Facebook
TwitterLung cancer is the deadliest cancer worldwide, accounting for 1.82 million deaths in 2022. The second most deadly form of cancer is colorectum cancer, followed by liver cancer. However, lung cancer is only the sixth leading cause of death worldwide, with heart disease and stroke accounting for the highest share of deaths. Male vs. female cases Given that lung cancer causes the highest number of cancer deaths worldwide, it may be unsurprising to learn that lung cancer is the most common form of new cancer cases among males. However, among females, breast cancer is by far the most common form of new cancer cases. In fact, breast cancer is the most prevalent cancer worldwide, followed by prostate cancer. Prostate cancer is a very close second to lung cancer among the cancers with the highest rates of new cases among men. Male vs. female deaths Lung cancer is by far the deadliest form of cancer among males but is the second deadliest form of cancer among females. Breast cancer, the most prevalent form of cancer among females worldwide, is also the deadliest form of cancer among females. Although prostate cancer is the second most prevalent cancer among men, it is the fifth deadliest cancer. Lung, liver, stomach, colorectum, and oesophagus cancers all have higher deaths rates among males.
Facebook
TwitterIn 2022, there were over 9.7 million cancer deaths worldwide. It is projected that the number of deaths due to cancer worldwide will increase to almost 18.5 million by 2050. The most prevalent type of cancer in 2022 was breast cancer with around 48 prevalent cases per 100,000 population. However, lung cancer is by far the deadliest type of cancer.
Lung Cancer Lung cancer is a malignant lung tumor characterized by uncontrolled cell growth in tissues of the lung. In 2022, around 1.82 million cancer deaths, or 19 percent of all cancer deaths worldwide were attributed to lung cancer. Long-term smoking is known to be a major cause of lung cancer. People who never quit smoking are 24 percent more likely to die before age 65 than people who never smoked in their lives.
Treatment In 2023, it was estimated that there were around 4,492 cancer immunotherapy products in R&D phases, as well as another 3,622 other cancer products in the R&D product pipeline. In the same year, it was projected that there were 965 active drugs for breast cancer, as well as 925 active drugs for non-small cell lung cancer.
Facebook
TwitterLung cancer had the highest rate of death among all cancer types worldwide in 2022. In that year, there were around 17 deaths from trachea, bronchus and lung cancer per 100,000 population. The death rate for all cancers was 91.1 per 100,000 population. This statistic shows the rate of cancer deaths worldwide in 2022, by type of cancer.
Facebook
Twitterhttps://media.market.us/privacy-policyhttps://media.market.us/privacy-policy
(Source: WHO, American Cancer Society)
Facebook
TwitterBreast cancer was the cancer type with the highest rate of death among females worldwide in 2022. That year, there were around 13 deaths from breast cancer among females per 100,000 population. The death rate for all cancers among females was 76.4 per 100,000 population. This statistic displays the rate of cancer deaths among females worldwide in 2022, by type of cancer.
Facebook
Twitterhttps://max-website20-images.s3.ap-south-1.amazonaws.com/MHC_Digital_Treatments_Available_For_Blood_Cancer_Part_13_925x389pix_150322n_01_dc4d07f20e.jpg" alt="Is Blood Cancer Curable - Types, Diagnosis & Cure | Max Hospital">
The dataset is an excellent resource for researchers, healthcare professionals, and policymakers who are interested in understanding the global burden of cancer and its impact on populations.
>In 2017, 9.6 million people are estimated to have died from the various forms of cancer. Every sixth death in the world is due to cancer, making it the second leading cause of death – second only to cardiovascular diseases.1
Progress against many other causes of deaths and demographic drivers of increasing population size, life expectancy and — particularly in higher-income countries — aging populations mean that the total number of cancer deaths continues to increase. This is a very personal topic to many: nearly everyone knows or has lost someone dear to them from this collection of diseases.
## Data vastness of this dataset: 01. annual-number-of-deaths-by-cause data. 02. total-cancer-deaths-by-type data. 03. cancer-death-rates-by-age data. 04. share-of-population-with-cancer-types data. 05. share-of-population-with-cancer data. 06. number-of-people-with-cancer-by-age data. 07. share-of-population-with-cancer-by-age data. 08. disease-burden-rates-by-cancer-types data. 09. cancer-deaths-rate-and-age-standardized-rate-index data.
Facebook
TwitterFor both sexes of all ages, the total number of cancer deaths was estimated to be approximately 9.74 million in 2022. Almost one fifth of these deaths were from lung cancer. This statistic describes the distribution of cancer deaths worldwide in 2022, sorted by type of cancer.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 2. Table S1 Total cancer deaths, years of life lost (YLLs), and potential gains in life expectancy (PGLEs) by eliminating total cancer-related deaths, by world region, sex, and HDI, 2022. Table S2 Total cancer deaths and premature cancer deaths, by country and sex, 2022. Table S3 Years of life lost (YLLs) and potential gains in life expectancy (PGLEs) caused by total cancer deaths and premature cancer deaths, by country and sex, 2022. Table S4 Years of life lost (YLLs) and potential gains in life expectancy (PGLEs) caused by total cancer deaths and premature cancer deaths worldwide, by cancer site and sex, 2022. Table S5 The proportions (%) of years of life lost (YLLs) attributable to cancer-related premature deaths in 2022, by cancer site, region, and sex [% (95% UI)]. Table S6 The leading cause of years of life lost (YLLs) due to premature cancer deaths, by country and sex, 2022. Table S7 The potential gains in life expectancy (PGLEs) by eliminating premature cancer deaths in 2022, by cancer site, region, and sex (years, 95% UI). Table S8 The leading cause of potential gains in life expectancy (PGLEs) attributable to premature cancer deaths, by country and sex, 2022.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Users can access data about cancer statistics, specifically incidence and mortality worldwide for the 27 major types of cancer. Background Cancer Mondial is maintained by the Section of Cancer Information (CIN) of International Agency for Research on Cancer by the World Health Organization. Users can access CIN databases including GLOBOCAN, CI5(Cancer Incidence in Five Continents), WHO, ACCIS(Automated Childhood Cancer Information System), ECO (European Cancer Observatory), NORDCAN and Survcan. User functionality Users can access a variety of databases. CIN Databases: GLOBOCAN provides acces s to the most recent estimates (for 2008) of the incidence of 27 major cancers and mortality from 27 major cancers worldwide. CI5 (Cancer Incidence in Five Continents) provides access to detailed information on the incidence of cancer recorded by cancer registries (regional or national) worldwide. WHO presents long time series of selected cancer mortality recorded in selected countries of the world. Collaborative projects: ACCIS (Automated Childhood Cancer Information System) provides access to data on cancer incidence and survival of children collected by European cancer registries. ECO (European Cancer Observatory) provides access to the estimates (for 2008) of the incidence of, and mortality f rom 25 major cancers in the countries of the European Union (EU-27). NORDCAN presents up-to-date long time series of cancer incidence, mortality, prevalence and survival from 40 cancers recorded by the Nordic countries. SurvCan presents cancer survival data from cancer registries in low and middle income regions of the world. Data Notes Data is available in different formats depending on which type of data is accessed. Some data is available in table, PDF, and html formats. Detailed information about the data is available.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cuba CU: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data was reported at 17.600 % in 2021. This records an increase from the previous number of 16.900 % for 2020. Cuba CU: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data is updated yearly, averaging 17.050 % from Dec 2000 (Median) to 2021, with 22 observations. The data reached an all-time high of 18.300 % in 2001 and a record low of 16.200 % in 2012. Cuba CU: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Cuba – Table CU.World Bank.WDI: Social: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).;World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).;Weighted average;This is the Sustainable Development Goal indicator 3.4.1 [https://unstats.un.org/sdgs/metadata/].
Facebook
TwitterNumber and rate of new cancer cases diagnosed annually from 1992 to the most recent diagnosis year available. Included are all invasive cancers and in situ bladder cancer with cases defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3). Random rounding of case counts to the nearest multiple of 5 is used to prevent inappropriate disclosure of health-related information.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised rate of mortality from oral cancer (ICD-10 codes C00-C14) in persons of all ages and sexes per 100,000 population.RationaleOver the last decade in the UK (between 2003-2005 and 2012-2014), oral cancer mortality rates have increased by 20% for males and 19% for females1Five year survival rates are 56%. Most oral cancers are triggered by tobacco and alcohol, which together account for 75% of cases2. Cigarette smoking is associated with an increased risk of the more common forms of oral cancer. The risk among cigarette smokers is estimated to be 10 times that for non-smokers. More intense use of tobacco increases the risk, while ceasing to smoke for 10 years or more reduces it to almost the same as that of non-smokers3. Oral cancer mortality rates can be used in conjunction with registration data to inform service planning as well as comparing survival rates across areas of England to assess the impact of public health prevention policies such as smoking cessation.References:(1) Cancer Research Campaign. Cancer Statistics: Oral – UK. London: CRC, 2000.(2) Blot WJ, McLaughlin JK, Winn DM et al. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res 1988; 48: 3282-7. (3) La Vecchia C, Tavani A, Franceschi S et al. Epidemiology and prevention of oral cancer. Oral Oncology 1997; 33: 302-12.Definition of numeratorAll cancer mortality for lip, oral cavity and pharynx (ICD-10 C00-C14) in the respective calendar years aggregated into quinary age bands (0-4, 5-9,…, 85-89, 90+). This does not include secondary cancers or recurrences. Data are reported according to the calendar year in which the cancer was diagnosed.Counts of deaths for years up to and including 2019 have been adjusted where needed to take account of the MUSE ICD-10 coding change introduced in 2020. Detailed guidance on the MUSE implementation is available at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/causeofdeathcodinginmortalitystatisticssoftwarechanges/january2020Counts of deaths for years up to and including 2013 have been double adjusted by applying comparability ratios from both the IRIS coding change and the MUSE coding change where needed to take account of both the MUSE ICD-10 coding change and the IRIS ICD-10 coding change introduced in 2014. The detailed guidance on the IRIS implementation is available at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/impactoftheimplementationofirissoftwareforicd10causeofdeathcodingonmortalitystatisticsenglandandwales/2014-08-08Counts of deaths for years up to and including 2010 have been triple adjusted by applying comparability ratios from the 2011 coding change, the IRIS coding change and the MUSE coding change where needed to take account of the MUSE ICD-10 coding change, the IRIS ICD-10 coding change and the ICD-10 coding change introduced in 2011. The detailed guidance on the 2011 implementation is available at https://webarchive.nationalarchives.gov.uk/ukgwa/20160108084125/http://www.ons.gov.uk/ons/guide-method/classifications/international-standard-classifications/icd-10-for-mortality/comparability-ratios/index.htmlDefinition of denominatorPopulation-years (aggregated populations for the three years) for people of all ages, aggregated into quinary age bands (0-4, 5-9, …, 85-89, 90+)
Facebook
TwitterIn 2010, cancer deaths accounted for more than 15% of all deaths worldwide, and this fraction is estimated to rise in the coming years. Increased cancer mortality has been observed in immigrant populations, but a comprehensive analysis by country of birth has not been conducted. We followed all individuals living in Sweden between 1961 and 2009 (7,109,327 men and 6,958,714 women), and calculated crude cancer mortality rates and age-standardized rates (ASRs) using the world population for standardization. We observed a downward trend in all-site ASRs over the past two decades in men regardless of country of birth but no such trend was found in women. All-site cancer mortality increased with decreasing levels of education regardless of sex and country of birth (p for trend <0.001). We also compared cancer mortality rates among foreign-born (13.9%) and Sweden-born (86.1%) individuals and determined the effect of education level and sex estimated by mortality rate ratios (MRRs) using multivariable Poisson regression. All-site cancer mortality was slightly higher among foreign-born than Sweden-born men (MRR = 1.05, 95% confidence interval 1.04–1.07), but similar mortality risks was found among foreign-born and Sweden-born women. Men born in Angola, Laos, and Cambodia had the highest cancer mortality risk. Women born in all countries except Iceland, Denmark, and Mexico had a similar or smaller risk than women born in Sweden. Cancer-specific mortality analysis showed an increased risk for cervical and lung cancer in both sexes but a decreased risk for colon, breast, and prostate cancer mortality among foreign-born compared with Sweden-born individuals. Further studies are required to fully understand the causes of the observed inequalities in mortality across levels of education and countries of birth.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides detailed information on global cancer incidence rates and numbers for both males and females in the year 2022. It includes data on various types of cancer, both including and excluding non-melanoma skin cancer (NMSC). The dataset is organized into two CSV files:
Global cancer incidence in males and females (2022).csv: Contains detailed data for individual countries, including cancer incidence rates and numbers for both males and females, categorized by including and excluding NMSC. Overall global cancer incidence (2022).csv: Provides an aggregated view of global cancer incidence, summarizing key statistics across different regions and demographics.
Facebook
TwitterIntroductionThe burden of cancer-related mortality of common malignancies has been reported worldwide. However, whether bone cancer (BC), as a highly aggressive and heterogeneous group of rare cancers, followed a similar or distinct epidemiological pattern during such process remains largely unknown. We aimed to analyze the mortality and the temporal trends of BC in relation to gender, age, and premature death in Shanghai, China.MethodsWe conducted a population-based analysis of the mortality data of BC in Shanghai Pudong New Area (PNA) from 2005 to 2020. The epidemiological characteristics and long-term trends in crude mortality rates (CMRs), age-standardized mortality rates worldwide (ASMRWs), and rate of years of life lost (YLL) was analyzed using the Joinpoint regression program. The demographic and non-demographic factors affecting the mortality rate were evaluated by the decomposition method.ResultsThere are 519 BC-specific deaths accounting for 0.15% of all 336,823 deaths and 0.49% of cancer-specific death in PNA. The CMR and ASMRW of BC were 1.15/105 person-year and 0.61/105 person-year, respectively. The YLL due to premature death from BC was 6,539.39 years, with the age group of 60–69 years having the highest YLL of 1,440.79 years. The long-term trend of CMR, ASMRW, and YLL rate significantly decreased by −5.14%, −7.64%, and −7.27%, respectively, per year (all p < 0.05) in the past 16 years. However, the proportion of BC-specific death within the total cancer-specific death dropped to a plateau without further improvement since 2016, and a remarkable gender and age disparity was noticed in the observed reduction in mortality. Specifically, the elderly benefited less but accounted for a larger percentage of BC population in the last decades. Although the overall mortality of BC decreased, there was still a significant upward trend toward an increased mortality rate caused by the aging of the BC patients.ConclusionOur study provides novel insights on the epidemiological characteristics and longitudinal dynamics of BC in a fast urbanization and transitioning city. As a rare disease affecting all ages, the burden of BC among the elderly emerged to form an understudied and unmet medical need in an aging society.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
** Description**
This dataset contains data about lung cancer Mortality and is a comprehensive collection of patient information, specifically focused on individuals diagnosed with cancer. This dataset contains comprehensive information on 800,000 individuals related to lung cancer diagnosis, treatment, and outcomes. With 16 well-structured columns. This large-scale dataset is designed to aid researchers, data scientists, and healthcare professionals in studying patterns, building predictive models, and enhancing early detection and treatment strategies.
🌍 The Societal Impact of Lung Cancer
Lung cancer is not just a disease — it's a global crisis that steals time, health, and hope from millions of people every year. As the #1 cause of cancer deaths worldwide, it takes more lives annually than breast, colon, and prostate cancer combined.
But behind every statistic is a story:
A parent who never saw their child graduate.
A worker who had to leave their job too soon.
A community that lost a leader, a friend, a neighbor.
Why does this matter? Lung cancer often goes undetected until it's too late. It’s aggressive, silent, and devastating — especially in underserved areas where early detection is rare and treatment options are limited. It doesn’t just affect patients. It affects families, economies, and healthcare systems on a massive scale.
This dataset represents more than numbers. It represents 800,000 real-world stories — people who can help us unlock patterns, train models, and advance life-saving research.
By working with this data, you're not just analyzing a dataset — you're stepping into the fight against one of humanity’s deadliest diseases.
Let’s turn insight into impact. (😊The above descriptions is generated with the help of AI, Just wanted to share this dataset That all. Thank you)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Liberia LR: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data was reported at 17.700 NA in 2016. This records an increase from the previous number of 17.500 NA for 2015. Liberia LR: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data is updated yearly, averaging 18.100 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 19.000 NA in 2005 and a record low of 17.500 NA in 2015. Liberia LR: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Liberia – Table LR.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ecuador EC: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data was reported at 12.200 NA in 2016. This records a decrease from the previous number of 12.400 NA for 2015. Ecuador EC: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data is updated yearly, averaging 13.000 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 15.600 NA in 2000 and a record low of 12.200 NA in 2016. Ecuador EC: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ecuador – Table EC.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;
Facebook
TwitterLung cancer was the cancer type with the highest rate of death among males worldwide in 2022. In that year there were around 25 deaths from trachea, bronchus and lung cancer among males per 100,000 population. The death rate for all cancers among males was 109 per 100,000 population. This statistic shows the rate of cancer deaths among males worldwide in 2022, by type of cancer.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background: Non-cancer causes of death in patients with colorectal cancer (CRC) have not received much attention until now. The purpose of the current study is to investigate the non-cancer causes of death in patients with CRC at different periods of latency.Methods: Eligible patients with CRC were included from the Surveillance, Epidemiology, and End Results (SEER) database, and standardized mortality ratios (SMRs) were calculated using the SEER*Stat software 8.3.8.Results: A total of 475,771 patients with CRC were included, of whom 230,841 patients died during the follow-up period. Within 5 years, CRC was the leading cause of death. Over time, non-cancer causes of death account for an increasing proportion. When followed up for more than 10 years, non-cancer deaths accounted for 71.9% of all deaths worldwide. Cardiovascular diseases were the most common causes of non-cancer deaths, accounting for 15.4% of the total mortality. Patients had a significantly higher risk of death from septicemia within the first year after diagnosis compared with the general population (SMR, 3.39; 95% CI, 3.11–3.69). Within 5–10 years after CRC diagnosis, patients had a significantly higher risk of death from diabetes mellitus (SMR, 1.27; 95% CI, 1.19–1.36). During the course of more than 10 years, patients with CRC had a significantly higher risk of death from atherosclerosis (SMR 1.47; 95% CI, 1.11–1.9).Conclusions: Although CRC has always been the leading cause of death in patients with CRC, non-cancer causes of death should not be ignored. For patients with cancer, we should not only focus on anti-tumor therapies but also pay attention to the occurrence of other risks to prevent and manage them in advance.
Facebook
TwitterLung cancer is the deadliest cancer worldwide, accounting for 1.82 million deaths in 2022. The second most deadly form of cancer is colorectum cancer, followed by liver cancer. However, lung cancer is only the sixth leading cause of death worldwide, with heart disease and stroke accounting for the highest share of deaths. Male vs. female cases Given that lung cancer causes the highest number of cancer deaths worldwide, it may be unsurprising to learn that lung cancer is the most common form of new cancer cases among males. However, among females, breast cancer is by far the most common form of new cancer cases. In fact, breast cancer is the most prevalent cancer worldwide, followed by prostate cancer. Prostate cancer is a very close second to lung cancer among the cancers with the highest rates of new cases among men. Male vs. female deaths Lung cancer is by far the deadliest form of cancer among males but is the second deadliest form of cancer among females. Breast cancer, the most prevalent form of cancer among females worldwide, is also the deadliest form of cancer among females. Although prostate cancer is the second most prevalent cancer among men, it is the fifth deadliest cancer. Lung, liver, stomach, colorectum, and oesophagus cancers all have higher deaths rates among males.