Cancer was responsible for around 142 deaths per 100,000 population in the United States in 2022. The death rate for cancer has steadily decreased since the 1990’s, but cancer still remains the second leading cause of death in the United States. The deadliest type of cancer for both men and women is cancer of the lung and bronchus which will account for an estimated 65,790 deaths among men alone in 2024. Probability of surviving Survival rates for cancer vary significantly depending on the type of cancer. The cancers with the highest rates of survival include cancers of the thyroid, prostate, and testis, with five-year survival rates as high as 99 percent for thyroid cancer. The cancers with the lowest five-year survival rates include cancers of the pancreas, liver, and esophagus. Risk factors It is difficult to determine why one person develops cancer while another does not, but certain risk factors have been shown to increase a person’s chance of developing cancer. For example, cigarette smoking has been proven to increase the risk of developing various cancers. In fact, around 81 percent of cancers of the lung, bronchus and trachea among adults aged 30 years and older can be attributed to cigarette smoking. A recent poll indicated that many U.S. adults believed smoking cigarettes and using other tobacco products increased a person’s risk of developing cancer, but a much smaller percentage believed the same for proven risk factors such as obesity and drinking alcohol.
In 2025, it was estimated that there would be over 972 thousand new cancer cases among women in the United States. This statistic illustrates the estimated number of new cancer cases and deaths in the United States for 2025, by gender.
https://media.market.us/privacy-policyhttps://media.market.us/privacy-policy
(Source: WHO, American Cancer Society)
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Mortality from cervical cancer (ICD-10 C53 equivalent to ICD-9 180). To reduce deaths from cervical cancer. Legacy unique identifier: P00194
This statistic shows the rate of mortality to cancer incidence excluding non-melanoma skin cancer (NMSC) in England in 2016, by region and gender. Cancer is an aggregation of diseases in which cells within the body grow abnormally, often spreading to other parts of the body. In this year, in the north east of England 51 percent of males and 46 percent females who were diagnosed died as a result of cancer, excluding NMSC, this is the highest recorded rate among males and females.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Mortality from breast cancer (ICD-10 C50 equivalent to ICD-9 174). To reduce deaths from breast cancer. Legacy unique identifier: P00157
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Users can access data about cancer statistics in the United States including but not limited to searches by type of cancer and race, sex, ethnicity, age at diagnosis, and age at death. Background Surveillance Epidemiology and End Results (SEER) database’s mission is to provide information on cancer statistics to help reduce the burden of disease in the U.S. population. The SEER database is a project to the National Cancer Institute. The SEER database collects information on incidence, prevalence, and survival from specific geographic areas representing 28 percent of the United States population. User functionality Users can access a variety of reso urces. Cancer Stat Fact Sheets allow users to look at summaries of statistics by major cancer type. Cancer Statistic Reviews are available from 1975-2008 in table format. Users are also able to build their own tables and graphs using Fast Stats. The Cancer Query system provides more flexibility and a larger set of cancer statistics than F ast Stats but requires more input from the user. State Cancer Profiles include dynamic maps and graphs enabling the investigation of cancer trends at the county, state, and national levels. SEER research data files and SEER*Stat software are available to download through your Internet connection (SEER*Stat’s client-server mode) or via discs shipped directly to you. A signed data agreement form is required to access the SEER data Data Notes Data is available in different formats depending on which type of data is accessed. Some data is available in table, PDF, and html formats. Detailed information about the data is available under “Data Documentation and Variable Recodes”.
In 2022, Australia had the fourth-highest total number of skin cancer cases worldwide and the highest age-standardized rate, with roughly 37 cases of skin cancer per 100,000 population. The graph illustrates the rate of skin cancer in the countries with the highest skin cancer rates worldwide in 2022.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
To reduce deaths from cancer.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
1-year cancer survival by Clinical Commissioning Group for all cancers combined, three cancers combined, breast, colorectal and lung. 1-, 5- and 10-year index of cancer survival estimates are also available by Sustainability and Transformation Partnerships and Cancer Alliances.
The rate of skin cancer in the United States increased for both sexes from 1999 to 2021, with the rate for males consistently higher than that of females. This statistic shows the incidence rate of skin cancer in the U.S. from 1999 to 2021, by gender, per 100,000 population.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 3. 5-year relative survival according to inclusion or non-inclusion of multiple primary cancers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background mortality in 327 populations covered by 279 registries during 1995–2009: mean life expectancy at birth (years), infant mortality rate per 1,000 live births, childhood mortality rate per 1,000 live births, and probabilities (%) of dying between exact ages 15 and 60 years, 60 and 85 years, and 85 and 99 years, by sex and calendar period. (XLS 386 kb)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundBreast cancer (BC) survivors have an increased risk of developing second primary cancers (SPCs); however, it is still unclear if metastasis is a risk factor for developing SPCs. Usually, long-term cancer survivors face an increased risk of developing SPCs; however, less attention has been paid to SPCs in patients with metastatic cancer as the survival outcomes of the patients are greatly reduced.MethodsA total of 17,077 American women diagnosed with breast cancer between 2010 and 2018 were identified from Surveillance, Epidemiology, and End Results (SEER) database and were included in the study. The clinical characteristics, standardized incidence ratio (SIR), standardized mortality ratio (SMR), and patterns of SPCs in BC patients with no metastasis, regional lymph node metastasis, and distant metastasis were investigated. Kaplan-Meier method was used to compare the prognosis of BC patients after developing SPCs with different metastatic status. XGBoost, a high-precision machine learning algorithm, was used to create a prediction model to estimate the prognosis of metastatic breast cancer (MBC) patients with SPCs.ResultsThe results reveal that the SIR (1.01; 95% CI, 0.99–1.03, p>0.05) of SPCs in non-metastasis breast cancer (NMBC) patients was similar to the general population. Further, patients with regional lymph node metastasis showed an 8% increased risk of SPCs (SIR=1.08, 95%CI, 1.05–1.11, p
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundLung cancer incidence and mortality rates are higher in Non-Hispanic Black (NHB) compared to Non-Hispanic White (NHW) individuals in the Chicago metropolitan area, which may be related to exposure to chronic stress which may increase inflammation.Specific aimWe investigated disparities in inflammation as measured by neutrophil to lymphocyte ratio (NLR) in individuals with lung cancer by race and by neighborhood concentrated disadvantage index (CDI).MethodsThis retrospective, cross-sectional study included 263 NHB and NHW adults with lung cancer. We analyzed NLR as a continuous and categorical variable to determine degree and prevalence of inflammation. We used Mann Whitney U, t-tests, Chi square tests, linear and logistic regression models as appropriate.ResultsMore than 60% of subjects had inflammation (NLR ≥ 3) at lung cancer diagnosis. The degree of inflammation was significantly lower in NHB (NLR 5.50 +/- 7.45) compared to NHW individuals (NLR 6.53 +/- 6.53; p=0.01) but did not differ by neighborhood CDI. The prevalence of inflammation (NLR ≥ 3) was significantly lower in NHB (55.07%) compared to NHW individuals (71.20%; p
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Supplemental tables for Association between dermatology follow-up and melanoma survival: a population-based cohort study
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundLung cancer is a leading cause of cancer-related mortality globally. Folate helps to maintain DNA integrity and to regulate gene expression. Serum folate levels may affect the risk of several cancers, including lung cancer. In this study we evaluated the association between serum folate concentration and variations in genes involved in folate metabolism with lung cancer incidence in Poland.MethodsThe study included 366 lung cancer patients and 366 control subjects. We measured serum folate concentration and genotyped six variants in MTHFR, MTR and MTRR genes. The odds ratios of being diagnosed with lung cancer were calculated using conditional univariable and multivariable logistic regression with respect to folate level and genotypes.ResultsThe mean serum folate level was lower in lung cancer cases than in control group (20.07 nmol/l vs. 22.52 nmol/l, p = 0.002). The odds ratio for lung cancer declined with increasing serum content of the folate. The folate concentration of >25.71 nmol/l (IVth quartile) in comparison to
In 2022, there were an estimated 2.48 million new cases of trachea, bronchus, and lung cancer worldwide. Breast cancer was the second most common cancer type at that time with around 2.3 million new cases worldwide.
Number of new cancer cases
Cancer can be caused by internal factors like genetics and mutations, as well as external factors such as smoking and radiation. It occurs in the presence of uncontrolled growth and spread of abnormal cells. However, many cancer cases could be prevented, for example, by omitting cigarette usage and heavy alcohol consumption. Risk of developing cancer tends to increase with age and is most common in older adults. Nevertheless, cancer can develop in individuals of any age. Cancer can be treated through surgery, radiation, and chemotherapy, among other methods.
In the United States, there will be an estimated two million new cancer cases and 611,720 deaths in 2024. Among U.S. men, prostate cancer and lung and bronchus cancers are the most common cancer types as of 2024, totaling an estimated 299,010 and 116,310 cases, respectively. In women, breast cancer and lung and bronchus cancer are the most common newly diagnosed types, totaling 310,720 and 118,270 cases, respectively.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction: As the evaluation indices, cancer grading and subtyping have diverse clinical, pathological, and molecular characteristics with prognostic and therapeutic implications. Although researchers have begun to study cancer differentiation and subtype prediction, most of relevant methods are based on traditional machine learning and rely on single omics data. It is necessary to explore a deep learning algorithm that integrates multi-omics data to achieve classification prediction of cancer differentiation and subtypes.Methods: This paper proposes a multi-omics data fusion algorithm based on a multi-view graph neural network (MVGNN) for predicting cancer differentiation and subtype classification. The model framework consists of a graph convolutional network (GCN) module for learning features from different omics data and an attention module for integrating multi-omics data. Three different types of omics data are used. For each type of omics data, feature selection is performed using methods such as the chi-square test and minimum redundancy maximum relevance (mRMR). Weighted patient similarity networks are constructed based on the selected omics features, and GCN is trained using omics features and corresponding similarity networks. Finally, an attention module integrates different types of omics features and performs the final cancer classification prediction.Results: To validate the cancer classification predictive performance of the MVGNN model, we conducted experimental comparisons with traditional machine learning models and currently popular methods based on integrating multi-omics data using 5-fold cross-validation. Additionally, we performed comparative experiments on cancer differentiation and its subtypes based on single omics data, two omics data, and three omics data.Discussion: This paper proposed the MVGNN model and it performed well in cancer classification prediction based on multiple omics data.
The estimated number of new cancer cases in Mexico is forecast to steadily increase in the coming years. The incidence rate of cancer in the country is expected to reach nearly 393,000 new cases in 2050. This figure amounted to 207,000 cases in 2022. In that year, breast cancer was the most common type of cancer among newly diagnosed patients in the country.
Cancer was responsible for around 142 deaths per 100,000 population in the United States in 2022. The death rate for cancer has steadily decreased since the 1990’s, but cancer still remains the second leading cause of death in the United States. The deadliest type of cancer for both men and women is cancer of the lung and bronchus which will account for an estimated 65,790 deaths among men alone in 2024. Probability of surviving Survival rates for cancer vary significantly depending on the type of cancer. The cancers with the highest rates of survival include cancers of the thyroid, prostate, and testis, with five-year survival rates as high as 99 percent for thyroid cancer. The cancers with the lowest five-year survival rates include cancers of the pancreas, liver, and esophagus. Risk factors It is difficult to determine why one person develops cancer while another does not, but certain risk factors have been shown to increase a person’s chance of developing cancer. For example, cigarette smoking has been proven to increase the risk of developing various cancers. In fact, around 81 percent of cancers of the lung, bronchus and trachea among adults aged 30 years and older can be attributed to cigarette smoking. A recent poll indicated that many U.S. adults believed smoking cigarettes and using other tobacco products increased a person’s risk of developing cancer, but a much smaller percentage believed the same for proven risk factors such as obesity and drinking alcohol.