maps, and climate data and are interpreted by federal, provincial and academic scientists. Once a consensus is reached, a monthly map showing drought designations for Canada is digitized. AAFC’s National Agroclimate Information Service (NAIS) updates this dataset on a monthly basis, usually by the 10th of every month to correspond to the end of the previous month, and subsequent Canadian input into the larger North American Drought Monitor (NA-DM). The drought areas are classified as follows: D0 (Abnormally Dry) – represents an event that occurs once every 3-5 years; D1 (Moderate Drought) – represents an event that occurs every 5-10 years; D2 (Severe Drought) – represents an event that occurs every 10-20 years; D3 (Extreme Drought) – represents an event that occurs every 20-25 years; and D4 (Exceptional Drought) – represents an event that occurs every 50 years. Impact lines highlight areas that have been physically impacted by drought. Impact labels specify the longitude and magnitude of impacts. The impact labels are classified as follows: S – Short-Term, typically less than 6 months (e.g. agriculture, grasslands). L – Long-Term, typically more than 6 months (e.g. hydrology, ecology).