100+ datasets found
  1. County Cancer Death Rates

    • kaggle.com
    Updated Dec 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). County Cancer Death Rates [Dataset]. https://www.kaggle.com/datasets/thedevastator/county-cancer-death-rates
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 3, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Description

    County Cancer Death Rates

    County-level cancer death rates with related variables

    By Noah Rippner [source]

    About this dataset

    This dataset provides comprehensive information on county-level cancer death and incidence rates, as well as various related variables. It includes data on age-adjusted death rates, average deaths per year, recent trends in cancer death rates, recent 5-year trends in death rates, and average annual counts of cancer deaths or incidence. The dataset also includes the federal information processing standards (FIPS) codes for each county.

    Additionally, the dataset indicates whether each county met the objective of a targeted death rate of 45.5. The recent trend in cancer deaths or incidence is also captured for analysis purposes.

    The purpose of the death.csv file within this dataset is to offer detailed information specifically concerning county-level cancer death rates and related variables. On the other hand, the incd.csv file contains data on county-level cancer incidence rates and additional relevant variables.

    To provide more context and understanding about the included data points, there is a separate file named cancer_data_notes.csv. This file serves to provide informative notes and explanations regarding the various aspects of the cancer data used in this dataset.

    Please note that this particular description provides an overview for a linear regression walkthrough using this dataset based on Python programming language. It highlights how to source and import the data properly before moving into data preparation steps such as exploratory analysis. The walkthrough further covers model selection and important model diagnostics measures.

    It's essential to bear in mind that this example serves as an initial attempt at creating a multivariate Ordinary Least Squares regression model using these datasets from various sources like cancer.gov along with US Census American Community Survey data. This baseline model allows easy comparisons with future iterations intended for improvements or refinements.

    Important columns found within this extensively documented Kaggle dataset include County names along with their corresponding FIPS codes—a standardized coding system by Federal Information Processing Standards (FIPS). Moreover,Met Objective of 45.5? (1) column denotes whether a specific county achieved the targeted objective of a death rate of 45.5 or not.

    Overall, this dataset aims to offer valuable insights into county-level cancer death and incidence rates across various regions, providing policymakers, researchers, and healthcare professionals with essential information for analysis and decision-making purposes

    How to use the dataset

    • Familiarize Yourself with the Columns:

      • County: The name of the county.
      • FIPS: The Federal Information Processing Standards code for the county.
      • Met Objective of 45.5? (1): Indicates whether the county met the objective of a death rate of 45.5 (Boolean).
      • Age-Adjusted Death Rate: The age-adjusted death rate for cancer in the county.
      • Average Deaths per Year: The average number of deaths per year due to cancer in the county.
      • Recent Trend (2): The recent trend in cancer death rates/incidence in the county.
      • Recent 5-Year Trend (2) in Death Rates: The recent 5-year trend in cancer death rates/incidence in the county.
      • Average Annual Count: The average annual count of cancer deaths/incidence in the county.
    • Determine Counties Meeting Objective: Use this dataset to identify counties that have met or not met an objective death rate threshold of 45.5%. Look for entries where Met Objective of 45.5? (1) is marked as True or False.

    • Analyze Age-Adjusted Death Rates: Study and compare age-adjusted death rates across different counties using Age-Adjusted Death Rate values provided as floats.

    • Explore Average Deaths per Year: Examine and compare average annual counts and trends regarding deaths caused by cancer, using Average Deaths per Year as a reference point.

    • Investigate Recent Trends: Assess recent trends related to cancer deaths or incidence by analyzing data under columns such as Recent Trend, Recent Trend (2), and Recent 5-Year Trend (2) in Death Rates. These columns provide information on how cancer death rates/incidence have changed over time.

    • Compare Counties: Utilize this dataset to compare counties based on their cancer death rates and related variables. Identify counties with lower or higher average annual counts, age-adjusted death rates, or recent trends to analyze and understand the factors contributing ...

  2. Deaths by cancer in the U.S. 1950-2023

    • statista.com
    Updated Jun 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Deaths by cancer in the U.S. 1950-2023 [Dataset]. https://www.statista.com/statistics/184566/deaths-by-cancer-in-the-us-since-1950/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Cancer was responsible for around *** deaths per 100,000 population in the United States in 2023. The death rate for cancer has steadily decreased since the 1990’s, but cancer still remains the second leading cause of death in the United States. The deadliest type of cancer for both men and women is cancer of the lung and bronchus which will account for an estimated ****** deaths among men alone in 2025. Probability of surviving Survival rates for cancer vary significantly depending on the type of cancer. The cancers with the highest rates of survival include cancers of the thyroid, prostate, and testis, with five-year survival rates as high as ** percent for thyroid cancer. The cancers with the lowest five-year survival rates include cancers of the pancreas, liver, and esophagus. Risk factors It is difficult to determine why one person develops cancer while another does not, but certain risk factors have been shown to increase a person’s chance of developing cancer. For example, cigarette smoking has been proven to increase the risk of developing various cancers. In fact, around ** percent of cancers of the lung, bronchus and trachea among adults aged 30 years and older can be attributed to cigarette smoking. Other modifiable risk factors for cancer include being obese, drinking alcohol, and sun exposure.

  3. Cancer death rate for females worldwide by type of cancer in 2022

    • statista.com
    Updated Apr 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Cancer death rate for females worldwide by type of cancer in 2022 [Dataset]. https://www.statista.com/statistics/1031301/cancer-death-rate-females-worldwide-by-type/
    Explore at:
    Dataset updated
    Apr 29, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Worldwide
    Description

    Breast cancer was the cancer type with the highest rate of death among females worldwide in 2022. That year, there were around 13 deaths from breast cancer among females per 100,000 population. The death rate for all cancers among females was 76.4 per 100,000 population. This statistic displays the rate of cancer deaths among females worldwide in 2022, by type of cancer.

  4. CDC WONDER: Cancer Statistics

    • catalog.data.gov
    • healthdata.gov
    • +5more
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention, Department of Health & Human Services (2025). CDC WONDER: Cancer Statistics [Dataset]. https://catalog.data.gov/dataset/cdc-wonder-cancer-statistics
    Explore at:
    Dataset updated
    Feb 22, 2025
    Description

    The United States Cancer Statistics (USCS) online databases in WONDER provide cancer incidence and mortality data for the United States for the years since 1999, by year, state and metropolitan areas (MSA), age group, race, ethnicity, sex, childhood cancer classifications and cancer site. Report case counts, deaths, crude and age-adjusted incidence and death rates, and 95% confidence intervals for rates. The USCS data are the official federal statistics on cancer incidence from registries having high-quality data and cancer mortality statistics for 50 states and the District of Columbia. USCS are produced by the Centers for Disease Control and Prevention (CDC) and the National Cancer Institute (NCI), in collaboration with the North American Association of Central Cancer Registries (NAACCR). Mortality data are provided by the Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), National Vital Statistics System (NVSS).

  5. Cancer death rate for males worldwide by type of cancer in 2022

    • statista.com
    Updated Apr 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Cancer death rate for males worldwide by type of cancer in 2022 [Dataset]. https://www.statista.com/statistics/1031287/cancer-death-rate-males-worldwide-by-type/
    Explore at:
    Dataset updated
    Apr 29, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Worldwide
    Description

    Lung cancer was the cancer type with the highest rate of death among males worldwide in 2022. In that year there were around 25 deaths from trachea, bronchus and lung cancer among males per 100,000 population. The death rate for all cancers among males was 109 per 100,000 population. This statistic shows the rate of cancer deaths among males worldwide in 2022, by type of cancer.

  6. d

    Data from: Cancer Deaths

    • catalog.data.gov
    • data.ok.gov
    • +2more
    Updated Nov 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ok.gov (2024). Cancer Deaths [Dataset]. https://catalog.data.gov/dataset/cancer-deaths
    Explore at:
    Dataset updated
    Nov 22, 2024
    Dataset provided by
    data.ok.gov
    Description

    Decrease the cancer death rate from 185.7 per 100,000 in 2013 to 180.3 per 100,000 by 2019.

  7. f

    Observed and Predicted Risk of Breast Cancer Death in Randomized Trials on...

    • plos.figshare.com
    doc
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Philippe Autier; Mathieu Boniol; Michel Smans; Richard Sullivan; Peter Boyle (2023). Observed and Predicted Risk of Breast Cancer Death in Randomized Trials on Breast Cancer Screening [Dataset]. http://doi.org/10.1371/journal.pone.0154113
    Explore at:
    docAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Philippe Autier; Mathieu Boniol; Michel Smans; Richard Sullivan; Peter Boyle
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundThe role of breast screening in breast cancer mortality declines is debated. Screening impacts cancer mortality through decreasing the number of advanced cancers with poor diagnosis, while cancer treatment works through decreasing the case-fatality rate. Hence, reductions in cancer death rates thanks to screening should directly reflect reductions in advanced cancer rates. We verified whether in breast screening trials, the observed reductions in the risk of breast cancer death could be predicted from reductions of advanced breast cancer rates.Patients and MethodsThe Greater New York Health Insurance Plan trial (HIP) is the only breast screening trial that reported stage-specific cancer fatality for the screening and for the control group separately. The Swedish Two-County trial (TCT)) reported size-specific fatalities for cancer patients in both screening and control groups. We computed predicted numbers of breast cancer deaths, from which we calculated predicted relative risks (RR) and (95% confidence intervals). The Age trial in England performed its own calculations of predicted relative risk.ResultsThe observed and predicted RR of breast cancer death were 0.72 (0.56–0.94) and 0.98 (0.77–1.24) in the HIP trial, and 0.79 (0.78–1.01) and 0.90 (0.80–1.01) in the Age trial. In the TCT, the observed RR was 0.73 (0.62–0.87), while the predicted RR was 0.89 (0.75–1.05) if overdiagnosis was assumed to be negligible and 0.83 (0.70–0.97) if extra cancers were excluded.ConclusionsIn breast screening trials, factors other than screening have contributed to reductions in the risk of breast cancer death most probably by reducing the fatality of advanced cancers in screening groups. These factors were the better management of breast cancer patients and the underreporting of breast cancer as the underlying cause of death. Breast screening trials should publish stage-specific fatalities observed in each group.

  8. d

    Compendium – Mortality from lung cancer

    • digital.nhs.uk
    csv, xls
    Updated Jul 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Compendium – Mortality from lung cancer [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/compendium-mortality/current/mortality-from-lung-cancer
    Explore at:
    xls(54.8 kB), csv(14.9 kB)Available download formats
    Dataset updated
    Jul 21, 2022
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Jan 1, 2018 - Dec 31, 2020
    Area covered
    England, Wales
    Description

    Mortality from lung cancer (ICD-10 C33-C34 equivalent to ICD-9 162). To reduce deaths from lung cancer. Legacy unique identifier: P00508

  9. Cancer Mortality & Incidence Rates: (Country LVL)

    • kaggle.com
    Updated Dec 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Cancer Mortality & Incidence Rates: (Country LVL) [Dataset]. https://www.kaggle.com/datasets/thedevastator/us-county-level-cancer-mortality-and-incidence-r/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 3, 2022
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Description

    Cancer Mortality & Incidence Rates: (Country LVL)

    Investigating Cancer Trends over time

    By Data Exercises [source]

    About this dataset

    This dataset is a comprehensive collection of data from county-level cancer mortality and incidence rates in the United States between 2000-2014. This data provides an unprecedented level of detail into cancer cases, deaths, and trends at a local level. The included columns include County, FIPS, age-adjusted death rate, average death rate per year, recent trend (2) in death rates, recent 5-year trend (2) in death rates and average annual count for each county. This dataset can be used to provide deep insight into the patterns and effects of cancer on communities as well as help inform policy decisions related to mitigating risk factors or increasing preventive measures such as screenings. With this comprehensive set of records from across the United States over 15 years, you will be able to make informed decisions regarding individual patient care or policy development within your own community!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides comprehensive US county-level cancer mortality and incidence rates from 2000 to 2014. It includes the mortality and incidence rate for each county, as well as whether the county met the objective of 45.5 deaths per 100,000 people. It also provides information on recent trends in death rates and average annual counts of cases over the five year period studied.

    This dataset can be extremely useful to researchers looking to study trends in cancer death rates across counties. By using this data, researchers will be able to gain valuable insight into how different counties are performing in terms of providing treatment and prevention services for cancer patients and whether preventative measures and healthcare access are having an effect on reducing cancer mortality rates over time. This data can also be used to inform policy makers about counties needing more target prevention efforts or additional resources for providing better healthcare access within at risk communities.

    When using this dataset, it is important to pay close attention to any qualitative columns such as “Recent Trend” or “Recent 5-Year Trend (2)” that may provide insights into long term changes that may not be readily apparent when using quantitative variables such as age-adjusted death rate or average deaths per year over shorter periods of time like one year or five years respectively. Additionally, when studying differences between different counties it is important to take note of any standard FIPS code differences that may indicate that data was collected by a different source with a difference methodology than what was used in other areas studied

    Research Ideas

    • Using this dataset, we can identify patterns in cancer mortality and incidence rates that are statistically significant to create treatment regimens or preventive measures specifically targeting those areas.
    • This data can be useful for policymakers to target areas with elevated cancer mortality and incidence rates so they can allocate financial resources to these areas more efficiently.
    • This dataset can be used to investigate which factors (such as pollution levels, access to medical care, genetic make up) may have an influence on the cancer mortality and incidence rates in different US counties

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

    Columns

    File: death .csv | Column name | Description | |:-------------------------------------------|:-------------------------------------------------------------------...

  10. Deaths from breast cancer in the U.S. 1950-2023

    • statista.com
    Updated Jun 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Deaths from breast cancer in the U.S. 1950-2023 [Dataset]. https://www.statista.com/statistics/184615/deaths-by-breast-cancer-in-the-us-since-1950/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The rate of breast cancer deaths in the U.S. has dramatically declined since 1950. As of 2023, the death rate from breast cancer was **** per 100,000 population. However, cancer is a serious public health issue in the United States and is the second leading cause of death among women. Breast cancer incidence Breast cancer symptoms include lumps or thickening of the breast tissue and may include changes to the skin. Breast cancer is driven by many factors, but age is a known risk factor. Among all age groups, the highest number of invasive breast cancer cases were among those aged 60 to 69. The incidence rate of new breast cancer cases is higher in some ethnicities than others. White, non-Hispanic women have the highest incidence rate of breast cancer, followed by non-Hispanic Black women. Breast cancer treatment Breast cancer treatments usually involve several methods, including surgery, chemotherapy and biological therapy. Types of cancer diagnosed at earlier stages often require fewer treatments. A majority of early stage breast cancer cases in the U.S. receive breast conserving surgery and radiation therapy.

  11. d

    Breast cancer death rate in women

    • data.gov.tw
    ods, pdf, xlsx
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Executive Yuan, Breast cancer death rate in women [Dataset]. https://data.gov.tw/en/datasets/151296
    Explore at:
    ods, xlsx, pdfAvailable download formats
    Dataset authored and provided by
    Executive Yuan
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Description

    Female breast cancer death count Female deceased with ICD10 underlying cause code range of C50_x000D_ Crude death rate Number of deaths from each cause / mid-year population * 100,000

  12. Cancer death rate (per 100,000), New Jersey, by year: Beginning 2010

    • healthdata.nj.gov
    • data.wu.ac.at
    application/rdfxml +5
    Updated Dec 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Death Certificate Database, Office of Vital Statistics and Registry, New Jersey Department of Health (2020). Cancer death rate (per 100,000), New Jersey, by year: Beginning 2010 [Dataset]. https://healthdata.nj.gov/dataset/Cancer-death-rate-per-100-000-New-Jersey-by-year-B/sc3j-a37s
    Explore at:
    csv, application/rdfxml, json, application/rssxml, xml, tsvAvailable download formats
    Dataset updated
    Dec 8, 2020
    Dataset provided by
    New Jersey Department of Healthhttps://www.nj.gov/health/
    Authors
    Death Certificate Database, Office of Vital Statistics and Registry, New Jersey Department of Health
    Area covered
    New Jersey
    Description

    Rate: Number of deaths due to all kinds of Cancer per 100,000 Population.

    Definition: Number of deaths per 100,000 with malignant neoplasm (cancer) as the underlying cause (ICD-10 codes: C00-C97).

    Data Sources:

    (1) Centers for Disease Control and Prevention, National Center for Health Statistics. Compressed Mortality File. CDC WONDER On-line Database accessed at http://wonder.cdc.gov/cmf-icd10.html

    (2) Death Certificate Database, Office of Vital Statistics and Registry, New Jersey Department of Health

    (3) Population Estimates, State Data Center, New Jersey Department of Labor and Workforce Development

  13. f

    Cancer - Total deaths by cancer type 1948–2019

    • figure.nz
    csv
    Updated Dec 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Figure.NZ (2023). Cancer - Total deaths by cancer type 1948–2019 [Dataset]. https://figure.nz/table/lmKyJIRhqT1oT29k
    Explore at:
    csvAvailable download formats
    Dataset updated
    Dec 14, 2023
    Dataset provided by
    Figure.NZ
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New Zealand
    Description

    This data provides high-level data on historical registrations (or cases) and deaths, including information about the cancer types and breakdowns by gender variables.

  14. d

    Mortality from lung cancer: crude death rate, by age group, 3-year average,...

    • digital.nhs.uk
    Updated Jul 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Mortality from lung cancer: crude death rate, by age group, 3-year average, MFP [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/compendium-mortality/current/mortality-from-lung-cancer
    Explore at:
    Dataset updated
    Jul 21, 2021
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Description

    Legacy unique identifier: P00508

  15. Cancer types causing Death

    • kaggle.com
    Updated Apr 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shuvo Kumar Basak-4004.o (2025). Cancer types causing Death [Dataset]. http://doi.org/10.34740/kaggle/dsv/11587862
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 27, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Shuvo Kumar Basak-4004.o
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Source: https://ourworldindata.org/cancer

    The dataset titled "Cancer Types Causing Death," sourced from Our World in Data, provides a comprehensive overview of global cancer mortality trends. According to the dataset, lung cancer leads as the most fatal cancer worldwide, with approximately 1.8 million deaths in 2022, accounting for 18.7% of all cancer-related fatalities . Following lung cancer, colorectal cancer ranks second, causing about 900,000 deaths (9.3%), while liver cancer and breast cancer account for 760,000 (7.8%) and 670,000 (6.9%) deaths, respectively. Stomach cancer also remains a significant cause of death, with 660,000 fatalities (6.8%) .

    The dataset highlights that lung cancer's prevalence is closely linked to tobacco use, particularly in regions like Asia. In contrast, breast cancer predominantly affects women, while colorectal cancer impacts both genders equally. Notably, the dataset indicates a decline in age-standardized death rates for certain cancers, such as stomach cancer, due to improved hygiene, sanitation, and antibiotic treatments targeting Helicobacter pylori infections . Our World in Data

    Additionally, the dataset underscores the global disparity in cancer mortality, with approximately 70% of cancer deaths occurring in low- and middle-income countries . This disparity is attributed to factors like limited access to early detection, treatment, and preventive measures. The dataset serves as a valuable resource for understanding the global burden of cancer and the need for targeted public health interventions. World Health Organization

  16. d

    Mortality Rates

    • catalog.data.gov
    • data.amerigeoss.org
    • +3more
    Updated Nov 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lake County Illinois GIS (2024). Mortality Rates [Dataset]. https://catalog.data.gov/dataset/mortality-rates-6fb72
    Explore at:
    Dataset updated
    Nov 22, 2024
    Dataset provided by
    Lake County Illinois GIS
    Description

    Mortality Rates for Lake County, Illinois. Explanation of field attributes: Average Age of Death – The average age at which a people in the given zip code die. Cancer Deaths – Cancer deaths refers to individuals who have died of cancer as the underlying cause. This is a rate per 100,000. Heart Disease Related Deaths – Heart Disease Related Deaths refers to individuals who have died of heart disease as the underlying cause. This is a rate per 100,000. COPD Related Deaths – COPD Related Deaths refers to individuals who have died of chronic obstructive pulmonary disease (COPD) as the underlying cause. This is a rate per 100,000.

  17. f

    Declining Death Rates Reflect Progress against Cancer

    • plos.figshare.com
    tiff
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmedin Jemal; Elizabeth Ward; Michael Thun (2023). Declining Death Rates Reflect Progress against Cancer [Dataset]. http://doi.org/10.1371/journal.pone.0009584
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Ahmedin Jemal; Elizabeth Ward; Michael Thun
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundThe success of the “war on cancer” initiated in 1971 continues to be debated, with trends in cancer mortality variably presented as evidence of progress or failure. We examined temporal trends in death rates from all-cancer and the 19 most common cancers in the United States from 1970–2006.Methodology/Principal FindingsWe analyzed trends in age-standardized death rates (per 100,000) for all cancers combined, the four most common cancers, and 15 other sites from 1970–2006 in the United States using joinpoint regression model. The age-standardized death rate for all-cancers combined in men increased from 249.3 in 1970 to 279.8 in 1990, and then decreased to 221.1 in 2006, yielding a net decline of 21% and 11% from the 1990 and 1970 rates, respectively. Similarly, the all-cancer death rate in women increased from 163.0 in 1970 to 175.3 in 1991 and then decreased to 153.7 in 2006, a net decline of 12% and 6% from the 1991 and 1970 rates, respectively. These decreases since 1990/91 translate to preventing of 561,400 cancer deaths in men and 205,700 deaths in women. The decrease in death rates from all-cancers involved all ages and racial/ethnic groups. Death rates decreased for 15 of the 19 cancer sites, including the four major cancers, with lung, colorectum and prostate cancers in men and breast and colorectum cancers in women.Conclusions/SignificanceProgress in reducing cancer death rates is evident whether measured against baseline rates in 1970 or in 1990. The downturn in cancer death rates since 1990 result mostly from reductions in tobacco use, increased screening allowing early detection of several cancers, and modest to large improvements in treatment for specific cancers. Continued and increased investment in cancer prevention and control, access to high quality health care, and research could accelerate this progress.

  18. w

    Oropharyngeal Cancer Death Rate (per 100,000), New Jersey, by year:...

    • data.wu.ac.at
    • healthdata.nj.gov
    application/excel +5
    Updated Jun 8, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Loretta Kelly (2018). Oropharyngeal Cancer Death Rate (per 100,000), New Jersey, by year: Beginning 2009-2011 [Dataset]. https://data.wu.ac.at/odso/healthdata_nj_gov/Z3F1My15eWhz
    Explore at:
    xml, application/excel, application/xml+rdf, json, xlsx, csvAvailable download formats
    Dataset updated
    Jun 8, 2018
    Dataset provided by
    Loretta Kelly
    Area covered
    New Jersey
    Description

    Rate: Number of deaths due to oropharyngeal cancer per 100,000 Population.

    Definition: Number of deaths per 100,000 with malignant neoplasm (cancer) of the lip, oral cavity and pharynx as the underlying cause of death (ICD-10 codes: C00-C14).

    Data Sources:

    (1) Centers for Disease Control and Prevention, National Center for Health Statistics. Compressed Mortality File. CDC WONDER On-line Database accessed at http://wonder.cdc.gov/cmf-icd10.html

    (2) Death Certificate Database, Office of Vital Statistics and Registry, New Jersey Department of Health

    (3) Population Estimates, State Data Center, New Jersey Department of Labor and Workforce Development

  19. Cancer death rate worldwide by type of cancer in 2022

    • statista.com
    Updated Apr 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Cancer death rate worldwide by type of cancer in 2022 [Dataset]. https://www.statista.com/statistics/1031260/cancer-death-rate-worldwide-by-type/
    Explore at:
    Dataset updated
    Apr 29, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Worldwide
    Description

    Lung cancer had the highest rate of death among all cancer types worldwide in 2022. In that year, there were around 17 deaths from trachea, bronchus and lung cancer per 100,000 population. The death rate for all cancers was 91.1 per 100,000 population. This statistic shows the rate of cancer deaths worldwide in 2022, by type of cancer.

  20. A

    ‘🎗️ Cancer Rates by U.S. State’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘🎗️ Cancer Rates by U.S. State’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-cancer-rates-by-u-s-state-5f6a/af56eb24/?iid=000-919&v=presentation
    Explore at:
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Analysis of ‘🎗️ Cancer Rates by U.S. State’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/cancer-rates-by-u-s-statee on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.

    The rates are the numbers out of 100,000 people who developed or died from cancer each year.

    Incidence Rates by State
    The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.

    • *Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.

    • ‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.

    • †Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.

    Death Rates by State
    Rates of dying from cancer also vary from state to state.

    • *Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.

    • †Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.

    Source: https://www.cdc.gov/cancer/dcpc/data/state.htm

    This dataset was created by Adam Helsinger and contains around 100 samples along with Range, Rate, technical information and other features such as: - Range - Rate - and more.

    How to use this dataset

    • Analyze Range in relation to Rate
    • Study the influence of Range on Rate
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit Adam Helsinger

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
The Devastator (2023). County Cancer Death Rates [Dataset]. https://www.kaggle.com/datasets/thedevastator/county-cancer-death-rates
Organization logo

County Cancer Death Rates

County-level cancer death rates with related variables

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Dec 3, 2023
Dataset provided by
Kaggle
Authors
The Devastator
Description

County Cancer Death Rates

County-level cancer death rates with related variables

By Noah Rippner [source]

About this dataset

This dataset provides comprehensive information on county-level cancer death and incidence rates, as well as various related variables. It includes data on age-adjusted death rates, average deaths per year, recent trends in cancer death rates, recent 5-year trends in death rates, and average annual counts of cancer deaths or incidence. The dataset also includes the federal information processing standards (FIPS) codes for each county.

Additionally, the dataset indicates whether each county met the objective of a targeted death rate of 45.5. The recent trend in cancer deaths or incidence is also captured for analysis purposes.

The purpose of the death.csv file within this dataset is to offer detailed information specifically concerning county-level cancer death rates and related variables. On the other hand, the incd.csv file contains data on county-level cancer incidence rates and additional relevant variables.

To provide more context and understanding about the included data points, there is a separate file named cancer_data_notes.csv. This file serves to provide informative notes and explanations regarding the various aspects of the cancer data used in this dataset.

Please note that this particular description provides an overview for a linear regression walkthrough using this dataset based on Python programming language. It highlights how to source and import the data properly before moving into data preparation steps such as exploratory analysis. The walkthrough further covers model selection and important model diagnostics measures.

It's essential to bear in mind that this example serves as an initial attempt at creating a multivariate Ordinary Least Squares regression model using these datasets from various sources like cancer.gov along with US Census American Community Survey data. This baseline model allows easy comparisons with future iterations intended for improvements or refinements.

Important columns found within this extensively documented Kaggle dataset include County names along with their corresponding FIPS codes—a standardized coding system by Federal Information Processing Standards (FIPS). Moreover,Met Objective of 45.5? (1) column denotes whether a specific county achieved the targeted objective of a death rate of 45.5 or not.

Overall, this dataset aims to offer valuable insights into county-level cancer death and incidence rates across various regions, providing policymakers, researchers, and healthcare professionals with essential information for analysis and decision-making purposes

How to use the dataset

  • Familiarize Yourself with the Columns:

    • County: The name of the county.
    • FIPS: The Federal Information Processing Standards code for the county.
    • Met Objective of 45.5? (1): Indicates whether the county met the objective of a death rate of 45.5 (Boolean).
    • Age-Adjusted Death Rate: The age-adjusted death rate for cancer in the county.
    • Average Deaths per Year: The average number of deaths per year due to cancer in the county.
    • Recent Trend (2): The recent trend in cancer death rates/incidence in the county.
    • Recent 5-Year Trend (2) in Death Rates: The recent 5-year trend in cancer death rates/incidence in the county.
    • Average Annual Count: The average annual count of cancer deaths/incidence in the county.
  • Determine Counties Meeting Objective: Use this dataset to identify counties that have met or not met an objective death rate threshold of 45.5%. Look for entries where Met Objective of 45.5? (1) is marked as True or False.

  • Analyze Age-Adjusted Death Rates: Study and compare age-adjusted death rates across different counties using Age-Adjusted Death Rate values provided as floats.

  • Explore Average Deaths per Year: Examine and compare average annual counts and trends regarding deaths caused by cancer, using Average Deaths per Year as a reference point.

  • Investigate Recent Trends: Assess recent trends related to cancer deaths or incidence by analyzing data under columns such as Recent Trend, Recent Trend (2), and Recent 5-Year Trend (2) in Death Rates. These columns provide information on how cancer death rates/incidence have changed over time.

  • Compare Counties: Utilize this dataset to compare counties based on their cancer death rates and related variables. Identify counties with lower or higher average annual counts, age-adjusted death rates, or recent trends to analyze and understand the factors contributing ...

Search
Clear search
Close search
Google apps
Main menu