Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is based on Statistics Canada census data spanning four census periods (2001, 2006, 2016, and 2021). The dataset captures population statistics disaggregated by ethnicity at the Dissemination Area (DA) level—the smallest standard geographic unit for census data dissemination, covering approximately 400-700 people per unit. For Toronto, this encompasses approximately 3,700 DAs, providing high spatial resolution for analyzing urban dynamics. The dataset includes detailed population counts for the five largest ethnic groups in Toronto: China, India, Philippines, Portugal, and Sri Lanka. The features are also extracted from census datasets and 298 socioeconomic and demographic features from the census data, organized into 12 categories:Demographics: Population age structure, household composition, and family sizeHousing: Dwelling types, ownership status, housing values, and maintenance needsFamily Structure: Marriage patterns, presence of children, household typesIncome: Median household and individual income, income sourcesEmployment: Labor force participation, employment/unemployment ratesMobility & Migration: Internal and external migration patterns, non-permanent residentsVisible Minorities: Population distribution by visible minority statusLanguage: Official language use, mother tongue, and multilingual capabilitiesOccupation: Employment categories across economic sectorsReligion: Religious affiliations and practicesIndustry: Distribution across industry sectorsPlace of Birth: Country of origin information
Facebook
TwitterData on immigrant status and period of immigration by place of birth, citizenship, age and gender for the population in private households in Canada, provinces and territories, census metropolitan areas and parts.
Facebook
TwitterCensus data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics
Facebook
TwitterThis table provides quarterly estimates of the number of non-permanent residents by type for Canada, provinces and territories.
Facebook
TwitterTThe ERS International Macroeconomic Data Set provides historical and projected data for 181 countries that account for more than 99 percent of the world economy. These data and projections are assembled explicitly to serve as underlying assumptions for the annual USDA agricultural supply and demand projections, which provide a 10-year outlook on U.S. and global agriculture. The macroeconomic projections describe the long-term, 10-year scenario that is used as a benchmark for analyzing the impacts of alternative scenarios and macroeconomic shocks.
Explore the International Macroeconomic Data Set 2015 for annual growth rates, consumer price indices, real GDP per capita, exchange rates, and more. Get detailed projections and forecasts for countries worldwide.
Annual growth rates, Consumer price indices (CPI), Real GDP per capita, Real exchange rates, Population, GDP deflator, Real gross domestic product (GDP), Real GDP shares, GDP, projections, Forecast, Real Estate, Per capita, Deflator, share, Exchange Rates, CPI
Afghanistan, Albania, Algeria, Angola, Antigua and Barbuda, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belgium, Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Brunei, Bulgaria, Burkina Faso, Burundi, Côte d'Ivoire, Cabo Verde, Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile, China, Colombia, Congo, Costa Rica, Croatia, Cuba, Cyprus, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Estonia, Eswatini, Ethiopia, Fiji, Finland, France, Gabon, Gambia, Georgia, Germany, Ghana, Greece, Grenada, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kuwait, Kyrgyzstan, Laos, Latvia, Lebanon, Lesotho, Liberia, Libya, Lithuania, Luxembourg, Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Mauritania, Mauritius, Mexico, Moldova, Mongolia, Morocco, Mozambique, Myanmar, Namibia, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, Norway, Oman, Pakistan, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Rwanda, Samoa, Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Slovakia, Slovenia, Solomon Islands, South Africa, Spain, Sri Lanka, Sudan, Suriname, Sweden, Switzerland, Syria, Tajikistan, Tanzania, Thailand, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, Uganda, Ukraine, United Arab Emirates, United Kingdom, Uruguay, Uzbekistan, Vanuatu, Venezuela, Vietnam, Yemen, Zambia, Zimbabwe, WORLD Follow data.kapsarc.org for timely data to advance energy economics research. Notes:
Developed countries/1 Australia, New Zealand, Japan, Other Western Europe, European Union 27, North America
Developed countries less USA/2 Australia, New Zealand, Japan, Other Western Europe, European Union 27, Canada
Developing countries/3 Africa, Middle East, Other Oceania, Asia less Japan, Latin America;
Low-income developing countries/4 Haiti, Afghanistan, Nepal, Benin, Burkina Faso, Burundi, Central African Republic, Chad, Democratic Republic of Congo, Eritrea, Ethiopia, Gambia, Guinea, Guinea-Bissau, Liberia, Madagascar, Malawi, Mali, Mozambique, Niger, Rwanda, Senegal, Sierra Leone, Somalia, Tanzania, Togo, Uganda, Zimbabwe;
Emerging markets/5 Mexico, Brazil, Chile, Czech Republic, Hungary, Poland, Slovakia, Russia, China, India, Korea, Taiwan, Indonesia, Malaysia, Philippines, Thailand, Vietnam, Singapore
BRIICs/5 Brazil, Russia, India, Indonesia, China; Former Centrally Planned Economies
Former centrally planned economies/7 Cyprus, Malta, Recently acceded countries, Other Central Europe, Former Soviet Union
USMCA/8 Canada, Mexico, United States
Europe and Central Asia/9 Europe, Former Soviet Union
Middle East and North Africa/10 Middle East and North Africa
Other Southeast Asia outlook/11 Malaysia, Philippines, Thailand, Vietnam
Other South America outlook/12 Chile, Colombia, Peru, Bolivia, Paraguay, Uruguay
Indicator Source
Real gross domestic product (GDP) World Bank World Development Indicators, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service all converted to a 2015 base year.
Real GDP per capita U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, GDP table and Population table.
GDP deflator World Bank World Development Indicators, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service, all converted to a 2015 base year.
Real GDP shares U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, GDP table.
Real exchange rates U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, CPI table, and Nominal XR and Trade Weights tables developed by the Economic Research Service.
Consumer price indices (CPI) International Financial Statistics International Monetary Fund, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service, all converted to a 2015 base year.
Population Department of Commerce, Bureau of the Census, U.S. Department of Agriculture, Economic Research Service, International Data Base.
Facebook
TwitterThis map shows where senior populations are found throughout the world. Areas with more than 10% seniors are highlighted with a dark red shading while a dot representation reveals the number of seniors and their distribution in bright red.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics
Facebook
TwitterTwo datasets provide geographic, land use and population data for US Counties within the contiguous US. Land area, water area, cropland area, farmland area, pastureland area and idle cropland area are given along with latitude and longitude of the county centroid and the county population. Variables in this dataset come from the US Dept. of Agriculture (USDA) Natural Resources Conservation Service (NRCS) and the US Census Bureau.
EOS-WEBSTER provides seven datasets which provide county-level data on agricultural management, crop production, livestock, soil properties, geography and population. These datasets were assembled during the mid-1990's to provide driving variables for an assessment of greenhouse gas production from US agriculture using the DNDC agro-ecosystem model [see, for example, Li et al. (1992), J. Geophys. Res., 97:9759-9776; Li et al. (1996) Global Biogeochem. Cycles, 10:297-306]. The data (except nitrogen fertilizer use) were all derived from publicly available, national databases. Each dataset has a separate DIF.
The US County data has been divided into seven datasets.
US County Data Datasets:
1) Agricultural Management 2) Crop Data (NASS Crop data) 3) Crop Summary (NASS Crop data) 4) Geography and Population 5) Land Use 6) Livestock Populations 7) Soil Properties
Facebook
TwitterThis table contains 25 series, with data for years 1955 - 2013 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...) Last permanent residence (25 items: Total immigrants; France; Great Britain; Total Europe ...).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
aCatholic populations by country from http://www.catholic-hierarchy.org/country/sc1.html[4].bOnly the top 31 Catholic countries with more than 5 million Catholics and countries in which at least 50% of the population is Catholic are included (as well as Canada and Uganda, each with more than 40% Catholic population), which excludes India, Indonesia, Kenya, Nigeria, and Vietnam.cFrom [6], [7].dFrom [8], [9].eFrom [10], [11].fChagas disease is found in every South American and Central American country listed [5].gFrom [31].
Facebook
TwitterThis map shows where youth populations are found throughout the world. Areas with more than 33% youth are highlighted with a dark red shading while a dot representation reveals the number of seniors and their distribution in bright red.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics
Facebook
TwitterThe Crops Dataset contains nineteen variables which represent different crops sown in China. For each crop (variable) the number of hectares of that crop sown are given. The following crops are represented: Cereal Grains, Corn, Cotton, Double Season Rice, Green Manure, Potatoes, Rapeseed, Rice and Rapeseed, Single Season Rice, Spring Wheat, Sorghum, Soybeans, Sugarbeets, Sugarcane, Tobacco, Vegetables, Winter Wheat, Winter Wheat and Corn, Winter Wheat and Rice.
See the references for the sources of these data.
China County Data collection contains seven datasets which were compiled in the early 1990s for use as inputs to the DNDC (Denitrification-Decomposition) model at UNH. DNDC is a computer simulation model for predicting carbon (C) and nitrogen (N) biogeochemistry in agricultural ecosystems. The datasets were compiled from multiple Chinese sources and all are at the county scale for 1990. The datasets which comprise this collection are listed below.
1) Agricultural Management 2) Crops 3) N-Deposition 4) Geography and Population 5) Land Use 6) Livestock 7) Soil Properties
Facebook
TwitterA later version of the set. Combined with ds516.0 [] to create ds516.2 [https://rda.ucar.edu/datasets/ds516.2/], the preferred set to use.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is based on Statistics Canada census data spanning four census periods (2001, 2006, 2016, and 2021). The dataset captures population statistics disaggregated by ethnicity at the Dissemination Area (DA) level—the smallest standard geographic unit for census data dissemination, covering approximately 400-700 people per unit. For Toronto, this encompasses approximately 3,700 DAs, providing high spatial resolution for analyzing urban dynamics. The dataset includes detailed population counts for the five largest ethnic groups in Toronto: China, India, Philippines, Portugal, and Sri Lanka. The features are also extracted from census datasets and 298 socioeconomic and demographic features from the census data, organized into 12 categories:Demographics: Population age structure, household composition, and family sizeHousing: Dwelling types, ownership status, housing values, and maintenance needsFamily Structure: Marriage patterns, presence of children, household typesIncome: Median household and individual income, income sourcesEmployment: Labor force participation, employment/unemployment ratesMobility & Migration: Internal and external migration patterns, non-permanent residentsVisible Minorities: Population distribution by visible minority statusLanguage: Official language use, mother tongue, and multilingual capabilitiesOccupation: Employment categories across economic sectorsReligion: Religious affiliations and practicesIndustry: Distribution across industry sectorsPlace of Birth: Country of origin information