In 2021, Kentucky reported the highest cancer incidence rate in the United States, with around 510 new cases of cancer per 100,000 inhabitants. This statistic represents the U.S. states with the highest cancer incidence rates per 100,000 population in 2021.
Cancer was responsible for around 142 deaths per 100,000 population in the United States in 2022. The death rate for cancer has steadily decreased since the 1990’s, but cancer still remains the second leading cause of death in the United States. The deadliest type of cancer for both men and women is cancer of the lung and bronchus which will account for an estimated 65,790 deaths among men alone in 2024. Probability of surviving Survival rates for cancer vary significantly depending on the type of cancer. The cancers with the highest rates of survival include cancers of the thyroid, prostate, and testis, with five-year survival rates as high as 99 percent for thyroid cancer. The cancers with the lowest five-year survival rates include cancers of the pancreas, liver, and esophagus. Risk factors It is difficult to determine why one person develops cancer while another does not, but certain risk factors have been shown to increase a person’s chance of developing cancer. For example, cigarette smoking has been proven to increase the risk of developing various cancers. In fact, around 81 percent of cancers of the lung, bronchus and trachea among adults aged 30 years and older can be attributed to cigarette smoking. A recent poll indicated that many U.S. adults believed smoking cigarettes and using other tobacco products increased a person’s risk of developing cancer, but a much smaller percentage believed the same for proven risk factors such as obesity and drinking alcohol.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘🎗️ Cancer Rates by U.S. State’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/cancer-rates-by-u-s-statee on 13 February 2022.
--- Dataset description provided by original source is as follows ---
In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.
The rates are the numbers out of 100,000 people who developed or died from cancer each year.
Incidence Rates by State
The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Death Rates by State
Rates of dying from cancer also vary from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Source: https://www.cdc.gov/cancer/dcpc/data/state.htm
This dataset was created by Adam Helsinger and contains around 100 samples along with Range, Rate, technical information and other features such as: - Range - Rate - and more.
- Analyze Range in relation to Rate
- Study the influence of Range on Rate
- More datasets
If you use this dataset in your research, please credit Adam Helsinger
--- Original source retains full ownership of the source dataset ---
The United States Cancer Statistics (USCS) online databases in WONDER provide cancer incidence and mortality data for the United States for the years since 1999, by year, state and metropolitan areas (MSA), age group, race, ethnicity, sex, childhood cancer classifications and cancer site. Report case counts, deaths, crude and age-adjusted incidence and death rates, and 95% confidence intervals for rates. The USCS data are the official federal statistics on cancer incidence from registries having high-quality data and cancer mortality statistics for 50 states and the District of Columbia. USCS are produced by the Centers for Disease Control and Prevention (CDC) and the National Cancer Institute (NCI), in collaboration with the North American Association of Central Cancer Registries (NAACCR). Mortality data are provided by the Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), National Vital Statistics System (NVSS).
The rate of skin cancer in the United States increased for both sexes from 1999 to 2021, with the rate for males consistently higher than that of females. This statistic shows the incidence rate of skin cancer in the U.S. from 1999 to 2021, by gender, per 100,000 population.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Users can access data about cancer statistics in the United States including but not limited to searches by type of cancer and race, sex, ethnicity, age at diagnosis, and age at death. Background Surveillance Epidemiology and End Results (SEER) database’s mission is to provide information on cancer statistics to help reduce the burden of disease in the U.S. population. The SEER database is a project to the National Cancer Institute. The SEER database collects information on incidence, prevalence, and survival from specific geographic areas representing 28 percent of the United States population. User functionality Users can access a variety of reso urces. Cancer Stat Fact Sheets allow users to look at summaries of statistics by major cancer type. Cancer Statistic Reviews are available from 1975-2008 in table format. Users are also able to build their own tables and graphs using Fast Stats. The Cancer Query system provides more flexibility and a larger set of cancer statistics than F ast Stats but requires more input from the user. State Cancer Profiles include dynamic maps and graphs enabling the investigation of cancer trends at the county, state, and national levels. SEER research data files and SEER*Stat software are available to download through your Internet connection (SEER*Stat’s client-server mode) or via discs shipped directly to you. A signed data agreement form is required to access the SEER data Data Notes Data is available in different formats depending on which type of data is accessed. Some data is available in table, PDF, and html formats. Detailed information about the data is available under “Data Documentation and Variable Recodes”.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains Cancer Incidence data for Breast Cancer (Late Stage^) including: Age-Adjusted Rate, Confidence Interval, Average Annual Count, and Trend field information for US States for the average 5 year span from 2016 to 2020.Data are for females segmented by age (All Ages, Ages Under 50, Ages 50 & Over, Ages Under 65, and Ages 65 & Over), with field names and aliases describing the sex and age group tabulated.For more information, visit statecancerprofiles.cancer.govData NotationsState Cancer Registries may provide more current or more local data.TrendRising when 95% confidence interval of average annual percent change is above 0.Stable when 95% confidence interval of average annual percent change includes 0.Falling when 95% confidence interval of average annual percent change is below 0.† Incidence rates (cases per 100,000 population per year) are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84, 85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Rates calculated using SEER*Stat. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used for SEER and NPCR incidence rates.‡ Incidence Trend data come from different sources. Due to different years of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. Please refer to the source for each area for additional information.Rates and trends are computed using different standards for malignancy. For more information see malignant.^ Late Stage is defined as cases determined to be regional or distant. Due to changes in stage coding, Combined Summary Stage (2004+) is used for data from Surveillance, Epidemiology, and End Results (SEER) databases and Merged Summary Stage is used for data from National Program of Cancer Registries databases. Due to the increased complexity with staging, other staging variables maybe used if necessary.Data Source Field Key(1) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(5) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(6) Source: National Program of Cancer Registries SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention (based on the 2022 submission).(7) Source: SEER November 2022 submission.(8) Source: Incidence data provided by the SEER Program. AAPCs are calculated by the Joinpoint Regression Program and are based on APCs. Data are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84,85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used with SEER November 2022 data.Some data are not available, see Data Not Available for combinations of geography, cancer site, age, and race/ethnicity.Data for the United States does not include data from Nevada.Data for the United States does not include Puerto Rico.
Cancer was responsible for around *** deaths per 100,000 population in the United States in 2023. The death rate for cancer has steadily decreased since the 1990’s, but cancer still remains the second leading cause of death in the United States. The deadliest type of cancer for both men and women is cancer of the lung and bronchus which will account for an estimated ****** deaths among men alone in 2025. Probability of surviving Survival rates for cancer vary significantly depending on the type of cancer. The cancers with the highest rates of survival include cancers of the thyroid, prostate, and testis, with five-year survival rates as high as ** percent for thyroid cancer. The cancers with the lowest five-year survival rates include cancers of the pancreas, liver, and esophagus. Risk factors It is difficult to determine why one person develops cancer while another does not, but certain risk factors have been shown to increase a person’s chance of developing cancer. For example, cigarette smoking has been proven to increase the risk of developing various cancers. In fact, around ** percent of cancers of the lung, bronchus and trachea among adults aged 30 years and older can be attributed to cigarette smoking. Other modifiable risk factors for cancer include being obese, drinking alcohol, and sun exposure.
You can see the numbers by sex, age, race and ethnicity, trends over time, survival, and prevalence.Link: https://gis.cdc.gov/Cancer/USCS/#/AtAGlance
As of 2021, non-Hispanic white people in the United States had the highest incidence rates of skin cancer among all races and ethnicities. Skin cancer is one of the most commonly occurring cancers in the world. Furthermore, the United States is among the countries with the highest rates of skin cancer worldwide. Skin cancer in the U.S. There are a few different types of skin cancer and some are more deadly than others. Basal and squamous skin cancers are more common and less dangerous than melanomas. Among U.S. residents, skin cancer has been demonstrated to be more prevalent among men than women. Skin cancer is also more prevalent among older adults. With treatment and early detection, skin cancers have a high survival rate. Fortunately, in recent years the U.S. has seen a reduction in the rate of death from melanoma. Skin cancer prevention Avoiding and protecting exposed skin from the sun (and other sources of UV light) is the primary means of preventing skin cancer. However, a survey of U.S. adults from 2024 found that around ******* never used sunscreen.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains Age-Adjusted Rate, Confidence Interval, Average Annual Count, and Trend field information for US States for the average 5 year span from 2012 to 2016.Data is segmented by sex and age, with fields describing the sex and age group tabulated.For more information, visit statecancerprofiles.cancer.gov Data NotationsState Cancer Registries may provide more current or more local data.† Incidence rates (cases per 100,000 population per year) are age-adjusted to the 2000 US standard population seer.cancer.gov/stdpopulations/stdpop.19ages.html. Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Rates calculated using SEER*Stat. [seer.cancer.gov/seerstat]Population counts for denominators are based on Census populations as modified [seer.cancer.gov/popdata] by NCI. The 1969-2016 US Population Data File [seer.cancer.gov/popdata] is used for SEER and NPCR incidence rates.‡ Incidence data come from different sources. Due to different years of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. Please refer to the source for each area for additional information. Rates and trends are computed using different standards for malignancy. For more information see malignant.html.^ All Stages refers to any stage in the Surveillance, Epidemiology, and End Results (SEER) summary stage [seer.cancer.gov/tools/ssm].Healthy People 2020 Objectives [www.healthypeople.gov]provided by the Centers for Disease Control and Prevention [www.cdc.gov]. Michigan Data do not include cases diagnosed in other states for those states in which the data exchange agreement specifically prohibits the release of data to third parties.Trend Data not available for Nevada.Data Source Field Key:(1) Source: CDC's National Program of Cancer Registries Cancer Surveillance System (NPCR-CSS) November 2018 data submission and SEER November 2018 submission as published in United States Cancer Statistics nccd.cdc.gov/uscs Source: State Cancer Registry and the CDC's National Program of Cancer Registries Cancer Surveillance System (NPCR-CSS) November 2018 data submission. State rates include rates from metropolitan areas funded by SEER [seer.cancer.gov/registries].(6) Source: State Cancer Registry and the CDC's National Program of Cancer Registries Cancer Surveillance System (NPCR-CSS) November 2018 data submission.(7) Source: SEER November 2018 submission.8 Source: Incidence data provided by the SEER Program. [seer.cancer.gov] AAPCs are calculated by the Joinpoint Regression Program [surveillance.cancer.gov/joinpoint] and are based on APCs. Data are age-adjusted to the 2000 US standard population www.seer.cancer.gov/stdpopulations/single_age.html. Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Population counts for denominators are based on Census populations as modified by NCI. The 1969-2017 US Population Data [seer.cancer.gov/popdata] File is used with SEER November 2018 data. Please note that the data comes from different sources. Due to different years [statecancerprofiles.cancer.gov/historicaltrend/differences.html] of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. [seer.cancer.gov/seerstat] Please refer to the source for each graph for additional information. Some data are not available [http://statecancerprofiles.cancer.gov/datanotavailable.html] for combinations of geography, cancer site, age, and race/ethnicity.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains Cancer Incidence data for Prostate Cancer(All Stages^) including: Age-Adjusted Rate, Confidence Interval, Average Annual Count, and Trend field information for US States for the average 5 year span from 2016 to 2020.Data are for males segmented age (All Ages, Ages Under 50, Ages 50 & Over, Ages Under 65, and Ages 65 & Over), with field names and aliases describing the sex and age group tabulated.For more information, visit statecancerprofiles.cancer.govData NotationsState Cancer Registries may provide more current or more local data.TrendRising when 95% confidence interval of average annual percent change is above 0.Stable when 95% confidence interval of average annual percent change includes 0.Falling when 95% confidence interval of average annual percent change is below 0.† Incidence rates (cases per 100,000 population per year) are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84, 85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Rates calculated using SEER*Stat. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used for SEER and NPCR incidence rates.‡ Incidence Trend data come from different sources. Due to different years of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. Please refer to the source for each area for additional information.Rates and trends are computed using different standards for malignancy. For more information see malignant.^ All Stages refers to any stage in the Surveillance, Epidemiology, and End Results (SEER) summary stage.Data Source Field Key(1) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(5) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(6) Source: National Program of Cancer Registries SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention (based on the 2022 submission).(7) Source: SEER November 2022 submission.(8) Source: Incidence data provided by the SEER Program. AAPCs are calculated by the Joinpoint Regression Program and are based on APCs. Data are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84,85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used with SEER November 2022 data.Some data are not available, see Data Not Available for combinations of geography, cancer site, age, and race/ethnicity.Data for the United States does not include data from Nevada.Data for the United States does not include Puerto Rico.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains Cancer Incidence data for Colorectal Cancer (All Stages^) including: Age-Adjusted Rate, Confidence Interval, Average Annual Count, and Trend field information for US States for the average 5 year span from 2016 to 2020.Data are segmented by sex (Both Sexes, Male, and Female) and age (All Ages, Ages Under 50, Ages 50 & Over, Ages Under 65, and Ages 65 & Over), with field names and aliases describing the sex and age group tabulated.For more information, visit statecancerprofiles.cancer.govData NotationsState Cancer Registries may provide more current or more local data.TrendRising when 95% confidence interval of average annual percent change is above 0.Stable when 95% confidence interval of average annual percent change includes 0.Falling when 95% confidence interval of average annual percent change is below 0.† Incidence rates (cases per 100,000 population per year) are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84, 85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Rates calculated using SEER*Stat. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used for SEER and NPCR incidence rates.‡ Incidence Trend data come from different sources. Due to different years of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. Please refer to the source for each area for additional information.Rates and trends are computed using different standards for malignancy. For more information see malignant.^ All Stages refers to any stage in the Surveillance, Epidemiology, and End Results (SEER) summary stage.Data Source Field Key(1) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(5) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(6) Source: National Program of Cancer Registries SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention (based on the 2022 submission).(7) Source: SEER November 2022 submission.(8) Source: Incidence data provided by the SEER Program. AAPCs are calculated by the Joinpoint Regression Program and are based on APCs. Data are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84,85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used with SEER November 2022 data.Some data are not available, see Data Not Available for combinations of geography, cancer site, age, and race/ethnicity.Data for the United States does not include data from Nevada.Data for the United States does not include Puerto Rico.
In 2022, Kentucky reported the highest cancer incidence rate in the United States, with around 512 new cases of cancer per 100,000 inhabitants. This statistic represents the U.S. states with the highest cancer incidence rates per 100,000 population in 2022.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The North American cancer therapy market, encompassing the United States, Canada, and Mexico, is experiencing robust growth, projected to maintain a Compound Annual Growth Rate (CAGR) of 8.10% from 2025 to 2033. This expansion is fueled by several key factors. Firstly, the increasing prevalence of various cancer types, particularly blood cancers, breast cancer, and prostate cancer, is driving demand for advanced therapies. Secondly, significant advancements in cancer treatment modalities, such as targeted therapy, immunotherapy, and hormonal therapy, alongside improvements in early detection and diagnosis, are contributing to market growth. The aging population within North America further exacerbates the demand, as older individuals are more susceptible to various cancers. Finally, substantial investments in research and development by pharmaceutical companies like Johnson & Johnson, AstraZeneca, and Merck & Co., are continuously expanding the therapeutic options available. The market is segmented by treatment type (chemotherapy, targeted therapy, immunotherapy, hormonal therapy, others), cancer type (blood, breast, prostate, gastrointestinal, gynecologic, respiratory/lung, others), and end-user (hospitals, specialty clinics, cancer centers). Despite the positive growth trajectory, certain challenges exist. High treatment costs remain a significant barrier to access, particularly for certain patient populations. Regulatory hurdles in securing approvals for new drugs and therapies can also delay market entry and limit immediate growth potential. Furthermore, the potential for drug resistance and the need for personalized medicine strategies present ongoing challenges for the industry. However, ongoing innovation in targeted therapies and personalized medicine approaches are mitigating these restraints and should contribute to sustained growth in the coming years. The major players are continually innovating to address these challenges and tap into the expanding market share. The US market is expected to dominate due to its advanced healthcare infrastructure and higher per capita expenditure on healthcare. Canada and Mexico will exhibit steady growth, albeit at a potentially slower pace, reflecting their distinct healthcare systems and market dynamics. Recent developments include: In September 2022, Eli Lilly and Company announced that the United States Food and Drug Administration (FDA) has approved Retevmo (selpercatinib, 40 mg & 80 mg capsules) for adult patients with locally advanced or metastatic solid tumors with a rearranged during transfection (RET) gene fusion that has progressed on or following prior systemic treatment or who have no satisfactory alternative treatment options., In August 2022, the United States Food and Drug Administration approved Enhertu (fam-trastuzumab-deruxtecan-nxki), an IV infusion for the treatment of patients with unresectable (unable to be removed) or metastatic (spread to other parts of the body) HER2-low breast cancer.. Key drivers for this market are: Rising Prevalence of Cancer, Strong R&D Initiatives from Key Players and the Government; Growing Government Initiatives for Cancer Awareness. Potential restraints include: Rising Prevalence of Cancer, Strong R&D Initiatives from Key Players and the Government; Growing Government Initiatives for Cancer Awareness. Notable trends are: The Target Therapy Segment is Expected to show the Fastest Growth During the Forecast Period.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
State Cancer Profiles (https://statecancerprofiles.cancer.gov) hosts an interactive website for tracking United States cancer incidence and prevalence. The dataset hosted here is an automated scraping from all locales for all demographic variables and diseases.
Two tables are available:
The dataset is meant for data mining or for building additional data products based on the state cancer profiles data, but without having to scrape the data yourself.
SEER Limited-Use cancer incidence data with associated population data. Geographic areas available are county and SEER registry. The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute collects and distributes high quality, comprehensive cancer data from a number of population-based cancer registries. Data include patient demographics, primary tumor site, morphology, stage at diagnosis, first course of treatment, and follow-up for vital status. The SEER Program is the only comprehensive source of population-based information in the United States that includes stage of cancer at the time of diagnosis and survival rates within each stage.
The State Cancer Profiles (SCP) web site provides statistics to help guide and prioritize cancer control activities at the state and local levels. SCP is a collaborative effort using local and national level cancer data from the Centers for Disease Control and Prevention's National Program of Cancer Registries (NPCR) and National Cancer Institute's Surveillance, Epidemiology and End Results Registries (SEER). SCP address select types of cancer and select behavioral risk factors for which there are evidence-based control interventions. The site provides incidence, mortality and prevalence comparison tables as well as interactive graphs and maps and support data. The graphs and maps provide visual support for deciding where to focus cancer control efforts.
Multi-Cancer Early Detection Market Size 2025-2029
The multi-cancer early detection market size is forecast to increase by USD 1.29 billion at a CAGR of 15.4% between 2024 and 2029.
The market is experiencing significant growth due to the rising prevalence of cancer and the focus on developing innovative diagnostic tools. Next-generation sequencing technologies are revolutionizing the identification of cancer-related biomarkers, including DNA, RNA, and proteins, enabling the detection of genetic mutations at an early stage. However, limited insurance coverage poses a challenge to market growth. To address this, data analytics plays a crucial role in improving diagnostic accuracy and reducing healthcare costs. Biomarkers, whether DNA-based or protein-based, are essential for the early detection of various types of cancer. The market is expected to continue its expansion as advancements in technology and research lead to more accurate and cost-effective diagnostic solutions.
What will be the Size of the Market During the Forecast Period?
Request Free Sample
The market is witnessing significant growth due to the increasing prevalence of cancer and the need for effective screening methods. Early detection of cancer can lead to improved patient survival rates and reduced mortality. Several technological advancements are driving the market. These include the use of nanotechnology for enhancing the sensitivity and specificity of diagnostic tools, big data analytics for identifying cancer-related biomarkers, and machine learning algorithms for analyzing genomic and proteomic data. Next-generation sequencing technologies, such as genome sequencing and RNA sequencing, are playing a crucial role in the discovery of genetic mutations associated with various types of cancer.
Liquid biopsies, which involve the analysis of DNA, RNA, and proteins present in bodily fluids, are gaining popularity as non-invasive screening methods for early cancer detection. Molecular signatures derived from genomic, proteomic, and biomarker data are being used to develop diagnostic tools for multi-cancer screening. These tools offer the potential for personalized treatment plans based on an individual's unique genetic profile. The integration of data from various sources, including electronic health records and wearable devices, is facilitating the development of more accurate and comprehensive diagnostic tools. This data can be analyzed using advanced data analytics techniques to identify patterns and trends that may indicate the presence of cancer.
How is this market segmented and which is the largest segment?
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for 2025-2029, as well as historical data from 2019-2023 for the following segments.
Type
Gene panel
LDT
Liquid biopsy
Others
End-user
Hospitals
Diagnostic laboratories
Others
Geography
North America
Canada
US
Europe
Germany
UK
France
Italy
Spain
Asia
China
India
Japan
Rest of World (ROW)
By Type Insights
The gene panel segment is estimated to witness significant growth during the forecast period.
In the realm of preventive healthcare, biotechnology firms are making significant strides in the market through breakthrough device designs. Gene panel testing is a vital segment of this industry, focusing on the analysis of specific genes to identify mutations linked to various cancer types. These panels play a crucial role in personalized cancer screening and prevention by targeting inherited gene alterations. Predictive genetic testing is a key application of gene panel testing. This testing assesses inherited mutations in individuals with a family history of cancer, such as BRCA1 and BRCA2 gene mutations, which increase the risk of breast, ovarian, and other cancers.
Similarly, Lynch syndrome testing identifies mutations in mismatch repair (MMR) genes, linked to colorectal and endometrial cancers. Biotechnology companies securing venture capital investments and collaborating with national screening programs are advancing precision medicine in cancer screening. This approach tailors treatment plans based on an individual's unique genetic makeup, enhancing overall patient care. Genome science is at the forefront of these advancements, offering a more targeted and effective approach to cancer prevention and early detection. In the US market, insurance coverage for gene panel testing is expanding, making these tests more accessible to a broader population. This trend is expected to fuel the growth of the market in the coming years.
Get a glance at the market report of share of various segments Request Free Sample
The Gene panel segment was valued at USD 232.70 million in 2019 and showed a gradual increase during the foreca
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
US Cancer Biomarkers Market size was valued at USD 4.04 Billion in the year 2023 and it is expected to reach USD 7.48 Billion in 2031, at a CAGR of 9.2% over the forecast period of 2024 to 2031.
Rising Prevalence of Cancer: The increasing cancer burden in the United States continues to drive biomarker market growth, with approximately 1.9 million new cancer cases diagnosed in 2023. The American Cancer Society projects a 45% increase in cancer cases from 2015 to 2030, with one in three Americans developing cancer in their lifetime. This substantial disease burden has led to a $15.2 billion market value for cancer biomarker testing in 2023, growing at a CAGR of 12.8% through 2028.
Advancements in Technology: The evolution of biomarker testing technologies has dramatically improved cancer diagnostics and monitoring. The cost of genome sequencing has plummeted from $100 million in 2001 to under $1,000 in 2023, making testing more accessible. Currently, 85% of major cancer centers utilize NGS-based biomarker testing, while advanced imaging technologies and molecular diagnostics have achieved a 95% accuracy rate in certain cancer types. The integration of AI and machine learning has further enhanced biomarker detection efficiency by 40%.
Shift Toward Personalized Medicine: Personalized medicine adoption has surged, with 73% of oncologists regularly using biomarker testing for treatment decisions. Targeted therapies based on biomarker testing show 30-40% higher success rates compared to traditional treatments. The FDA approved over 25 new biomarker-based cancer therapies in 2023, while 30-40% of all cancer treatments now involve biomarker testing to determine patient-specific approaches.
In 2021, Kentucky reported the highest cancer incidence rate in the United States, with around 510 new cases of cancer per 100,000 inhabitants. This statistic represents the U.S. states with the highest cancer incidence rates per 100,000 population in 2021.