Facebook
TwitterIn the period 2018 to 2022, a total of approximately *** men per 100,000 inhabitants died of cancers of all kinds in the United States, compared to an overall cancer death rate of *** per 100,000 population among women. This statistic shows cancer death rates in the U.S. for the period from 2018 to 2022, by type and gender.
Facebook
TwitterIn 2023, Hawaii had the lowest death rate from cancer among all U.S. states, with around 119 deaths per 100,000 population. The states with the highest cancer death rates at that time were Kentucky, West Virginia, and Mississippi. This statistic shows cancer death rates in the United States in 2023, by state.
Facebook
TwitterThe cancer type with the highest age-standardized mortality rate in Latin America and the Caribbean in 2022 was prostate cancer with **** deaths per 100,000 population. Breast cancer ranked second, with a mortality rate of **** people per 100,000 population. In that year, breast cancer was the cancer type with the highest prevalence in the region.
Facebook
TwitterBreast cancer was the cancer type with the highest rate of death among females worldwide in 2022. That year, there were around 13 deaths from breast cancer among females per 100,000 population. The death rate for all cancers among females was 76.4 per 100,000 population. This statistic displays the rate of cancer deaths among females worldwide in 2022, by type of cancer.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.
The rates are the numbers out of 100,000 people who developed or died from cancer each year.
Incidence Rates by State The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Death Rates by State Rates of dying from cancer also vary from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundThe success of the “war on cancer” initiated in 1971 continues to be debated, with trends in cancer mortality variably presented as evidence of progress or failure. We examined temporal trends in death rates from all-cancer and the 19 most common cancers in the United States from 1970–2006.Methodology/Principal FindingsWe analyzed trends in age-standardized death rates (per 100,000) for all cancers combined, the four most common cancers, and 15 other sites from 1970–2006 in the United States using joinpoint regression model. The age-standardized death rate for all-cancers combined in men increased from 249.3 in 1970 to 279.8 in 1990, and then decreased to 221.1 in 2006, yielding a net decline of 21% and 11% from the 1990 and 1970 rates, respectively. Similarly, the all-cancer death rate in women increased from 163.0 in 1970 to 175.3 in 1991 and then decreased to 153.7 in 2006, a net decline of 12% and 6% from the 1991 and 1970 rates, respectively. These decreases since 1990/91 translate to preventing of 561,400 cancer deaths in men and 205,700 deaths in women. The decrease in death rates from all-cancers involved all ages and racial/ethnic groups. Death rates decreased for 15 of the 19 cancer sites, including the four major cancers, with lung, colorectum and prostate cancers in men and breast and colorectum cancers in women.Conclusions/SignificanceProgress in reducing cancer death rates is evident whether measured against baseline rates in 1970 or in 1990. The downturn in cancer death rates since 1990 result mostly from reductions in tobacco use, increased screening allowing early detection of several cancers, and modest to large improvements in treatment for specific cancers. Continued and increased investment in cancer prevention and control, access to high quality health care, and research could accelerate this progress.
Facebook
TwitterThe United States Cancer Statistics (USCS) online databases in WONDER provide cancer incidence and mortality data for the United States for the years since 1999, by year, state and metropolitan areas (MSA), age group, race, ethnicity, sex, childhood cancer classifications and cancer site. Report case counts, deaths, crude and age-adjusted incidence and death rates, and 95% confidence intervals for rates. The USCS data are the official federal statistics on cancer incidence from registries having high-quality data and cancer mortality statistics for 50 states and the District of Columbia. USCS are produced by the Centers for Disease Control and Prevention (CDC) and the National Cancer Institute (NCI), in collaboration with the North American Association of Central Cancer Registries (NAACCR). Mortality data are provided by the Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), National Vital Statistics System (NVSS).
Facebook
TwitterAnnual percent change and average annual percent change in age-standardized cancer mortality rates since 1984 to the most recent data year. The table includes a selection of commonly diagnosed invasive cancers and causes of death are defined based on the World Health Organization International Classification of Diseases, ninth revision (ICD-9) from 1984 to 1999 and on its tenth revision (ICD-10) from 2000 to the most recent year.
Facebook
TwitterDeath rate has been age-adjusted by the 2000 U.S. standard population. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Lung cancer is a leading cause of cancer-related death in the US. People who smoke have the greatest risk of lung cancer, though lung cancer can also occur in people who have never smoked. Most cases are due to long-term tobacco smoking or exposure to secondhand tobacco smoke. Cities and communities can take an active role in curbing tobacco use and reducing lung cancer by adopting policies to regulate tobacco retail; reducing exposure to secondhand smoke in outdoor public spaces, such as parks, restaurants, or in multi-unit housing; and improving access to tobacco cessation programs and other preventive services.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
Facebook
TwitterLung cancer is the deadliest cancer worldwide, accounting for 1.82 million deaths in 2022. The second most deadly form of cancer is colorectum cancer, followed by liver cancer. However, lung cancer is only the sixth leading cause of death worldwide, with heart disease and stroke accounting for the highest share of deaths. Male vs. female cases Given that lung cancer causes the highest number of cancer deaths worldwide, it may be unsurprising to learn that lung cancer is the most common form of new cancer cases among males. However, among females, breast cancer is by far the most common form of new cancer cases. In fact, breast cancer is the most prevalent cancer worldwide, followed by prostate cancer. Prostate cancer is a very close second to lung cancer among the cancers with the highest rates of new cases among men. Male vs. female deaths Lung cancer is by far the deadliest form of cancer among males but is the second deadliest form of cancer among females. Breast cancer, the most prevalent form of cancer among females worldwide, is also the deadliest form of cancer among females. Although prostate cancer is the second most prevalent cancer among men, it is the fifth deadliest cancer. Lung, liver, stomach, colorectum, and oesophagus cancers all have higher deaths rates among males.
Facebook
TwitterBy Noah Rippner [source]
This dataset offers a unique opportunity to examine the pattern and trends of county-level cancer rates in the United States at the individual county level. Using data from cancer.gov and the US Census American Community Survey, this dataset allows us to gain insight into how age-adjusted death rate, average deaths per year, and recent trends vary between counties – along with other key metrics like average annual counts, met objectives of 45.5?, recent trends (2) in death rates, etc., captured within our deep multi-dimensional dataset. We are able to build linear regression models based on our data to determine correlations between variables that can help us better understand cancers prevalence levels across different counties over time - making it easier to target health initiatives and resources accurately when necessary or desired
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This kaggle dataset provides county-level datasets from the US Census American Community Survey and cancer.gov for exploring correlations between county-level cancer rates, trends, and mortality statistics. This dataset contains records from all U.S counties concerning the age-adjusted death rate, average deaths per year, recent trend (2) in death rates, average annual count of cases detected within 5 years, and whether or not an objective of 45.5 (1) was met in the county associated with each row in the table.
To use this dataset to its fullest potential you need to understand how to perform simple descriptive analytics which includes calculating summary statistics such as mean, median or other numerical values; summarizing categorical variables using frequency tables; creating data visualizations such as charts and histograms; applying linear regression or other machine learning techniques such as support vector machines (SVMs), random forests or neural networks etc.; differentiating between supervised vs unsupervised learning techniques etc.; reviewing diagnostics tests to evaluate your models; interpreting your findings; hypothesizing possible reasons and patterns discovered during exploration made through data visualizations ; Communicating and conveying results found via effective presentation slides/documents etc.. Having this understanding will enable you apply different methods of analysis on this data set accurately ad effectively.
Once these concepts are understood you are ready start exploring this data set by first importing it into your visualization software either tableau public/ desktop version/Qlikview / SAS Analytical suite/Python notebooks for building predictive models by loading specified packages based on usage like Scikit Learn if Python is used among others depending on what tool is used . Secondly a brief description of the entire table's column structure has been provided above . Statistical operations can be carried out with simple queries after proper knowledge of basic SQL commands is attained just like queries using sub sets can also be performed with good command over selecting columns while specifying conditions applicable along with sorting operations being done based on specific attributes as required leading up towards writing python codes needed when parsing specific portion of data desired grouping / aggregating different categories before performing any kind of predictions / models can also activated create post joining few tables possible , when ever necessary once again varying across tools being used Thereby diving deep into analyzing available features determined randomly thus creating correlation matrices figures showing distribution relationships using correlation & covariance matrixes , thus making evaluations deducing informative facts since revealing trends identified through corresponding scatter plots from a given metric gathered from appropriate fields!
- Building a predictive cancer incidence model based on county-level demographic data to identify high-risk areas and target public health interventions.
- Analyzing correlations between age-adjusted death rate, average annual count, and recent trends in order to develop more effective policy initiatives for cancer prevention and healthcare access.
- Utilizing the dataset to construct a machine learning algorithm that can predict county-level mortality rates based on socio-economic factors such as poverty levels and educational attainment rates
If you use this dataset i...
Facebook
TwitterThis dataset contains data about lung cancer Mortality. This database is a comprehensive collection of patient information, specifically focused on individuals diagnosed with cancer. It is designed to facilitate the analysis of various factors that may influence cancer prognosis and treatment outcomes. The database includes a range of demographic, medical, and treatment-related variables, capturing essential details about each patient's condition and history.
Key components of the database include:
Demographic Information: Basic details about the patients such as age, gender, and country of residence. This helps in understanding the distribution of cancer cases across different populations and regions.
Medical History: Information about each patient’s medical background, including family history of cancer, smoking status, Body Mass Index (BMI), cholesterol levels, and the presence of other health conditions such as hypertension, asthma, cirrhosis, and other cancers. This section is crucial for identifying potential risk factors and comorbidities.
Cancer Diagnosis: Detailed data about the cancer diagnosis itself, including the date of diagnosis and the stage of cancer at the time of diagnosis. This helps in tracking the progression and severity of the disease.
Treatment Details: Information regarding the type of treatment each patient received, the end date of the treatment, and the outcome (whether the patient survived or not). This is essential for evaluating the effectiveness of different treatment approaches.
The structure of the database allows for in-depth analysis and research, making it possible to identify patterns, correlations, and potential causal relationships between various factors and cancer outcomes. It is a valuable resource for medical researchers, epidemiologists, and healthcare providers aiming to improve cancer treatment and patient care.
id: A unique identifier for each patient in the dataset. age: The age of the patient at the time of diagnosis. gender: The gender of the patient (e.g., male, female). country: The country or region where the patient resides. diagnosis_date: The date on which the patient was diagnosed with lung cancer. cancer_stage: The stage of lung cancer at the time of diagnosis (e.g., Stage I, Stage II, Stage III, Stage IV). family_history: Indicates whether there is a family history of cancer (e.g., yes, no). smoking_status: The smoking status of the patient (e.g., current smoker, former smoker, never smoked, passive smoker). bmi: The Body Mass Index of the patient at the time of diagnosis. cholesterol_level: The cholesterol level of the patient (value). hypertension: Indicates whether the patient has hypertension (high blood pressure) (e.g., yes, no). asthma: Indicates whether the patient has asthma (e.g., yes, no). cirrhosis: Indicates whether the patient has cirrhosis of the liver (e.g., yes, no). other_cancer: Indicates whether the patient has had any other type of cancer in addition to the primary diagnosis (e.g., yes, no). treatment_type: The type of treatment the patient received (e.g., surgery, chemotherapy, radiation, combined). end_treatment_date: The date on which the patient completed their cancer treatment or died. survived: Indicates whether the patient survived (e.g., yes, no).
This dataset contains artificially generated data with as close a representation of reality as possible. This data is free to use without any licence required.
Good luck Gakusei!
Facebook
TwitterThis table contains 26010 series, with data for years 1996 - 1996 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (170 items: Canada; Newfoundland and Labrador; Health and Community Services St. John's Region; Newfoundland and Labrador; Health and Community Services Eastern Region; Newfoundland and Labrador ...), Sex (3 items: Both sexes; Females; Males ...), Selected causes of death (ICD-9) (17 items: Total; all causes of death; Colorectal cancer; Lung cancer; All malignant neoplasms (cancers) ...), Characteristics (3 items: Mortality; Low 95% confidence interval; mortality; High 95% confidence interval; mortality ...).
Facebook
TwitterIn 2010, cancer deaths accounted for more than 15% of all deaths worldwide, and this fraction is estimated to rise in the coming years. Increased cancer mortality has been observed in immigrant populations, but a comprehensive analysis by country of birth has not been conducted. We followed all individuals living in Sweden between 1961 and 2009 (7,109,327 men and 6,958,714 women), and calculated crude cancer mortality rates and age-standardized rates (ASRs) using the world population for standardization. We observed a downward trend in all-site ASRs over the past two decades in men regardless of country of birth but no such trend was found in women. All-site cancer mortality increased with decreasing levels of education regardless of sex and country of birth (p for trend <0.001). We also compared cancer mortality rates among foreign-born (13.9%) and Sweden-born (86.1%) individuals and determined the effect of education level and sex estimated by mortality rate ratios (MRRs) using multivariable Poisson regression. All-site cancer mortality was slightly higher among foreign-born than Sweden-born men (MRR = 1.05, 95% confidence interval 1.04–1.07), but similar mortality risks was found among foreign-born and Sweden-born women. Men born in Angola, Laos, and Cambodia had the highest cancer mortality risk. Women born in all countries except Iceland, Denmark, and Mexico had a similar or smaller risk than women born in Sweden. Cancer-specific mortality analysis showed an increased risk for cervical and lung cancer in both sexes but a decreased risk for colon, breast, and prostate cancer mortality among foreign-born compared with Sweden-born individuals. Further studies are required to fully understand the causes of the observed inequalities in mortality across levels of education and countries of birth.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundAmidst the rising breast cancer burden in Asia, we aim to predict the future mortality risk due to breast cancer and identify the risk-attributable deaths for breast cancer among East and South Asian countries.MethodsWe used country-level data to predict the trends in the next decade relating to female breast cancer mortality by employing data from 1990 to 2019 from the Global Burden of Disease 2019 study. We used the stochastic mortality modeling and prediction techniques to forecast the age-specific and risk-attributable breast cancer mortality trends at the regional and national levels of East and South Asia.ResultsThe number of deaths caused by the breast cancer is predicted to increase in East and South Asian countries in the next decade (2020–2030). Age-standardized death rate (ASDR) of breast cancer is predicted to increase by 7.0% from 9.20/100,000 (95% CI: 6.04–12.12) in 1990 to 9.88/100,000 (95% CI: 7.12–11.4) in 2030 in East Asia, and about 35% increase from 13.4/100,000 (95% CI: 9.21–16.02) in 1990 to 18.1/100,000 (95% CI: 13.23–21.10) in 2030 in South Asia. At the national level, the highest percent change in ASDR between 1990 and 2030 was reported in Pakistan (a 62% increase) and Nepal (a 47% increase). The highest percent change in breast cancer mortality between 2020 and 2030 for females of age group 80–84 years was observed in Pakistan [21.6, (95% CI, 20.6–94.7)], followed by Afghanistan [13.3 (4.0–80.8)], and Nepal [36.6 (11.1–125.7)] as compared to the other countries. In the females of aged 50–80 years, the predicted death rates were associated with high body mass index, high-fasting plasma glucose, and diet high in red meat, across the majority of countries under study. Furthermore, reductions in percent change in mortality rates occurred in several countries with increases in sociodemographic index (SDI), notably across high SDI countries.ConclusionBreast cancer mortality risk varies substantially across East and South Asian countries with higher mortality risk in low/middle SDI countries. Early detection using screening, awareness among females and health workers, and cost-effective and timely treatment of patients with breast cancer is vital in stemming the tide of breast cancer in the next decade.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT Objective To determine and discuss cancer mortality rates in southern Brazil between 1988 and 2012. Methods This was a critical review of literature based on analysis of data concerning incidence and mortality of prostate cancer, breast cancer, bronchial and lung cancer, and uterine and ovarian cancer. Data were collected from the online database of the Brazil Instituto Nacional de Câncer José Alencar Gomes da Silva. Results The southern Brazil is the leading region of cancer incidence and mortality. Data on the cancer profile of this population are scarce especially in the States of Santa Catarina and Paraná. We observed inconsistency between data from hospital registers and death recorded. Conclusion Both cancer incidence and the mortality are high in Brazil. In addition, Brazil has great numbers of registers and deaths for cancer compared to worldwide rates. Regional risk factors might explain the high cancer rates.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised rate of mortality from oral cancer (ICD-10 codes C00-C14) in persons of all ages and sexes per 100,000 population.RationaleOver the last decade in the UK (between 2003-2005 and 2012-2014), oral cancer mortality rates have increased by 20% for males and 19% for females1Five year survival rates are 56%. Most oral cancers are triggered by tobacco and alcohol, which together account for 75% of cases2. Cigarette smoking is associated with an increased risk of the more common forms of oral cancer. The risk among cigarette smokers is estimated to be 10 times that for non-smokers. More intense use of tobacco increases the risk, while ceasing to smoke for 10 years or more reduces it to almost the same as that of non-smokers3. Oral cancer mortality rates can be used in conjunction with registration data to inform service planning as well as comparing survival rates across areas of England to assess the impact of public health prevention policies such as smoking cessation.References:(1) Cancer Research Campaign. Cancer Statistics: Oral – UK. London: CRC, 2000.(2) Blot WJ, McLaughlin JK, Winn DM et al. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res 1988; 48: 3282-7. (3) La Vecchia C, Tavani A, Franceschi S et al. Epidemiology and prevention of oral cancer. Oral Oncology 1997; 33: 302-12.Definition of numeratorAll cancer mortality for lip, oral cavity and pharynx (ICD-10 C00-C14) in the respective calendar years aggregated into quinary age bands (0-4, 5-9,…, 85-89, 90+). This does not include secondary cancers or recurrences. Data are reported according to the calendar year in which the cancer was diagnosed.Counts of deaths for years up to and including 2019 have been adjusted where needed to take account of the MUSE ICD-10 coding change introduced in 2020. Detailed guidance on the MUSE implementation is available at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/causeofdeathcodinginmortalitystatisticssoftwarechanges/january2020Counts of deaths for years up to and including 2013 have been double adjusted by applying comparability ratios from both the IRIS coding change and the MUSE coding change where needed to take account of both the MUSE ICD-10 coding change and the IRIS ICD-10 coding change introduced in 2014. The detailed guidance on the IRIS implementation is available at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/impactoftheimplementationofirissoftwareforicd10causeofdeathcodingonmortalitystatisticsenglandandwales/2014-08-08Counts of deaths for years up to and including 2010 have been triple adjusted by applying comparability ratios from the 2011 coding change, the IRIS coding change and the MUSE coding change where needed to take account of the MUSE ICD-10 coding change, the IRIS ICD-10 coding change and the ICD-10 coding change introduced in 2011. The detailed guidance on the 2011 implementation is available at https://webarchive.nationalarchives.gov.uk/ukgwa/20160108084125/http://www.ons.gov.uk/ons/guide-method/classifications/international-standard-classifications/icd-10-for-mortality/comparability-ratios/index.htmlDefinition of denominatorPopulation-years (aggregated populations for the three years) for people of all ages, aggregated into quinary age bands (0-4, 5-9, …, 85-89, 90+)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cervical cancer (CC) is a public health problem with a high disease burden and mortality in developing countries. In Brazil, areas with low human development index have the highest incidence rates of Brazil and upward temporal trend for this disease. The Northeast region has the second highest incidence of cervical cancer (20.47 new cases / 100,000 women). In this region, the mortality rates are similar to rates in countries that do not have a health system with a universal access screening program, as in Brazil. Thus, this study aimed to analyze the effects of age, period and birth cohorts on mortality from cervical cancer in the Northeast region of Brazil. Estimable functions predicted the effects of age, period and birth cohort. The average mortality rate was 10.35 deaths per 100,000 women during the period analyzed (1980–2014). The highest mortality rate per 100,000 women was observed in Maranhão (24.39 deaths), and the lowest mortality rate was observed in Bahia (11.24 deaths). According to the period effects, only the state of Rio Grande do Norte showed a reduction in mortality risk in the five years of the 2000s. There was a reduction in mortality risk for birth cohorts of women after the 1950s, except in Maranhão State, which showed an increasing trend in mortality risk for younger generations. We found that the high rates of cervical cancer mortality in the states of northeastern Brazil remain constant over time. Even after an increase in access to health services in the 2000s, associated with increased access to the cancer care network, which includes early detection (Pap Test), cervical cancer treatment and palliative care. However, it is important to note that the decreased risk of death and the mortality rates from CC among women born after the 1960s may be correlated with increased screening coverage, as well as increased access to health services for cancer treatment observed in younger women.
Facebook
Twitterhttps://data.gov.tw/licensehttps://data.gov.tw/license
Provide me with secondary data on cancer deaths in our country for use by various sectors.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundBetter information on lung cancer occurrence in lifelong nonsmokers is needed to understand gender and racial disparities and to examine how factors other than active smoking influence risk in different time periods and geographic regions. Methods and FindingsWe pooled information on lung cancer incidence and/or death rates among self-reported never-smokers from 13 large cohort studies, representing over 630,000 and 1.8 million persons for incidence and mortality, respectively. We also abstracted population-based data for women from 22 cancer registries and ten countries in time periods and geographic regions where few women smoked. Our main findings were: (1) Men had higher death rates from lung cancer than women in all age and racial groups studied; (2) male and female incidence rates were similar when standardized across all ages 40+ y, albeit with some variation by age; (3) African Americans and Asians living in Korea and Japan (but not in the US) had higher death rates from lung cancer than individuals of European descent; (4) no temporal trends were seen when comparing incidence and death rates among US women age 40–69 y during the 1930s to contemporary populations where few women smoke, or in temporal comparisons of never-smokers in two large American Cancer Society cohorts from 1959 to 2004; and (5) lung cancer incidence rates were higher and more variable among women in East Asia than in other geographic areas with low female smoking. ConclusionsThese comprehensive analyses support claims that the death rate from lung cancer among never-smokers is higher in men than in women, and in African Americans and Asians residing in Asia than in individuals of European descent, but contradict assertions that risk is increasing or that women have a higher incidence rate than men. Further research is needed on the high and variable lung cancer rates among women in Pacific Rim countries.
Facebook
TwitterIn the period 2018 to 2022, a total of approximately *** men per 100,000 inhabitants died of cancers of all kinds in the United States, compared to an overall cancer death rate of *** per 100,000 population among women. This statistic shows cancer death rates in the U.S. for the period from 2018 to 2022, by type and gender.