Facebook
TwitterIn the period 2019 to 2023, the death rate for prostate cancer among Hispanic Americans was **** per 100,000 population. This statistic shows the death rate for prostate cancer among U.S. males from 2019 to 2023, by race and ethnicity.
Facebook
TwitterIn 2019, it was estimated that around **** percent of all cancer deaths among men and **** percent among women aged 30 years or above in the United States could be attributed to potentially modifiable risk factors. At that time, cigarette smoking attributed to around **** percent of cancer deaths among men and **** percent of deaths among women. This statistic shows the proportion of cancer deaths in the United States attributable to select risk factors in 2019, by gender.
Facebook
TwitterCancer death rates by county, all races (includes Hispanic/Latino), all sexes, all ages, 2019-2023. Death data were provided by the National Vital Statistics System. Death rates (deaths per 100,000 population per year) are age-adjusted to the 2000 US standard population (20 age groups: <1, 1-4, 5-9, ... , 80-84, 85-89, 90+). Rates calculated using SEER*Stat. Population counts for denominators are based on Census populations as modified by the National Cancer Institute. The US Population Data File is used for mortality data. The Average Annual Percent Change is based onthe APCs calculated by the Joinpoint Regression Program (Version 4.9.0.0). Due to data availability issues, the time period used in the calculation of the joinpoint regression model may differ for selected counties. Counties with a (3) after their name may have their joinpoint regresssion model calculated using a different time period due to data availability issues.
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This release summarises the diagnoses in 2019 registered by NDRS covering all registerable neoplasms (all cancers, all in situ tumours, some benign tumours and all tumours that have uncertain or unknown behaviours)
Facebook
TwitterFrom 2019 to 2023, around 34 percent of prostate cancer deaths in the United States were among men aged 75 to 84 years. During that period, the median age of death for prostate cancer was 79 years. This statistic shows the distribution of prostate cancer deaths in the United States between 2019 and 2023, by age.
Facebook
TwitterIn 2019, it was estimated that all deaths from cancer in the cervix uteri and Kaposi sarcoma among women in the United States aged 30 years and older could be attributed to potentially modifiable risk factors. This statistic shows the proportion of cancer deaths among women in the United States attributable to modifiable risk factors in 2019.
Facebook
TwitterAll cause of death rates by county, Hispanic or Latino (any race), both sexes, all ages, rural and urban, 2019-2023. Death data were provided by the National Vital Statistics System. Death rates (deaths per 100,000 population per year) are age-adjusted to the 2000 US standard population (20 age groups: <1, 1-4, 5-9, ... , 80-84, 85-89, 90+). Rates calculated using SEER*Stat. Population counts for denominators are based on Census populations as modified by the National Cancer Institute. The US Population Data File is used for mortality data.
Facebook
TwitterIn 2019, it was estimated that around 44 percent of all cancer deaths among adults aged 30 years or above in the United States could be attributed to potentially modifiable risk factors. At that time, cigarette smoking attributed to around 28.5 percent of all cancer deaths. This statistic shows the proportion of cancer deaths in the United States attributable to select risk factors in 2019.
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
The Get Data Out programme from the National Disease Registration Service publishes detailed statistics about small groups of cancer patients in a way that ensures patient anonymity is maintained. The Get Data Out programme currently covers 15 cancer sites. This data release is a corrected re-release of detailed statistics for 2013-2019 treatment data. The correction means that surgery counts are no longer slightly underreported. There are some small changes in group sizes of usually no more than 2%, although this is larger for non-melanoma skin cancers. The 15 cancer sites now covered by Get Data Out are: ‘Bladder, Urethra, Renal Pelvis and Ureter’, ‘Bone cancer’, ‘Brain, meningeal and other primary CNS tumours’, ‘Eye cancer’, ‘Head and neck’, ‘Kaposi sarcoma’, ‘Kidney’, ‘Oesophageal and Stomach’, ‘Ovary, fallopian tube and primary peritoneal carcinomas’, ‘Pancreas’, ‘Prostate’, ‘Sarcoma’, ‘Skin tumours’, ‘Soft tissue and peripheral nerve cancer’, ‘Testicular tumours including post-pubertal teratomas’. Anonymisation standards are designed into the data by aggregation at the outset. Patients diagnosed with a certain type of tumour are divided into many smaller groups, each of which contains approximately 100 patients with the same characteristics. These groups are aimed to be clinically meaningful and differ across cancer sites. For each group of patients, Get Data Out routinely publish statistics about incidence, routes to diagnosis, treatments and survival. All releases and documentation are available on the Get Data Out main technical page. Before using the data, we recommend that you read the guide for first time users. The data is available in an open format for anyone to access and use. We hope that by releasing anonymous detailed data like this we can help researchers, the public and patients themselves discover more about cancer. If you have feedback or any other queries about Get Data Out, please email us at NDRSenquires@nhs.net and mention 'Get Data Out' in your email.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised rate of mortality from oral cancer (ICD-10 codes C00-C14) in persons of all ages and sexes per 100,000 population.RationaleOver the last decade in the UK (between 2003-2005 and 2012-2014), oral cancer mortality rates have increased by 20% for males and 19% for females1Five year survival rates are 56%. Most oral cancers are triggered by tobacco and alcohol, which together account for 75% of cases2. Cigarette smoking is associated with an increased risk of the more common forms of oral cancer. The risk among cigarette smokers is estimated to be 10 times that for non-smokers. More intense use of tobacco increases the risk, while ceasing to smoke for 10 years or more reduces it to almost the same as that of non-smokers3. Oral cancer mortality rates can be used in conjunction with registration data to inform service planning as well as comparing survival rates across areas of England to assess the impact of public health prevention policies such as smoking cessation.References:(1) Cancer Research Campaign. Cancer Statistics: Oral – UK. London: CRC, 2000.(2) Blot WJ, McLaughlin JK, Winn DM et al. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res 1988; 48: 3282-7. (3) La Vecchia C, Tavani A, Franceschi S et al. Epidemiology and prevention of oral cancer. Oral Oncology 1997; 33: 302-12.Definition of numeratorAll cancer mortality for lip, oral cavity and pharynx (ICD-10 C00-C14) in the respective calendar years aggregated into quinary age bands (0-4, 5-9,…, 85-89, 90+). This does not include secondary cancers or recurrences. Data are reported according to the calendar year in which the cancer was diagnosed.Counts of deaths for years up to and including 2019 have been adjusted where needed to take account of the MUSE ICD-10 coding change introduced in 2020. Detailed guidance on the MUSE implementation is available at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/causeofdeathcodinginmortalitystatisticssoftwarechanges/january2020Counts of deaths for years up to and including 2013 have been double adjusted by applying comparability ratios from both the IRIS coding change and the MUSE coding change where needed to take account of both the MUSE ICD-10 coding change and the IRIS ICD-10 coding change introduced in 2014. The detailed guidance on the IRIS implementation is available at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/impactoftheimplementationofirissoftwareforicd10causeofdeathcodingonmortalitystatisticsenglandandwales/2014-08-08Counts of deaths for years up to and including 2010 have been triple adjusted by applying comparability ratios from the 2011 coding change, the IRIS coding change and the MUSE coding change where needed to take account of the MUSE ICD-10 coding change, the IRIS ICD-10 coding change and the ICD-10 coding change introduced in 2011. The detailed guidance on the 2011 implementation is available at https://webarchive.nationalarchives.gov.uk/ukgwa/20160108084125/http://www.ons.gov.uk/ons/guide-method/classifications/international-standard-classifications/icd-10-for-mortality/comparability-ratios/index.htmlDefinition of denominatorPopulation-years (aggregated populations for the three years) for people of all ages, aggregated into quinary age bands (0-4, 5-9, …, 85-89, 90+)
Facebook
TwitterIn 2023, there were 18.7 deaths from prostate cancer per 100,000 men in the United States. This statistic shows the prostate cancer death rate in the United States from 1975 to 2023.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Basic Metadata *Rates per 100,000 population. Age-adjusted rates per 100,000 2000 US standard population.
**Blank Cells: Rates not calculated for fewer than 5 events. Rates not calculated in cases where zip code is unknown.
***API: Asian/Pacific Islander. ***AIAN: American Indian/Alaska Native.
Prepared by: County of San Diego, Health & Human Services Agency, Public Health Services, Community Health Statistics Unit, 2019.
Code Source: ICD-9CM - AHRQ HCUP CCS v2015. ICD-10CM - AHRQ HCUP CCS v2018. ICD-10 Mortality - California Department of Public Health, Group Cause of Death Codes 2013; NHCS ICD-10 2e-v1 2017.
Data Guide, Dictionary, and Codebook: https://www.sandiegocounty.gov/content/dam/sdc/hhsa/programs/phs/CHS/Community%20Profiles/Public%20Health%20Services%20Codebook_Data%20Guide_Metadata_10.2.19.xlsx
Facebook
TwitterRank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data support a paper of this title:
A Geotemporospatial and Causal Inference Epidemiological Exploration of Substance and Cannabinoid Exposure as Drivers of Rising US Pediatric Cancer Rates
Data represent a compilation of various data inputs from numerous sources including the National Cancer Institute SEER*Stat National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database: NPCR and SEER Incidence – U.S. Cancer Statistics Public Use Research Database, 2019 submission (2001-2017), United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Released June 2020. Available at www.cdc.gov/cancer/public-use program; the National survey of Drug Use and Health conducted by the Substance Abuse and Mental Health Services Administration; and the US Census bureau.
Data also include inverse probability weights for cannabis exposure.
Data also include their geospatial linkage network constructed for all US states which makes Alaska and Hawaii spatially connected to the contiguous USA.
Data also include the R script used to conduct and prepare the analysis.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Trends in mortality rates for selected cancers, United States, 1975-2019
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
One-year and five-year net survival for adults (15-99) in England diagnosed with one of 29 common cancers, by age and sex.
Facebook
TwitterIn 2019, it was estimated that all deaths from Kaposi sarcoma among men in the United States aged 30 years and older could be attributed to potentially modifiable risk factors. Subsequently, around 95 percent of deaths due to melanoma of the skin were attributable to modifiable risk factors. This statistic shows the proportion of cancer deaths among men in the United States attributable to modifiable risk factors in 2019.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Basic Metadata
*Rates per 100,000 population. Age-adjusted rates per 100,000 2000 US standard population.
**Blank Cells: Rates not calculated for fewer than 5 events. Rates not calculated in cases where zip code is unknown.
***API: Asian/Pacific Islander. ***AIAN: American Indian/Alaska Native.
Prepared by: County of San Diego, Health & Human Services Agency, Public Health Services, Community Health Statistics Unit, 2019.
Code Source: ICD-9CM - AHRQ HCUP CCS v2015. ICD-10CM - AHRQ HCUP CCS v2018. ICD-10 Mortality - California Department of Public Health, Group Cause of Death Codes 2013; NHCS ICD-10 2e-v1 2017.
Data Guide, Dictionary, and Codebook: https://www.sandiegocounty.gov/content/dam/sdc/hhsa/programs/phs/CHS/Community%20Profiles/Public%20Health%20Services%20Codebook_Data%20Guide_Metadata_10.2.19.xlsx
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Basic Metadata *Rates per 100,000 population. Age-adjusted rates per 100,000 2000 US standard population.
**Blank Cells: Rates not calculated for fewer than 5 events. Rates not calculated in cases where zip code is unknown.
***API: Asian/Pacific Islander. ***AIAN: American Indian/Alaska Native.
Prepared by: County of San Diego, Health & Human Services Agency, Public Health Services, Community Health Statistics Unit, 2019.
Code Source: ICD-9CM - AHRQ HCUP CCS v2015. ICD-10CM - AHRQ HCUP CCS v2018. ICD-10 Mortality - California Department of Public Health, Group Cause of Death Codes 2013; NHCS ICD-10 2e-v1 2017.
Data Guide, Dictionary, and Codebook: https://www.sandiegocounty.gov/content/dam/sdc/hhsa/programs/phs/CHS/Community%20Profiles/Public%20Health%20Services%20Codebook_Data%20Guide_Metadata_10.2.19.xlsx
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The role of religion and politics in the responses to the coronavirus pandemic raises the question of their influence on the risk of other diseases. This study focuses on age-adjusted death rates of cancer, heart disease, and infant mortality per 1000 live births before the pandemic (2018-2019) and COVID-19 in 2020-2021. Eight hypothesized predictors of health effects were analyzed by examining their correlation to age-adjusted death rates among U.S. states, percentage who pray once or more daily, Republican influence on state health policies as indicated by the percentage vote for Trump in 2016, percent of household incomes below poverty, median family income divided by a cost-of-living index, the Gini income inequality index, urban concentration of the population, physicians per capita, and public health expenditures per capita. Since prayer for divine intervention is common to otherwise diverse religious beliefs and practices, the percentage of people claiming to pray daily in each state was used to indicate potential religious influence. All of the death rates were higher in states where more people claimed to pray daily, and where Trump received a larger percentage of the vote. Except for COVID-19, the death rates were consistently lower in states with higher public health expenditures per capita. Only COVID-19 was correlated to physicians per capita, lower where there were more physicians. Corrected statistically for the other factors, income per cost of living explains no variance. Heart disease and COVID-19 death rates were higher in areas with more income inequality. All of the disease rates were in correlation with more rural populations. Correlation of daily prayer with smoking cigarettes, and neglect of public health recommendations for fruit and vegetable consumption and COVID-19 vaccination suggests that prayer may be substituted for preventive practices.
Facebook
TwitterIn the period 2019 to 2023, the death rate for prostate cancer among Hispanic Americans was **** per 100,000 population. This statistic shows the death rate for prostate cancer among U.S. males from 2019 to 2023, by race and ethnicity.