Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This entry provides access to surficial geology maps that have been published by the Geological survey of Canada. Two series of maps are available: "A Series" maps, published from 1909 to 2010 and "Canadian Geoscience Maps", published since 2010. Three types of CGM-series maps are available: 1)Surficial Geology: based on expert-knowledge full air photo interpretation (may include interpretive satellite imagery, Digital Elevation Models (DEM)), incorporating field data and ground truthing resulting from extensive, systematic fieldwork across the entire map area. Air photo interpretation includes map unit/deposit genesis, texture, thickness, structure, morphology, depositional or erosional environment, ice flow or meltwater direction, age/cross-cutting relationships, landscape evolution and associated geological features, complemented by additional overlay modifiers, points and linear features, selected from over 275 different geological elements in the Surficial Data Model. Wherever possible, legacy data is also added to the map. 2)Reconnaissance Surficial Geology: based on expert-knowledge full air photo interpretation (may include interpretive satellite imagery, DEMs), with limited or no fieldwork. Air photo interpretation includes map unit/deposit genesis, texture, thickness, structure, morphology, depositional or erosional environment, ice flow or meltwater direction, age/cross-cutting relationships, landscape evolution and associated geological features, complemented by additional overlay modifiers, points and linear features, selected from over 275 different geological elements in the Surficial Data Model. Wherever possible, legacy data is also added to the map. 3)Predictive Surficial Geology: derived from one or more methods of remote predictive mapping (RPM) using different satellite imagery, spectral characteristics of vegetation and surface moisture, machine processing, algorithms etc., DEMs, where raster data are converted to vector, with some expert-knowledge air photo interpretation (training areas or post-verification areas), varying degrees of non-systematic fieldwork, and the addition of any legacy data available. Each map is based on a version of the Geological Survey of Canada's Surficial Data Model (https://doi.org/10.4095/315021), thus providing an easily accessible national surficial geological framework and context in a standardized format to all users. "A series" maps were introduced in 1909 and replaced by CGM maps in 2010. The symbols and vocabulary used on those maps was not as standardized as they are in the CGM maps. Some "A series" maps were converted into, or redone, as CGM maps, Both versions are available whenever that is the case. In addition to CGM and "A series" maps, some surficial geology maps are published in the Open File series. Those maps are not displayed in this entry, but can be found and accessed using the NRCan publications website, GEOSCAN:(https://geoscan.nrcan.gc.ca).
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The map displays bedrock formations at or near the surface of the land, on the sea floor above the continental crust that forms the Canadian landmass, and oceanic crust surrounding the landmass. The bedrock units are grouped and coloured according to geological age and composition. The colours of offshore units and oceanic crust are paler and more generalized than those on land, although the constituent units offshore are still easily discernible from their dashed boundaries. This colour design, coupled with the use of a white buffer zone at the coast allows the coastline of Canada to be readily distinguished and still show the grand geological architecture of the Canadian landmass. The map also shows major faults that have disrupted the Earth's crust, onshore and offshore, and a variety of special geological features such as kimberlite pipes, which locally contain diamonds, impact structures suspected to have been caused by meteorites, and extinct and active spreading centres in the surrounding oceans.
Facebook
TwitterPolygon features (Glaciofluvial, Outwash, Lacustrine, Littoral, Glacial, Veneer, etc.) from the new surficial geology map product (Geological Survey of Canada, Canadian Geoscience Map 195, 2014, 1 sheet, https://doi.org/10.4095/295462) that represents the conversion of the map "Surficial Materials of Canada" (Fulton, 1995) and its legend, using the Geological Survey of Canada's Surficial Data Model (SDM version 2.0) which can be found in Open File 7631 (Deblonde et al., 2014). All geoscience knowledge and information from map 1880A that conformed to the current SDM were maintained during the conversion process. However, only terrestrial units are depicted on this map. Map units below modern sea level or major lake levels are not shown but are maintained in the digital data of this publication. Where additional information was required in certain regions of the Arctic and Cordillera, legacy geology map data were used. These maps are listed in the digital "Map Information" document. All other source maps used in map 1880A are not relisted here. The purpose of converting legacy map data to a common science language and common legend is to enable and facilitate the efficient digital compilation, interpretation, management and dissemination of geologic map information in a structured and consistent manner. This provides an effective knowledge management tool designed around a geo-database which can expand following the type of information to appear on new surficial geology maps.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The Canada Geological Map Compilation (CGMC) is a database of previously published bedrock geological maps sourced from provincial, territorial, and other geological survey organizations. The geoscientific information included within these source geological maps wasstandardized, translated to English, and combined to provide complete coverage of Canada and support a range of down-stream machine learning applications. Detailed lithological, mineralogical, metamorphic, lithostratigraphic, and lithodemic information was not previously available as onenational-scale product. The source map data was also enhanced by correcting geometry errors and through the application of a new hierarchical generalized lithology classification scheme to subdivide the original rocks types into 35 classes. Each generalized lithology is associated with asemi-quantitative measure of classification uncertainty. Lithostratigraphic and lithodemic names included within the source maps were matched with the Lexicon of Canadian Geological Names (Weblex) wherever possible and natural language processing was used to transform all of the available text-basedinformation into word tokens. Overlapping map polygons and boundary artifacts across political boundaries were not addressed as part of this study. As a result, the CGMC is a patchwork of overlapping bedrock geological maps with varying scale (1:30,000-1:5,000,000), publication year (1996-2023), andreliability. Preferred geological and geochronological maps of Canada are presented as geospatial rasters based on the best available geoscientific information extracted from these overlapping polygons for each map pixel. New higher resolution geological maps will be added over time to fill datagaps and to update geoscientific information for future applications of the CGMC.
Facebook
TwitterThe Bedrock Index provides a spatial record of the location of all Bedrock maps published by the Geological Survey of Canada and hosted on Geoscan. The index has three "series" of maps; CGM, A series, and preliminary maps. In cases where there have been multiple editions of a map, the most recent record is reported in the Bedrock Index attribute table. Maps published in Open File documents are not recorded in the bedrock index. The "A" series maps were produced from 1909 to 2010 and have been replaced by the CGM (Canadian Geoscience Maps) series. CGM maps began production in 2010 and are still being published. Preliminary maps were published from 1941 to 2021.
Facebook
TwitterThe map identifies surficial materials and associated landforms left by the retreat of the last glaciers and non glacial environments. The surficial geology is based on compilation of existing maps. This work provides new geological knowledge and improves our understanding ofthe distribution, nature and glacial history of surficial materials. It contributes to resource assessments and effective land use management. This new surficial geology map product represents the conversion of the map "Surficial Materials of Canada" (Fulton, 1995) and its legend, using the Geological Survey of Canada's Surficial Data Model (SDM version 2.0) which can be found in Open File 7631 (Deblonde et al.,2014). All geoscience knowledge and information from map 1880A that conformed to the current SDM were maintained during the conversion process. However, only terrestrial units are depicted on this map. Map units below modern sea level or major lake levels are not shown but are maintained in the digital data of this publication. Where additional information was required in certain regions of the Arctic and Cordillera, legacy geology map data were used. These maps are listed in the digital "Map Information" document. All other source maps used in map 1880A are not relisted here. The purpose of converting legacy map data to a common science language and common legend is to enable and facilitate the efficient digital compilation, interpretation, management and dissemination of geologic map information in a structured and consistent manner. This provides an effective knowledge management tool designed around a geo-database which can expand following the type of information to appear on new surficial geology maps.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The Bedrock Index provides a spatial record of the location of all Bedrock maps published by the Geological Survey of Canada and hosted on Geoscan. The index has three "series" of maps; CGM, A series, and preliminary maps. In cases where there have been multiple editions of a map, the most recent record is reported in the Bedrock Index attribute table. Maps published in Open File documents are not recorded in the bedrock index. The "A" series maps were produced from 1909 to 2010 and have been replaced by the CGM (Canadian Geoscience Maps) series. CGM maps began production in 2010 and are still being published. Preliminary maps were published from 1941 to 2021.
Facebook
TwitterThe Yukon Geological Survey (YGS) has compiled over 195 surficial geology maps into a standardized GIS format, providing approximately 80% coverage of the territory. The maps range in scales from 1:250,000 to 1:10,000 with spatial overlap between scales. The original maps were produced by various agencies, including the Geological Survey of Canada, YGS, Yukon Government, universities, and the City of Whitehorse. All original feature descriptions have been preserved and also converted to standardized values using the Yukon terrain classification system. The compilation includes 4 GIS datasets and supporting documents available for download via YGS integrated data system (YGSIDS) or GeoYukon. A .lyr file is provided to symbolize feature classes and differentiate overlapping maps at different scales. Additionally, there is a surficial geology map index. The polygon attributes captured include surficial material, texture, age, surface expression, and geomorphological processes. Line features include geological contacts, glacial limits, glacial landforms (cirques, arêtes, eskers, meltwater channels, moraines), and non-glacial landforms (faults, lineaments, landslides, escarpments). Point features include field station, fossil and sample locations, glacial landforms (erratics, kames, kettles, drumlins, flutings), permafrost features (pingos, palsas, patterned ground, thermokarst depressions), and other non-glacial landforms (landslides, tors). The map index provides information on each map publication such as author, map title, map scale, publisher. These data are valuable for land-use applications in the territory, including: mineral and placer exploration, geotechnical engineering, infrastructure planning, granular resource assessments, permafrost modeling, agricultural assessments, forest management, and biophysical or ecological land classification. Distributed from GeoYukon by the Government of Yukon. Discover more digital map data and interactive maps from Yukon's digital map data collection.For more information: geomatics.help@yukon.ca
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The surficial geology map collection consists of individually published surficial geology maps across Canada that have been released in the Canadian Geoscience Map Series format. Each map was created with a specific extent or scale which may result in data superimposition. These maps share a common science language (common legend) based on the Geological Survey of Canada’s Surficial Data Model. The map collection provides an effective easily accessible national surficial geological framework and context in a standardized format to all users.
Facebook
TwitterPreliminary Interpretive Report 2019-3, Bedrock-geologic map, Alaska Highway corridor, Tetlin Junction, Alaska to Canada border, shows the distribution of bedrock units exposed at or near the surface in the corridor along the Alaska Highway in parts of the Tanacross A-1, A-2, A-3, and B-3 and Nabesna C-1, D-1, and D-2 quadrangles. It is the easternmost of three bedrock-geologic maps along the Alaska Highway corridor. It is part of a multi-year project conducted by the Alaska Division of Geological & Geophysical Surveys (DGGS) between 2006 and 2013. The project focused on investigating and reporting the geology and geologic hazards of the corridor. Bedrock units were mapped and structural elements were measured in the field; where bedrock units are covered by surficial units and vegetation, units were interpreted using airborne-magnetic and electromagnetic surveys published by DGGS in 2006. Rock names were assigned based on field and petrographic observations, modal-mineral percentages, and interpretations of geochemical data. The complete report, geodatabase, and ESRI fonts and style files are available from the DGGS website: http://doi.org/10.14509/30038.
Facebook
TwitterLinear features (eskers, moraines) extracted from the new surficial geology map product (Geological Survey of Canada, Canadian Geoscience Map 195, 2014, 1 sheet, https://doi.org/10.4095/295462) that represents the conversion of the map "Surficial Materials of Canada" (Fulton, 1995) and its legend, using the Geological Survey of Canada's Surficial Data Model (SDM version 2.0) which can be found in Open File 7631 (Deblonde et al., 2014). All geoscience knowledge and information from map 1880A that conformed to the current SDM were maintained during the conversion process. However, only terrestrial units are depicted on this map. Map units below modern sea level or major lake levels are not shown but are maintained in the digital data of this publication. Where additional information was required in certain regions of the Arctic and Cordillera, legacy geology map data were used. These maps are listed in the digital "Map Information" document. All other source maps used in map 1880A are not relisted here. The purpose of converting legacy map data to a common science language and common legend is to enable and facilitate the efficient digital compilation, interpretation, management and dissemination of geologic map information in a structured and consistent manner. This provides an effective knowledge management tool designed around a geo-database which can expand following the type of information to appear on new surficial geology maps.
Facebook
TwitterThis set of maps represents a geological compilation of the northern part of the Stewart River map area, southwest of the Tintina Fault Zone. This report includes six 1:50 000-scale bedrock geology maps which cover NTS map sheets 115 N/15 (Crag Mountain), 115 N/16 (Enchantment Creek), 115 O/13 (Garner Creek), 115 O/14 (Grand Forks), 115 O/15 (Flat Creek) and 115 O/16 (Medrick Creek). The maps are based mainly on geological mapping carried out by the author on behalf of Archer, Cathro and Associates (1981), Ltd. In 1983-84 and the Geological Survey of Canada between 1986 and 1991. Final filed checking, map compilation and synthesis was done in 1995-96 with support from the Canada/Yukon Geoscience Office. Published maps by Cockfield (1927), Bostock (1942), Tempelman-Kluit (1974), and Debicki (1983, 1984), as well as original field notes from 1935-36 by H.S. Bostock and a number of unpublished mineral assessment reports, were used to supplement the author's observations. All available isotopic ages from the area are also shown. The lithostratigraphic legend used for these maps was developed for both this series of maps and adjoining portions of southwestern Dawson map area (116 B,C) to the north (Mortensen, 1988). Note that not all of the units included in the legend are necessarily present in the northern Stewart River map area.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Contained within the 3rd Edition (1957) of the Atlas of Canada is a map that shows the bedrock geology across Canada that was compiled by the Geological Survey of Canada, circa 1956. The map denotes the geological time periods and makeup of bedrock for the Canadian landmass. This map denotes the bedrock geology using letter codes and colour to indicate surface coverage and principal rock types. The legend includes the era and period of when the rock types were formed.
Facebook
TwitterThe Quaternary Geologic Map of the Lake Superior 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the "ground" on which we walk, the "dirt" in which we dig foundations, and the "soil" in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This map is a Yukon Geological Survey contribution to the Geological Survey of Canada Geo-mapping for Energy and Minerals (GEM) program, Multiple Metals Northwest Canadian Cordillera (MMNCC) project.
Facebook
Twitter"The Geological Society of America’s (GSA) Geologic Map of North America (Reed and others, 2005; 1:5,000,000) shows the geology of a significantly large area of the Earth, centered on North and Central America and including the submarine geology of parts of the Atlantic and Pacific Oceans. This map is now converted to a Geographic Information System (GIS) database that contains all geologic and base-map information shown on the two printed map sheets and the accompanying explanation sheet. We anticipate this map database will be revised at some unspecified time in the future, likely through the actions of a steering committee managed by the Geological Society of America (GSA) and staffed by scientists from agencies including, but not limited to, those responsible for the original map compilation (U.S. Geological Survey, Geological Survey of Canada, and Woods Hole Oceanographic Institute)."
Is best used for fault mapping and structural data, though is not ideal for finer details.
Facebook
TwitterThe Quaternary Geologic Map of the Lake Erie 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the "ground" on which we walk, the "dirt" in which we dig foundations, and the "soil" in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale.
Facebook
TwitterData presented here include a shapefile that combines fault data for the United States and Canada (Chorlton, 2007; Reed and others, 2005; Styron and Pagani, 2020) and a shapefile of faults for Australia (Chorlton, 2007; Raymond and others, 2012; Styron and Pagani, 2020). These two shapefiles were used as an evidential layer to evaluate the mineral prospectivity for sediment-hosted Pb-Zn deposits (Lawley and others, 2022). References Chorlton, L.B., 2007, Generalized geology of the world: Bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database: Geological Survey of Canada Open File 5529, https://doi.org/10.4095/223767. Lawley, C.J.M., McCafferty, A.E., Graham, G.E., Huston, D.L., Kelley, K.D., Czarnota, K., Paradis, S., Peter, J.M., Hayward, N., Barlow, M., Emsbo, P., Coyan, J., San Juan, C.A., and Gadd, M.G., 2022, Data-driven prospectivity modelling of sediment-hosted Zn-Pb mineral systems and their critical raw materials: Ore Geology Reviews, v. 141, no. 104635, https://doi.org/10.1016/j.oregeorev.2021.104635. Raymond, O.L., Liu, S., Gallagher, R., Zhang, W., and Highet, L.M., 2012, Surface Geology of Australia 1:1 million scale dataset 2012 edition: Geoscience Australia, http://pid.geoscience.gov.au/dataset/ga/74619. Reed, J.C., Jr., Wheeler, J.O., Tucholke, B.E., Stettner, W.R., and Soller, D.R., 2005, Decade of North American Geology Geologic Map of North America - Perspectives and explanation: Geological Society of America, v. 1, https://doi.org/10.1130/DNAG-CSMS-v1. Styron, R., and Pagani, M., 2020, The GEM global active faults database: Earthquake Spectra, v. 36, p. 160-180, https://doi.org/10.1177/8755293020944182.
Facebook
TwitterDuring 2009, the Alaska Division of Geological & Geophysical Surveys continued a program, begun in 2006, of reconnaissance mapping of surficial geology in the proposed natural-gas pipeline corridor through the upper Tanana River valley. The study area is a 12-mi-wide (19.3-km-wide) area that straddles the Alaska Highway from the western boundaries of the Tanacross B-3 and A-3 quadrangles near Tetlin Junction eastward to the eastern boundaries of the Nabesna D-1 and C-1 quadrangles along the Canada border. Mapping during 2008-2009 in the Tanacross and Nabesna quadrangles linked with the mapping completed in the Tanacross, Big Delta and Mt. Hayes quadrangles in 2006-2008. Surficial geology was initially mapped in this third corridor segment by interpreting ~1:65,000-scale, false-color, infrared aerial photographs taken in July 1978 and August 1981 and plotting unit boundaries on acetate overlays. Verification of photo mapping was accomplished during the 2008 and 2009 summer field seasons, when map units were described, soil pits were hand dug, and samples were collected for analyses. The engineering-geologic map is derived electronically from the surficial-geologic map and shows the distribution of surficial-geologic and bedrock units grouped genetically with common properties that are typically significant for engineering applications.
Facebook
TwitterNational-scale geologic, geophysical, and mineral resource raster and vector data covering the United States, Canada, and Australia are provided in this data release. The data were compiled as part of the tri-national Critical Minerals Mapping Initiative (CMMI). The CMMI, established in 2019, is an international science collaboration between the U.S. Geological Survey (USGS), Geoscience Australia (GA), and the Geological Survey of Canada (GSC). One aspect of the CMMI is to use national- to global-scale earth science data to map where critical mineral prospectivity may exist using advanced machine learning approaches (Kelley, 2020). The geoscience information presented in this report include the training and evidential layers that cover all three countries and underpin the resultant prospectivity models for basin-hosted Pb-Zn mineralization described in Lawley and others (2021). It is expected that these data layers will be useful to many regional- to continental-scale studies related to a wide range of earth science research. Therefore, the data layers are organized using widely accepted GIS formats in the same map projection to increase efficiency and effectiveness of future studies. All datasets have a common geographic projection in decimal degrees using a WGS84 datum. Data for the various training and evidential layers were either derived for this study or were extracted from previous national to global-scale compilations. Data from outside work are provided here as a courtesy for completeness of the model and should be cited as the original source. Original references are provided on each child page. Where possible, data for the United States were merged to data for Canada to provide composite data that allow for continuity and seamless analyses of the earth science data across the two countries. Earth science data provided in this report include training data for the models. Training data include a mineral resource database of Pb-Zn deposits and occurrences related to either carbonate-hosted (Mississippi Valley type-MVT) or clastic-dominated (aka sedex) Pb-Zn mineralization. Evidential layers that were used as input to the models include GeoTIFF grid files consisting of ground, airborne, and satellite geophysical data (magnetic, gravity, tomography, seismic) and several related derivative products. Geologic layers incorporated into the models include shapefiles of modified lithology and faults for the United States, Canada and Australia. A global database of ancient and modern passive margins is provided here as well as a link to a database mapping the global distribution of black shale units from a previous USGS study. GeoTIFF grids of the final prospectivity models for MVT and for clastic-dominated Pb-Zn mineralization across the US, Canada, and Australia from Lawley and others (2021) are also included. Each child page describes the particular data layer and related derivative products if applicable. Kelley, K.D., 2020, International geoscience collaboration to support critical mineral discovery: U.S. Geological Survey Fact Sheet 2020–3035, 2 p., https://doi.org/10.3133/fs20203035. Lawley, C.J.M., McCafferty, A.E., Graham, G.E., Huston, D.L., Kelley, K.D., Czarnota, K., Paradis, S., Peter, J.M., Hayward, N., Barlow, M., Emsbo, P., Coyan, J., San Juan, C.A., and Gadd, M.G., 2022, Data-driven prospectivity modelling of sediment-hosted Zn-Pb mineral systems and their critical raw materials: Ore Geology Reviews, v. 141, no. 104635, https://doi.org/10.1016/j.oregeorev.2021.104635.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This entry provides access to surficial geology maps that have been published by the Geological survey of Canada. Two series of maps are available: "A Series" maps, published from 1909 to 2010 and "Canadian Geoscience Maps", published since 2010. Three types of CGM-series maps are available: 1)Surficial Geology: based on expert-knowledge full air photo interpretation (may include interpretive satellite imagery, Digital Elevation Models (DEM)), incorporating field data and ground truthing resulting from extensive, systematic fieldwork across the entire map area. Air photo interpretation includes map unit/deposit genesis, texture, thickness, structure, morphology, depositional or erosional environment, ice flow or meltwater direction, age/cross-cutting relationships, landscape evolution and associated geological features, complemented by additional overlay modifiers, points and linear features, selected from over 275 different geological elements in the Surficial Data Model. Wherever possible, legacy data is also added to the map. 2)Reconnaissance Surficial Geology: based on expert-knowledge full air photo interpretation (may include interpretive satellite imagery, DEMs), with limited or no fieldwork. Air photo interpretation includes map unit/deposit genesis, texture, thickness, structure, morphology, depositional or erosional environment, ice flow or meltwater direction, age/cross-cutting relationships, landscape evolution and associated geological features, complemented by additional overlay modifiers, points and linear features, selected from over 275 different geological elements in the Surficial Data Model. Wherever possible, legacy data is also added to the map. 3)Predictive Surficial Geology: derived from one or more methods of remote predictive mapping (RPM) using different satellite imagery, spectral characteristics of vegetation and surface moisture, machine processing, algorithms etc., DEMs, where raster data are converted to vector, with some expert-knowledge air photo interpretation (training areas or post-verification areas), varying degrees of non-systematic fieldwork, and the addition of any legacy data available. Each map is based on a version of the Geological Survey of Canada's Surficial Data Model (https://doi.org/10.4095/315021), thus providing an easily accessible national surficial geological framework and context in a standardized format to all users. "A series" maps were introduced in 1909 and replaced by CGM maps in 2010. The symbols and vocabulary used on those maps was not as standardized as they are in the CGM maps. Some "A series" maps were converted into, or redone, as CGM maps, Both versions are available whenever that is the case. In addition to CGM and "A series" maps, some surficial geology maps are published in the Open File series. Those maps are not displayed in this entry, but can be found and accessed using the NRCan publications website, GEOSCAN:(https://geoscan.nrcan.gc.ca).