Facebook
TwitterI was interested in investigating cancer incidence levels in the US by looking at how they vary by race or state. All the data is collected online from Centers for Disease Control and Prevention, State Cancer Profiles, and United States Census Bureau. This dataset can be used to answer questions on the correlation between poverty levels, insurance levels and cancer incidence levels. Further, one can find which cancers affect a certain race more or a certain state.
Facebook
TwitterThe United States Cancer Statistics (USCS) online databases in WONDER provide cancer incidence and mortality data for the United States for the years since 1999, by year, state and metropolitan areas (MSA), age group, race, ethnicity, sex, childhood cancer classifications and cancer site. Report case counts, deaths, crude and age-adjusted incidence and death rates, and 95% confidence intervals for rates. The USCS data are the official federal statistics on cancer incidence from registries having high-quality data and cancer mortality statistics for 50 states and the District of Columbia. USCS are produced by the Centers for Disease Control and Prevention (CDC) and the National Cancer Institute (NCI), in collaboration with the North American Association of Central Cancer Registries (NAACCR). Mortality data are provided by the Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), National Vital Statistics System (NVSS).
Facebook
TwitterProstate cancer incidence rates in the United States vary significantly across racial and ethnic groups, with Non-Hispanic Black men facing the highest risk. According to recent data, Non-Hispanic Black males have an incidence rate of 194.8 per 100,000 population, which is substantially higher than the overall rate of 120.2 per 100,000. This stark disparity highlights the importance of targeted screening and prevention efforts to address this health inequality. Incidence and mortality trends The burden of prostate cancer in the U.S. has grown in recent years. In 2025, approximately 313,780 men were projected to be diagnosed with prostate cancer, representing a significant increase from previous years. Despite this rising incidence, mortality rates have shown improvement. In 2022, the prostate cancer death rate was 18.7 per 100,000 men, compared to a rate of almost 39 per 100,000 in the year 1990. This decrease reflects advancements in treatment and early detection. Risk factors and survival rates Age remains a critical risk factor for prostate cancer, with men aged 65 to 84 having a 10.6 percent chance of developing the disease. However, there is encouraging news regarding survival rates. From 2014 to 2020, the five-year relative survival rate for prostate cancer patients in the U.S. was an impressive 97 percent. This high survival rate underscores the importance of early detection and the effectiveness of current treatment options.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.
The rates are the numbers out of 100,000 people who developed or died from cancer each year.
Incidence Rates by State The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Death Rates by State Rates of dying from cancer also vary from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Facebook
TwitterMedical Service Study Areas (MSSAs)As defined by California's Office of Statewide Health Planning and Development (OSHPD) in 2013, "MSSAs are sub-city and sub-county geographical units used to organize and display population, demographic and physician data" (Source). Each census tract in CA is assigned to a given MSSA. The most recent MSSA dataset (2014) was used. Spatial data are available via OSHPD at the California Open Data Portal. This information may be useful in studying health equity.Age-Adjusted Incidence Rate (AAIR)Age-adjustment is a statistical method that allows comparisons of incidence rates to be made between populations with different age distributions. This is important since the incidence of most cancers increases with age. An age-adjusted cancer incidence (or death) rate is defined as the number of new cancers (or deaths) per 100,000 population that would occur in a certain period of time if that population had a 'standard' age distribution. In the California Health Maps, incidence rates are age-adjusted using the U.S. 2000 Standard Population.Cancer incidence ratesIncidence rates were calculated using case counts from the California Cancer Registry. Population data from 2010 Census and SEER 2015 census tract estimates by race/origin (controlling to Vintage 2015) were used to estimate population denominators. Yearly SEER 2015 census tract estimates by race/origin (controlling to Vintage 2015) were used to estimate population denominators for 5-year incidence rates (2013-2017)According to California Department of Public Health guidelines, cancer incidence rates cannot be reported if based on <15 cancer cases and/or a population <10,000 to ensure confidentiality and stable statistical rates.Spatial extent: CaliforniaSpatial Unit: MSSACreated: n/aUpdated: n/aSource: California Health MapsContact Email: gbacr@ucsf.eduSource Link: https://www.californiahealthmaps.org/?areatype=mssa&address=&sex=Both&site=AllSite&race=&year=05yr&overlays=none&choropleth=Obesity
Facebook
TwitterNumber and rate of new cancer cases diagnosed annually from 1992 to the most recent diagnosis year available. Included are all invasive cancers and in situ bladder cancer with cases defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3). Random rounding of case counts to the nearest multiple of 5 is used to prevent inappropriate disclosure of health-related information.
Facebook
TwitterBy Noah Rippner [source]
This dataset offers a unique opportunity to examine the pattern and trends of county-level cancer rates in the United States at the individual county level. Using data from cancer.gov and the US Census American Community Survey, this dataset allows us to gain insight into how age-adjusted death rate, average deaths per year, and recent trends vary between counties – along with other key metrics like average annual counts, met objectives of 45.5?, recent trends (2) in death rates, etc., captured within our deep multi-dimensional dataset. We are able to build linear regression models based on our data to determine correlations between variables that can help us better understand cancers prevalence levels across different counties over time - making it easier to target health initiatives and resources accurately when necessary or desired
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This kaggle dataset provides county-level datasets from the US Census American Community Survey and cancer.gov for exploring correlations between county-level cancer rates, trends, and mortality statistics. This dataset contains records from all U.S counties concerning the age-adjusted death rate, average deaths per year, recent trend (2) in death rates, average annual count of cases detected within 5 years, and whether or not an objective of 45.5 (1) was met in the county associated with each row in the table.
To use this dataset to its fullest potential you need to understand how to perform simple descriptive analytics which includes calculating summary statistics such as mean, median or other numerical values; summarizing categorical variables using frequency tables; creating data visualizations such as charts and histograms; applying linear regression or other machine learning techniques such as support vector machines (SVMs), random forests or neural networks etc.; differentiating between supervised vs unsupervised learning techniques etc.; reviewing diagnostics tests to evaluate your models; interpreting your findings; hypothesizing possible reasons and patterns discovered during exploration made through data visualizations ; Communicating and conveying results found via effective presentation slides/documents etc.. Having this understanding will enable you apply different methods of analysis on this data set accurately ad effectively.
Once these concepts are understood you are ready start exploring this data set by first importing it into your visualization software either tableau public/ desktop version/Qlikview / SAS Analytical suite/Python notebooks for building predictive models by loading specified packages based on usage like Scikit Learn if Python is used among others depending on what tool is used . Secondly a brief description of the entire table's column structure has been provided above . Statistical operations can be carried out with simple queries after proper knowledge of basic SQL commands is attained just like queries using sub sets can also be performed with good command over selecting columns while specifying conditions applicable along with sorting operations being done based on specific attributes as required leading up towards writing python codes needed when parsing specific portion of data desired grouping / aggregating different categories before performing any kind of predictions / models can also activated create post joining few tables possible , when ever necessary once again varying across tools being used Thereby diving deep into analyzing available features determined randomly thus creating correlation matrices figures showing distribution relationships using correlation & covariance matrixes , thus making evaluations deducing informative facts since revealing trends identified through corresponding scatter plots from a given metric gathered from appropriate fields!
- Building a predictive cancer incidence model based on county-level demographic data to identify high-risk areas and target public health interventions.
- Analyzing correlations between age-adjusted death rate, average annual count, and recent trends in order to develop more effective policy initiatives for cancer prevention and healthcare access.
- Utilizing the dataset to construct a machine learning algorithm that can predict county-level mortality rates based on socio-economic factors such as poverty levels and educational attainment rates
If you use this dataset i...
Facebook
TwitterThis registry contains data on Age-Adjusted Incidence Rates and Confidence Intervals for Cancer types by Age in the United States. Rates are per 100,000 persons and are age-adjusted to the 2000 U.S. standard population (19 age groups - Census P25-1130). Since 1994, CDC’s National Program of Cancer Registries (NPCR) has funded state cancer registries to collect population-based cancer incidence data under Public Law 102-515, the Cancer Registries Amendment Act.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionDespite advancements in cervical cancer screening and HPV vaccines, demographic disparities perpetuate the burden of cervical cancer. The aim of this study is to utilize the most up-to-date CDC WONDER data of cervical cancer mortality to provide a comprehensive temporal analysis of demographic variables and account for patients missed in other database studies. In doing so, temporal trends found in this study may be used to guide future efforts and studies to understand nuanced barriers to cervical cancer screening and prevention.MethodsWith CDC WONDER Data, cervical cancer-related mortality was assessed in the U.S. from 1999 to 2023. Using age-adjusted mortality rates (AAMR), temporal trends were analyzed using the Joinpoint Regression Program for women 25 years and older across race, census regions, urban/rural residence, and states. Annual percentage change (APC) and average annual percentage change (AAPC) were calculated with 95% confidence intervals.ResultsCervical cancer-related mortality declined over the study period with an AAPC of –1.043*. Between 2015 and 2023, there was a concerning positive change in AAMR [APC of 0.1272 (95% CI –0.3393 to 1.7502)], though not statistically significant. Black or African American patients experienced the highest AAMR across races but maintained a decrease in mortality rate over the study period [AAPC of -2.670* (95% CI -2.931 to -2.356)]. Region and race analysis demonstrated Black or African American patients in the Northeast held the largest decline in AAMR [AAPC of –3.218* (95% CI –3.708 to –2.390)], while Hispanic or Latino and Black or African American patients in the South closely followed AAPC of –1.347* (–1.898 to –0.824) and –2.656* (95% CI –2.939 to -2.350), respectively]. Rural areas (NonCore and Micropolitan) and the Southern region displayed a concerning positive trend after 2009 and 2010, though not statistically significant [APC values of 0.772 (95% CI -0.328 to 4.888), 0.986 (95% CI –0.252 to 4.887), and 0.286 (95% CI –0.061 to 0.772), respectively].ConclusionThese findings underscore the need for targeted interventions with consideration of regional and racial temporal disparities in cervical cancer-related mortality.
Facebook
TwitterIn the period 2019 to 2023, the death rate for prostate cancer among Hispanic Americans was **** per 100,000 population. This statistic shows the death rate for prostate cancer among U.S. males from 2019 to 2023, by race and ethnicity.
Facebook
TwitterThis statistic shows the amount of registrations of newly diagnosed cases of bladder cancer in England in 2022, by age group and gender. The most affected demographic was men aged 75 to 79 years, with over *** thousand registrations in 2022.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains clinical, demographic, and lifestyle data for 260,000 individuals from 25 countries. Designed for healthcare research and predictive modeling, it includes diverse variables relevant to appendix cancer diagnosis and risk factors. The dataset can support machine learning tasks, statistical analysis, and exploratory data studies in oncology and public health domains.
Facebook
TwitterMedical Service Study Areas (MSSAs)As defined by California's Office of Statewide Health Planning and Development (OSHPD) in 2013, "MSSAs are sub-city and sub-county geographical units used to organize and display population, demographic and physician data" (Source). Each census tract in CA is assigned to a given MSSA. The most recent MSSA dataset (2014) was used. Spatial data are available via OSHPD at the California Open Data Portal. This information may be useful in studying health equity.Age-Adjusted Incidence Rate (AAIR)Age-adjustment is a statistical method that allows comparisons of incidence rates to be made between populations with different age distributions. This is important since the incidence of most cancers increases with age. An age-adjusted cancer incidence (or death) rate is defined as the number of new cancers (or deaths) per 100,000 population that would occur in a certain period of time if that population had a 'standard' age distribution. In the California Health Maps, incidence rates are age-adjusted using the U.S. 2000 Standard Population.
Facebook
TwitterMedical Service Study Areas (MSSAs)As defined by California's Office of Statewide Health Planning and Development (OSHPD) in 2013, "MSSAs are sub-city and sub-county geographical units used to organize and display population, demographic and physician data" (Source). Each census tract in CA is assigned to a given MSSA. The most recent MSSA dataset (2014) was used. Spatial data are available via OSHPD at the California Open Data Portal. This information may be useful in studying health equity.Definitions:Race/Ethnicity: Race/ethnicity is categorized as: All races/ethnicities, Non-Hispanic (NH) White, NH Black, Asian/Pacific Islander, or Hispanic. "All races" includes all of the above, as well as other and unknown race/ethnicity and American Indian/Alaska Native. The latter two groups are not reported separately due to small numbers for many cancer sites.Racial/Ethnic Composition: Distribution of residents' race/ethnicity (e.g., % Hispanic, % non-Hispanic White, % non-Hispanic Black, % non-Hispanic Asian/Pacific Islander). (Source: US Census, 2010.)Rural: Percent of residents who reside in blocks that are designated as rural. (Source: US Census, 2010.)Foreign Born: Percent of residents who were born outside the United States. (Source: American Community Survey, 2008-2012.)Socioeconomic Status (Neighborhood Level): A composite measure of seven indicator variables created by principal component analysis; indicators include: education, blue-collar job, unemployment, household income, poverty, rent, and house value. Quintiles based on state distribution, with quintile 1 being the lowest SES and 5 being the highest. (Source: American Community Survey, 2008-2012.)Spatial extent: CaliforniaSpatial Unit: MSSACreated: n/aUpdated: n/aSource: California Health MapsContact Email: gbacr@ucsf.eduSource Link: https://www.californiahealthmaps.org/?areatype=mssa&address=&sex=Both&site=AllSite&race=&year=05yr&overlays=none&choropleth=Obesity
Facebook
TwitterSEER Limited-Use cancer incidence data with associated population data. Geographic areas available are county and SEER registry. The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute collects and distributes high quality, comprehensive cancer data from a number of population-based cancer registries. Data include patient demographics, primary tumor site, morphology, stage at diagnosis, first course of treatment, and follow-up for vital status. The SEER Program is the only comprehensive source of population-based information in the United States that includes stage of cancer at the time of diagnosis and survival rates within each stage.
Facebook
TwitterThis is historical data. The update frequency has been set to "Static Data" and is here for historic value. Updated 8/14/2024. Definition of "All Cancer Sites": ICD-O-3 Topography (Site) Codes C00.0 – C80.9 with histology codes including all invasive cancers of all sites except basal and squamous cell skin cancers, and in situ cancer cases of the urinary bladder. Rates are per 100,000 population and are age-adjusted to 2000 U.S. standard population. Rates based on case counts of 1-15 are suppressed per DHMH/MCR Data Use Policy and Procedures.
Facebook
TwitterThis registry contains data on Age-Adjusted Incidence Rates and 95% Confidence Intervals for Brain and Other Nervous System Tumors by Histologic Grouping , Age, and Behavior. Rates are per 100,000 persons and are age-adjusted to the 2000 U.S. standard population (19 age groups - Census P25-1130). CDC’s National Program of Cancer Registries (NPCR) has funded state cancer registries to collect population-based cancer incidence data under Public Law 102-515, the Cancer Registries Amendment Act.
Facebook
TwitterThis dataset contains the annual age-adjusted death rates by race from all forms of cancer among Fulton County residents since 1994. Included are racial groups for which population numbers are large enough to provide accurate figures. The data were extracted from Georgia Department of Public Health Oasis.
Facebook
TwitterAge standardized rate of cancer incidence, by selected sites of cancer and sex, three-year average, census metropolitan areas.
Facebook
TwitterAll individuals diagnosed with cancer from 2000 to 2007 were identified in the Cancer Register of Southern Sweden, but only individuals who were also identified in the Population Register of Scania were included in this cohort. Age- and gender-matched controls were identified in the Population Register of Scania. The controls were reconciled with the cancer registry in southern Sweden so that they had no prior diagnosis of cancer and with the Population Register of Scania that they were alive at time of diagnosis to the matched case. Also spouses to cancer patients were used as controls.
For each individual, healthcare costs were monitored related to the date of diagnosis. Costs for outpatient care, inpatient care, number of days in hospital and medications were included. Costs were also calculated for the controls.
Other information available about the individuals in the cohort are age, sex, domicile, type of tumor and medication.
Purpose:
To study the health cost per individual in relation to mortality and comorbidity.
Facebook
TwitterI was interested in investigating cancer incidence levels in the US by looking at how they vary by race or state. All the data is collected online from Centers for Disease Control and Prevention, State Cancer Profiles, and United States Census Bureau. This dataset can be used to answer questions on the correlation between poverty levels, insurance levels and cancer incidence levels. Further, one can find which cancers affect a certain race more or a certain state.