The United States Cancer Statistics (USCS) online databases in WONDER provide cancer incidence and mortality data for the United States for the years since 1999, by year, state and metropolitan areas (MSA), age group, race, ethnicity, sex, childhood cancer classifications and cancer site. Report case counts, deaths, crude and age-adjusted incidence and death rates, and 95% confidence intervals for rates. The USCS data are the official federal statistics on cancer incidence from registries having high-quality data and cancer mortality statistics for 50 states and the District of Columbia. USCS are produced by the Centers for Disease Control and Prevention (CDC) and the National Cancer Institute (NCI), in collaboration with the North American Association of Central Cancer Registries (NAACCR). Mortality data are provided by the Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), National Vital Statistics System (NVSS).
In 2022, Kentucky reported the highest cancer incidence rate in the United States, with around 512 new cases of cancer per 100,000 inhabitants. This statistic represents the U.S. states with the highest cancer incidence rates per 100,000 population in 2022.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Number and rate of new cancer cases diagnosed annually from 1992 to the most recent diagnosis year available. Included are all invasive cancers and in situ bladder cancer with cases defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3). Random rounding of case counts to the nearest multiple of 5 is used to prevent inappropriate disclosure of health-related information.
The US Cancer Incidence Rates dataset includes data about cancer occurrence estimates for various cancer sites among men and women under age 18 in the United States by race and Hispanic origin between 1990 and 2014.
In 2022, the highest cancer rate for men and women among European countries was in Denmark with 728.5 cancer cases per 100,000 population. Ireland and the Netherlands followed, with 641.6 and 641.4 people diagnosed with cancer per 100,000 population, respectively.
Lung cancer
Lung cancer is the deadliest type of cancer worldwide, and in Europe, Germany was the country with the highest number of lung cancer deaths in 2022, with 47.7 thousand deaths. However, when looking at the incidence rate of lung cancer, Hungary had the highest for both males and females, with 138.4 and 72.3 cases per 100,000 population, respectively.
Breast cancer
Breast cancer is the most common type of cancer among women with an incidence rate of 83.3 cases per 100,000 population in Europe in 2022. Cyprus was the country with the highest incidence of breast cancer, followed by Belgium and France. The mortality rate due to breast cancer was 34.8 deaths per 100,000 population across Europe, and Cyprus was again the country with the highest figure.
SEER Limited-Use cancer incidence data with associated population data. Geographic areas available are county and SEER registry. The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute collects and distributes high quality, comprehensive cancer data from a number of population-based cancer registries. Data include patient demographics, primary tumor site, morphology, stage at diagnosis, first course of treatment, and follow-up for vital status. The SEER Program is the only comprehensive source of population-based information in the United States that includes stage of cancer at the time of diagnosis and survival rates within each stage.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This publication reports on newly diagnosed cancers registered in England during 2022. It includes this summary report showing key findings, spreadsheet tables with more detailed estimates, and a methodology document. Cancer registration estimates are provided for: • Incidence of cancer using groupings that incorporate both the location and type of cancer by combinations of gender, age, deprivation, and stage at diagnosis (where appropriate) for England, former Government office regions, Cancer alliances and Integrated care boards • Incidence and mortality (using ICD-10 3-digit codes) by gender and age group for England, former Government office regions, Cancer alliances and Integrated care boards This publication will report on 2022 cancer registrations only, trends will not be reported as the required re-stated populations for 2012 to 2020 are not expected to be published by the Office of National Statistics (ONS) until Winter 2024.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Annual percent change and average annual percent change in age-standardized cancer incidence rates since 1984 to the most recent diagnosis year. The table includes a selection of commonly diagnosed invasive cancers, as well as in situ bladder cancer. Cases are defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3) from 1992 to the most recent data year and on the International Classification of Diseases, ninth revision (ICD-9) from 1984 to 1991.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Cancer diagnoses and age-standardised incidence rates for all types of cancer by age and sex including breast, prostate, lung and colorectal cancer.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Age-standardized rate of cancer incidence for selected primary sites of cancer, by sex, for health regions, on a three-year average basis.
In 2021, there were around *** new cases of breast cancer per 100,000 population in the state of Connecticut, making it the state with the highest breast cancer incidence rate that year. This statistic shows the incidence rate of breast cancer in the U.S. in 2021, by state.
https://www.krebsdaten.de/Krebs/EN/Database/databasequery_step1_node.htmlhttps://www.krebsdaten.de/Krebs/EN/Database/databasequery_step1_node.html
The German Centre for Cancer Registry Data (ZfKD) provides the topical cancer statistics for Germany. In an interactive database query you will get information on incidence and mortality rates as well as for prevalence and survival rates for different types of cancer.
By Noah Rippner [source]
This dataset provides comprehensive information on county-level cancer death and incidence rates, as well as various related variables. It includes data on age-adjusted death rates, average deaths per year, recent trends in cancer death rates, recent 5-year trends in death rates, and average annual counts of cancer deaths or incidence. The dataset also includes the federal information processing standards (FIPS) codes for each county.
Additionally, the dataset indicates whether each county met the objective of a targeted death rate of 45.5. The recent trend in cancer deaths or incidence is also captured for analysis purposes.
The purpose of the death.csv file within this dataset is to offer detailed information specifically concerning county-level cancer death rates and related variables. On the other hand, the incd.csv file contains data on county-level cancer incidence rates and additional relevant variables.
To provide more context and understanding about the included data points, there is a separate file named cancer_data_notes.csv. This file serves to provide informative notes and explanations regarding the various aspects of the cancer data used in this dataset.
Please note that this particular description provides an overview for a linear regression walkthrough using this dataset based on Python programming language. It highlights how to source and import the data properly before moving into data preparation steps such as exploratory analysis. The walkthrough further covers model selection and important model diagnostics measures.
It's essential to bear in mind that this example serves as an initial attempt at creating a multivariate Ordinary Least Squares regression model using these datasets from various sources like cancer.gov along with US Census American Community Survey data. This baseline model allows easy comparisons with future iterations intended for improvements or refinements.
Important columns found within this extensively documented Kaggle dataset include County names along with their corresponding FIPS codes—a standardized coding system by Federal Information Processing Standards (FIPS). Moreover,Met Objective of 45.5? (1) column denotes whether a specific county achieved the targeted objective of a death rate of 45.5 or not.
Overall, this dataset aims to offer valuable insights into county-level cancer death and incidence rates across various regions, providing policymakers, researchers, and healthcare professionals with essential information for analysis and decision-making purposes
Familiarize Yourself with the Columns:
- County: The name of the county.
- FIPS: The Federal Information Processing Standards code for the county.
- Met Objective of 45.5? (1): Indicates whether the county met the objective of a death rate of 45.5 (Boolean).
- Age-Adjusted Death Rate: The age-adjusted death rate for cancer in the county.
- Average Deaths per Year: The average number of deaths per year due to cancer in the county.
- Recent Trend (2): The recent trend in cancer death rates/incidence in the county.
- Recent 5-Year Trend (2) in Death Rates: The recent 5-year trend in cancer death rates/incidence in the county.
- Average Annual Count: The average annual count of cancer deaths/incidence in the county.
Determine Counties Meeting Objective: Use this dataset to identify counties that have met or not met an objective death rate threshold of 45.5%. Look for entries where Met Objective of 45.5? (1) is marked as True or False.
Analyze Age-Adjusted Death Rates: Study and compare age-adjusted death rates across different counties using Age-Adjusted Death Rate values provided as floats.
Explore Average Deaths per Year: Examine and compare average annual counts and trends regarding deaths caused by cancer, using Average Deaths per Year as a reference point.
Investigate Recent Trends: Assess recent trends related to cancer deaths or incidence by analyzing data under columns such as Recent Trend, Recent Trend (2), and Recent 5-Year Trend (2) in Death Rates. These columns provide information on how cancer death rates/incidence have changed over time.
Compare Counties: Utilize this dataset to compare counties based on their cancer death rates and related variables. Identify counties with lower or higher average annual counts, age-adjusted death rates, or recent trends to analyze and understand the factors contributing ...
Cancer Rates for Lake County Illinois. Explanation of field attributes: Colorectal Cancer - Cancer that develops in the colon (the longest part of the large intestine) and/or the rectum (the last several inches of the large intestine). This is a rate per 100,000. Lung Cancer – Cancer that forms in tissues of the lung, usually in the cells lining air passages. This is a rate per 100,000. Breast Cancer – Cancer that forms in tissues of the breast. This is a rate per 100,000. Prostate Cancer – Cancer that forms in tissues of the prostate. This is a rate per 100,000. Urinary System Cancer – Cancer that forms in the organs of the body that produce and discharge urine. These include the kidneys, ureters, bladder, and urethra. This is a rate per 100,000. All Cancer – All cancers including, but not limited to: colorectal cancer, lung cancer, breast cancer, prostate cancer, and cancer of the urinary system. This is a rate per 100,000.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains Age-Adjusted Rate, Confidence Interval, Average Annual Count, and Trend field information for US States for the average 5 year span from 2012 to 2016.Data is segmented by sex and age, with fields describing the sex and age group tabulated.For more information, visit statecancerprofiles.cancer.gov Data NotationsState Cancer Registries may provide more current or more local data.† Incidence rates (cases per 100,000 population per year) are age-adjusted to the 2000 US standard population seer.cancer.gov/stdpopulations/stdpop.19ages.html. Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Rates calculated using SEER*Stat. [seer.cancer.gov/seerstat]Population counts for denominators are based on Census populations as modified [seer.cancer.gov/popdata] by NCI. The 1969-2016 US Population Data File [seer.cancer.gov/popdata] is used for SEER and NPCR incidence rates.‡ Incidence data come from different sources. Due to different years of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. Please refer to the source for each area for additional information. Rates and trends are computed using different standards for malignancy. For more information see malignant.html.^ All Stages refers to any stage in the Surveillance, Epidemiology, and End Results (SEER) summary stage [seer.cancer.gov/tools/ssm].Healthy People 2020 Objectives [www.healthypeople.gov]provided by the Centers for Disease Control and Prevention [www.cdc.gov]. Michigan Data do not include cases diagnosed in other states for those states in which the data exchange agreement specifically prohibits the release of data to third parties.Trend Data not available for Nevada.Data Source Field Key:(1) Source: CDC's National Program of Cancer Registries Cancer Surveillance System (NPCR-CSS) November 2018 data submission and SEER November 2018 submission as published in United States Cancer Statistics nccd.cdc.gov/uscs Source: State Cancer Registry and the CDC's National Program of Cancer Registries Cancer Surveillance System (NPCR-CSS) November 2018 data submission. State rates include rates from metropolitan areas funded by SEER [seer.cancer.gov/registries].(6) Source: State Cancer Registry and the CDC's National Program of Cancer Registries Cancer Surveillance System (NPCR-CSS) November 2018 data submission.(7) Source: SEER November 2018 submission.8 Source: Incidence data provided by the SEER Program. [seer.cancer.gov] AAPCs are calculated by the Joinpoint Regression Program [surveillance.cancer.gov/joinpoint] and are based on APCs. Data are age-adjusted to the 2000 US standard population www.seer.cancer.gov/stdpopulations/single_age.html. Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Population counts for denominators are based on Census populations as modified by NCI. The 1969-2017 US Population Data [seer.cancer.gov/popdata] File is used with SEER November 2018 data. Please note that the data comes from different sources. Due to different years [statecancerprofiles.cancer.gov/historicaltrend/differences.html] of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. [seer.cancer.gov/seerstat] Please refer to the source for each graph for additional information. Some data are not available [http://statecancerprofiles.cancer.gov/datanotavailable.html] for combinations of geography, cancer site, age, and race/ethnicity.
https://data.gov.tw/licensehttps://data.gov.tw/license
Provide our country's cancer incidence statistics for public use.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This study aims to evaluate the feasibility of applying a method of estimating the incidence of cancer to regions of the state of São Paulo, Brazil, from real data (not estimated) and retrospectively comparing the results obtained with the official estimates. A method based on mortality and on the incidence to mortality (I/M) ration was used according to sex, age, and tumor location. In the I/M numerator, new cases of cancer were used from the population records of Jaú and São Paulo from 2006-2010; in the denominator, deaths from 2006-2010 in the respective areas, extracted from the national mortality system. The estimates resulted from the multiplication of I/M by the number of cancer deaths in 2010 for each region. Population data from the 2010 Demographic Census were used to estimate incidence rates. For the adjustment by age, the world standard population was used. We calculated the relative differences between the gross incidence rates estimated in this study and the official ones. Age-adjusted cancer incidence rates were 260.9/100,000 for men and 216.6/100,000 for women. Prostate cancer was the most common in males, whereas breast cancer was most common in females. Differences between the rates of this study and the official rates were 3.3% and 1.5% for each sex. The estimated incidence was compatible with the officially presented state profile, indicating that the application of real data did not alter the morbidity profile, while it did indicate different risk magnitudes. Despite the over-representativeness of the cancer registry with greater population coverage, the selected method proved feasible to point out different patterns within the state.
Official Statistics on a range of cancer types diagnosed in Northern Ireland during 1993-2020. Details of the number of cases diagnosed each year for these cancer types, along with incidence rates from 1993 to 2020 are included. The number of cases and rates for a range of geographic areas is also available. Survival trends by a range of factors including age and stage at diagnosis, along with prevalence data (the number of people alive) is also provided.
Population based cancer incidence rates were abstracted from National Cancer Institute, State Cancer Profiles for all available counties in the United States for which data were available. This is a national county-level database of cancer data that are collected by state public health surveillance systems. All-site cancer is defined as any type of cancer that is captured in the state registry data, though non-melanoma skin cancer is not included. All-site age-adjusted cancer incidence rates were abstracted separately for males and females. County-level annual age-adjusted all-site cancer incidence rates for years 2006–2010 were available for 2687 of 3142 (85.5%) counties in the U.S. Counties for which there are fewer than 16 reported cases in a specific area-sex-race category are suppressed to ensure confidentiality and stability of rate estimates; this accounted for 14 counties in our study. Two states, Kansas and Virginia, do not provide data because of state legislation and regulations which prohibit the release of county level data to outside entities. Data from Michigan does not include cases diagnosed in other states because data exchange agreements prohibit the release of data to third parties. Finally, state data is not available for three states, Minnesota, Ohio, and Washington. The age-adjusted average annual incidence rate for all counties was 453.7 per 100,000 persons. We selected 2006–2010 as it is subsequent in time to the EQI exposure data which was constructed to represent the years 2000–2005. We also gathered data for the three leading causes of cancer for males (lung, prostate, and colorectal) and females (lung, breast, and colorectal). The EQI was used as an exposure metric as an indicator of cumulative environmental exposures at the county-level representing the period 2000 to 2005. A complete description of the datasets used in the EQI are provided in Lobdell et al. and methods used for index construction are described by Messer et al. The EQI was developed for the period 2000– 2005 because it was the time period for which the most recent data were available when index construction was initiated. The EQI includes variables representing each of the environmental domains. The air domain includes 87 variables representing criteria and hazardous air pollutants. The water domain includes 80 variables representing overall water quality, general water contamination, recreational water quality, drinking water quality, atmospheric deposition, drought, and chemical contamination. The land domain includes 26 variables representing agriculture, pesticides, contaminants, facilities, and radon. The built domain includes 14 variables representing roads, highway/road safety, public transit behavior, business environment, and subsidized housing environment. The sociodemographic environment includes 12 variables representing socioeconomics and crime. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Human health data are not available publicly. EQI data are available at: https://edg.epa.gov/data/Public/ORD/NHEERL/EQI. Format: Data are stored as csv files. This dataset is associated with the following publication: Jagai, J., L. Messer, K. Rappazzo , C. Gray, S. Grabich , and D. Lobdell. County-level environmental quality and associations with cancer incidence#. Cancer. John Wiley & Sons Incorporated, New York, NY, USA, 123(15): 2901-2908, (2017).
Number and rate of new cancer cases by stage at diagnosis from 2011 to the most recent diagnosis year available. Included are colorectal, lung, breast, cervical and prostate cancer with cases defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3). Random rounding of case counts to the nearest multiple of 5 is used to prevent inappropriate disclosure of health-related information.
The United States Cancer Statistics (USCS) online databases in WONDER provide cancer incidence and mortality data for the United States for the years since 1999, by year, state and metropolitan areas (MSA), age group, race, ethnicity, sex, childhood cancer classifications and cancer site. Report case counts, deaths, crude and age-adjusted incidence and death rates, and 95% confidence intervals for rates. The USCS data are the official federal statistics on cancer incidence from registries having high-quality data and cancer mortality statistics for 50 states and the District of Columbia. USCS are produced by the Centers for Disease Control and Prevention (CDC) and the National Cancer Institute (NCI), in collaboration with the North American Association of Central Cancer Registries (NAACCR). Mortality data are provided by the Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), National Vital Statistics System (NVSS).