27 datasets found
  1. State Cancer Profiles Web site

    • catalog.data.gov
    • healthdata.gov
    • +3more
    Updated Jul 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health & Human Services (2025). State Cancer Profiles Web site [Dataset]. https://catalog.data.gov/dataset/state-cancer-profiles-web-site
    Explore at:
    Dataset updated
    Jul 17, 2025
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Description

    The State Cancer Profiles (SCP) web site provides statistics to help guide and prioritize cancer control activities at the state and local levels. SCP is a collaborative effort using local and national level cancer data from the Centers for Disease Control and Prevention's National Program of Cancer Registries (NPCR) and National Cancer Institute's Surveillance, Epidemiology and End Results Registries (SEER). SCP address select types of cancer and select behavioral risk factors for which there are evidence-based control interventions. The site provides incidence, mortality and prevalence comparison tables as well as interactive graphs and maps and support data. The graphs and maps provide visual support for deciding where to focus cancer control efforts.

  2. w

    Community Health: All Cancer Incidence Rate per 100,000 by County Map:...

    • data.wu.ac.at
    • gimi9.com
    Updated Sep 14, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open Data NY - DOH (2017). Community Health: All Cancer Incidence Rate per 100,000 by County Map: Latest Data [Dataset]. https://data.wu.ac.at/odso/health_data_ny_gov/cDY1bi03eHp2
    Explore at:
    Dataset updated
    Sep 14, 2017
    Dataset provided by
    Open Data NY - DOH
    Description

    This map shows the incidence rate per 100,000 for all cancer types by county. Counties are shaded based on quartile distribution. The lighter shaded counties have lower cancer incidence rates. The darker shaded counties have higher cancer incidence rates. New York State Community Health Indicator Reports (CHIRS) were developed in 2012, and are updated annually to consolidate and improve data linkages for the health indicators included in the County Health Assessment Indicators (CHAI) for all communities in New York. The CHIRS present data for more than 300 health indicators that are organized by 15 different health topics. Data if provided for all 62 New York State counties, 11 regions (including New York City), the State excluding New York City, and New York State. For more information, check out: http://www.health.ny.gov/statistics/chac/indicators/. The "About" tab contains additional details concerning this dataset.

  3. w

    Community Health: All Cancer Incidence Age-adjusted Rate per 100,000 by...

    • data.wu.ac.at
    Updated Sep 14, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open Data NY - DOH (2017). Community Health: All Cancer Incidence Age-adjusted Rate per 100,000 by County Maps: Latest Data [Dataset]. https://data.wu.ac.at/odso/health_data_ny_gov/NHd4dC02Ynpz
    Explore at:
    Dataset updated
    Sep 14, 2017
    Dataset provided by
    Open Data NY - DOH
    Description

    This map shows the incidence age-adjusted rate per 100,000 for all cancer types by county. Counties are shaded based on quartile distribution. The lighter shaded counties have a lower all cancer incidence age-adjusted rate. The darker shaded counties have a higher all cancer incidence age-adjusted rate. New York State Community Health Indicator Reports (CHIRS) were developed in 2012, and are updated annually to consolidate and improve data linkages for the health indicators included in the County Health Assessment Indicators (CHAI) for all communities in New York. The CHIRS present data for more than 300 health indicators that are organized by 15 different health topics. Data if provided for all 62 New York State counties, 11 regions (including New York City), the State excluding New York City, and New York State. For more information, check out: http://www.health.ny.gov/statistics/chac/indicators/. The "About" tab contains additional details concerning this dataset..

  4. d

    CDC Cancer Deaths (Lung and Colon)

    • catalog.data.gov
    Updated Apr 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). CDC Cancer Deaths (Lung and Colon) [Dataset]. https://catalog.data.gov/zh_CN/dataset/cdc-cancer-deaths-lung-and-colon
    Explore at:
    Dataset updated
    Apr 1, 2021
    Description

    This map service portrays the number of deaths per 100,000 people per square mile from lung and colon cancer. It displays the distribution of lung and colon cancer across the United States. Pop-ups show attributes such as state name, county name, number of colon or lung cancer deaths, and square miles per area.Lung Cancer: Death due to malignant neoplasm of the trachea, bronchus and lung.Colon Cancer: Death due to malignant neoplasm of the colon, rectum and anus.This data was sourced from: Community Health Status Indicators_Other Health Datapalooza focused content that may interest you: Health Datapalooza Health Datapalooza

  5. w

    Community Health: Lung and Bronchus Cancer Incidence Rate per 100,000 by...

    • data.wu.ac.at
    • gimi9.com
    Updated Sep 14, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open Data NY - DOH (2017). Community Health: Lung and Bronchus Cancer Incidence Rate per 100,000 by County Map: Latest Data [Dataset]. https://data.wu.ac.at/schema/health_data_ny_gov/OWVzMy1hM2d3
    Explore at:
    Dataset updated
    Sep 14, 2017
    Dataset provided by
    Open Data NY - DOH
    Description

    This map shows the incidence rate per 100,000 of lung and bronchus cancer by county. Counties are shaded based on quartile distribution. The lighter shaded counties have lower incidence rates of lung and bronchus cancer. The darker shaded counties have higher incidence rates of lung and bronchus cancer. New York State Community Health Indicator Reports (CHIRS) were developed in 2012, and are updated annually to consolidate and improve data linkages for the health indicators included in the County Health Assessment Indicators (CHAI) for all communities in New York. The CHIRS present data for more than 300 health indicators that are organized by 15 different health topics. Data if provided for all 62 New York State counties, 8 regions (including New York City), the State excluding New York City, and New York State. For more information, check out: http://www.health.ny.gov/statistics/chac/indicators/. The "About" tab contains additional details concerning this dataset.

  6. a

    Major Chronic Disease Mortality App Map

    • chi-phi-nmcdc.opendata.arcgis.com
    Updated Nov 18, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2014). Major Chronic Disease Mortality App Map [Dataset]. https://chi-phi-nmcdc.opendata.arcgis.com/maps/5de4aebd52bb43d6a2d8cf2ce791747d
    Explore at:
    Dataset updated
    Nov 18, 2014
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Description

    All mortality data come from the Indicator-Based Information System for Public Health Web site: http://ibis.health.state.nm.usOriginal sources: the New Mexico Death Certificate Database, Office of Vital Records and Statistics, New Mexico Department of Health; with Population (denominator) Estimates from the University of New Mexico, Geospatial and Population Studies (GPS) Program, http://bber.unm.edu/bber_research_demPop.html. See US trends at Age-Adjusted Death Rates for Heart Disease and Cancer, by Sex — United States, 1980–2011

  7. Cancer Mapping Data: 2011-2015

    • health.data.ny.gov
    • healthdata.gov
    application/rdfxml +5
    Updated Aug 17, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York State Department of Health (2018). Cancer Mapping Data: 2011-2015 [Dataset]. https://health.data.ny.gov/Health/Cancer-Mapping-Data-2011-2015/y4pv-ib8r
    Explore at:
    json, application/rssxml, csv, xml, application/rdfxml, tsvAvailable download formats
    Dataset updated
    Aug 17, 2018
    Dataset authored and provided by
    New York State Department of Health
    Description

    The Cancer Mapping data consists of counts of newly diagnosed cancer among New York State residents and is in response to legislation regarding "Cancer incidence and environmental facility maps" signed into law in 2010 (Public Health Law §2401-B). The law specifies the publication of maps showing cancer counts for small geographic areas along with certain facilities regulated by the State Department of Environmental Conservation. The official web site is called Environmental Facilities and Cancer Mapping.

    The dataset is ONLY for the cancer-related data fields on the Environmental Facilities and Cancer Mapping web site. This dataset includes observed counts for 23 separate anatomical sites at the level of census block group. Block groups are small geographic areas typically averaging 1,000 to 1,500 people. To protect confidentiality, each area contains a minimum of 6 total cancers among males and 6 total cancers among females.

    For more information, check out http://www.health.ny.gov/statistics/cancer/registry/about.htm .

  8. Cancer Mapping Data: 2005-2009

    • healthdata.gov
    • health.data.ny.gov
    application/rdfxml +5
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    health.data.ny.gov (2025). Cancer Mapping Data: 2005-2009 [Dataset]. https://healthdata.gov/State/Cancer-Mapping-Data-2005-2009/x3kf-uyen
    Explore at:
    json, xml, application/rdfxml, csv, application/rssxml, tsvAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    health.data.ny.gov
    Description

    The Cancer Mapping data consists of counts of newly diagnosed cancer among New York State residents and is in response to legislation regarding "Cancer incidence and environmental facility maps" signed into law in 2010 (Public Health Law §2401-B). The law specifies the publication of maps showing cancer counts for small geographic areas along with certain facilities regulated by the State Department of Environmental Conservation. The official web site is called Environmental Facilities and Cancer Mapping.

    The dataset is ONLY for the cancer-related data fields on the Environmental Facilities and Cancer Mapping web site. This dataset includes observed counts for 23 separate anatomical sites at the level of census block group. Block groups are small geographic areas typically averaging 1,000 to 1,500 people. To protect confidentiality, each area contains a minimum of 6 total cancers among males and 6 total cancers among females.

    For more information, check out http://www.health.ny.gov/statistics/cancer/registry/about.htm.

  9. NCHS - Potentially Excess Deaths from the Five Leading Causes of Death

    • catalog.data.gov
    • odgavaprod.ogopendata.com
    • +5more
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Potentially Excess Deaths from the Five Leading Causes of Death [Dataset]. https://catalog.data.gov/dataset/nchs-potentially-excess-deaths-from-the-five-leading-causes-of-death
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    MMWR Surveillance Summary 66 (No. SS-1):1-8 found that nonmetropolitan areas have significant numbers of potentially excess deaths from the five leading causes of death. These figures accompany this report by presenting information on potentially excess deaths in nonmetropolitan and metropolitan areas at the state level. They also add additional years of data and options for selecting different age ranges and benchmarks. Potentially excess deaths are defined in MMWR Surveillance Summary 66(No. SS-1):1-8 as deaths that exceed the numbers that would be expected if the death rates of states with the lowest rates (benchmarks) occurred across all states. They are calculated by subtracting expected deaths for specific benchmarks from observed deaths. Not all potentially excess deaths can be prevented; some areas might have characteristics that predispose them to higher rates of death. However, many potentially excess deaths might represent deaths that could be prevented through improved public health programs that support healthier behaviors and neighborhoods or better access to health care services. Mortality data for U.S. residents come from the National Vital Statistics System. Estimates based on fewer than 10 observed deaths are not shown and shaded yellow on the map. Underlying cause of death is based on the International Classification of Diseases, 10th Revision (ICD-10) Heart disease (I00-I09, I11, I13, and I20–I51) Cancer (C00–C97) Unintentional injury (V01–X59 and Y85–Y86) Chronic lower respiratory disease (J40–J47) Stroke (I60–I69) Locality (nonmetropolitan vs. metropolitan) is based on the Office of Management and Budget’s 2013 county-based classification scheme. Benchmarks are based on the three states with the lowest age and cause-specific mortality rates. Potentially excess deaths for each state are calculated by subtracting deaths at the benchmark rates (expected deaths) from observed deaths. Users can explore three benchmarks: “2010 Fixed” is a fixed benchmark based on the best performing States in 2010. “2005 Fixed” is a fixed benchmark based on the best performing States in 2005. “Floating” is based on the best performing States in each year so change from year to year. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES Moy E, Garcia MC, Bastian B, Rossen LM, Ingram DD, Faul M, Massetti GM, Thomas CC, Hong Y, Yoon PW, Iademarco MF. Leading Causes of Death in Nonmetropolitan and Metropolitan Areas – United States, 1999-2014. MMWR Surveillance Summary 2017; 66(No. SS-1):1-8. Garcia MC, Faul M, Massetti G, Thomas CC, Hong Y, Bauer UE, Iademarco MF. Reducing Potentially Excess Deaths from the Five Leading Causes of Death in the Rural United States. MMWR Surveillance Summary 2017; 66(No. SS-2):1–7.

  10. H

    SEER Cancer Statistics Database

    • data.niaid.nih.gov
    Updated Jul 11, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2011). SEER Cancer Statistics Database [Dataset]. http://doi.org/10.7910/DVN/C9KBBC
    Explore at:
    Dataset updated
    Jul 11, 2011
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Users can access data about cancer statistics in the United States including but not limited to searches by type of cancer and race, sex, ethnicity, age at diagnosis, and age at death. Background Surveillance Epidemiology and End Results (SEER) database’s mission is to provide information on cancer statistics to help reduce the burden of disease in the U.S. population. The SEER database is a project to the National Cancer Institute. The SEER database collects information on incidence, prevalence, and survival from specific geographic areas representing 28 percent of the United States population. User functionality Users can access a variety of reso urces. Cancer Stat Fact Sheets allow users to look at summaries of statistics by major cancer type. Cancer Statistic Reviews are available from 1975-2008 in table format. Users are also able to build their own tables and graphs using Fast Stats. The Cancer Query system provides more flexibility and a larger set of cancer statistics than F ast Stats but requires more input from the user. State Cancer Profiles include dynamic maps and graphs enabling the investigation of cancer trends at the county, state, and national levels. SEER research data files and SEER*Stat software are available to download through your Internet connection (SEER*Stat’s client-server mode) or via discs shipped directly to you. A signed data agreement form is required to access the SEER data Data Notes Data is available in different formats depending on which type of data is accessed. Some data is available in table, PDF, and html formats. Detailed information about the data is available under “Data Documentation and Variable Recodes”.

  11. NCI State Prostate Cancer Incidence Rates

    • hub.arcgis.com
    Updated Jan 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Cancer Institute (2020). NCI State Prostate Cancer Incidence Rates [Dataset]. https://hub.arcgis.com/maps/NCI::nci-state-prostate-cancer-incidence-rates
    Explore at:
    Dataset updated
    Jan 2, 2020
    Dataset authored and provided by
    National Cancer Institutehttp://www.cancer.gov/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This dataset contains Cancer Incidence data for Prostate Cancer(All Stages^) including: Age-Adjusted Rate, Confidence Interval, Average Annual Count, and Trend field information for US States for the average 5 year span from 2016 to 2020.Data are for males segmented age (All Ages, Ages Under 50, Ages 50 & Over, Ages Under 65, and Ages 65 & Over), with field names and aliases describing the sex and age group tabulated.For more information, visit statecancerprofiles.cancer.govData NotationsState Cancer Registries may provide more current or more local data.TrendRising when 95% confidence interval of average annual percent change is above 0.Stable when 95% confidence interval of average annual percent change includes 0.Falling when 95% confidence interval of average annual percent change is below 0.† Incidence rates (cases per 100,000 population per year) are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84, 85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Rates calculated using SEER*Stat. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used for SEER and NPCR incidence rates.‡ Incidence Trend data come from different sources. Due to different years of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. Please refer to the source for each area for additional information.Rates and trends are computed using different standards for malignancy. For more information see malignant.^ All Stages refers to any stage in the Surveillance, Epidemiology, and End Results (SEER) summary stage.Data Source Field Key(1) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(5) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(6) Source: National Program of Cancer Registries SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention (based on the 2022 submission).(7) Source: SEER November 2022 submission.(8) Source: Incidence data provided by the SEER Program. AAPCs are calculated by the Joinpoint Regression Program and are based on APCs. Data are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84,85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used with SEER November 2022 data.Some data are not available, see Data Not Available for combinations of geography, cancer site, age, and race/ethnicity.Data for the United States does not include data from Nevada.Data for the United States does not include Puerto Rico.

  12. NCI State Lung Cancer Incidence Rates

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jan 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Cancer Institute (2020). NCI State Lung Cancer Incidence Rates [Dataset]. https://hub.arcgis.com/maps/NCI::nci-state-lung-cancer-incidence-rates
    Explore at:
    Dataset updated
    Jan 2, 2020
    Dataset authored and provided by
    National Cancer Institutehttp://www.cancer.gov/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This dataset contains Cancer Incidence data for Lung Cancer (All Stages^) including: Age-Adjusted Rate, Confidence Interval, Average Annual Count, and Trend field information for US States for the average 5 year span from 2016 to 2020.Data are segmented by sex (Both Sexes, Male, and Female) and age (All Ages, Ages Under 50, Ages 50 & Over, Ages Under 65, and Ages 65 & Over), with field names and aliases describing the sex and age group tabulated.For more information, visit statecancerprofiles.cancer.govData NotationsState Cancer Registries may provide more current or more local data.TrendRising when 95% confidence interval of average annual percent change is above 0.Stable when 95% confidence interval of average annual percent change includes 0.Falling when 95% confidence interval of average annual percent change is below 0.† Incidence rates (cases per 100,000 population per year) are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84, 85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Rates calculated using SEER*Stat. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used for SEER and NPCR incidence rates.‡ Incidence Trend data come from different sources. Due to different years of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. Please refer to the source for each area for additional information.Rates and trends are computed using different standards for malignancy. For more information see malignant.^ All Stages refers to any stage in the Surveillance, Epidemiology, and End Results (SEER) summary stage.Data Source Field Key(1) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(5) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(6) Source: National Program of Cancer Registries SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention (based on the 2022 submission).(7) Source: SEER November 2022 submission.(8) Source: Incidence data provided by the SEER Program. AAPCs are calculated by the Joinpoint Regression Program and are based on APCs. Data are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84,85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used with SEER November 2022 data.Some data are not available, see Data Not Available for combinations of geography, cancer site, age, and race/ethnicity.Data for the United States does not include data from Nevada.Data for the United States does not include Puerto Rico.

  13. w

    Data for Five Rural Health Networks to Map Collaboration

    • data.library.wustl.edu
    rdata, txt
    Updated Jan 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carothers, Bobbi J; Allen, Peg; Brownson, Ross C (2024). Data for Five Rural Health Networks to Map Collaboration [Dataset]. https://data.library.wustl.edu/record/103651
    Explore at:
    txt(7650), rdata(42073)Available download formats
    Dataset updated
    Jan 19, 2024
    Dataset provided by
    Washington University in St. Louis
    Authors
    Carothers, Bobbi J; Allen, Peg; Brownson, Ross C
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cancer mortality rates in the United States are higher in rural than urban areas. Collaborative networks for cancer prevention and control and uses of network findings in rural areas are not well understood. We surveyed health agencies in five service areas in rural Missouri and Illinois from September through December 2020, asking about contact, collaborative activities, and referrals between agencies. Network datasets were constructed for each relationship within each service area. Service areas ranged from 24-42 agencies. Interactive network applications were provided to agency staff, who used them for planning and reporting.

  14. A

    ‘NCHS - Potentially Excess Deaths from the Five Leading Causes of Death’...

    • analyst-2.ai
    Updated Jan 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2017). ‘NCHS - Potentially Excess Deaths from the Five Leading Causes of Death’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-nchs-potentially-excess-deaths-from-the-five-leading-causes-of-death-93fd/55faff8c/?iid=008-503&v=presentation
    Explore at:
    Dataset updated
    Jan 20, 2017
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘NCHS - Potentially Excess Deaths from the Five Leading Causes of Death’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/3d1da62a-9f1c-47e8-b5a1-b473f57d7fdc on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    MMWR Surveillance Summary 66 (No. SS-1):1-8 found that nonmetropolitan areas have significant numbers of potentially excess deaths from the five leading causes of death. These figures accompany this report by presenting information on potentially excess deaths in nonmetropolitan and metropolitan areas at the state level. They also add additional years of data and options for selecting different age ranges and benchmarks.

    Potentially excess deaths are defined in MMWR Surveillance Summary 66(No. SS-1):1-8 as deaths that exceed the numbers that would be expected if the death rates of states with the lowest rates (benchmarks) occurred across all states. They are calculated by subtracting expected deaths for specific benchmarks from observed deaths.

    Not all potentially excess deaths can be prevented; some areas might have characteristics that predispose them to higher rates of death. However, many potentially excess deaths might represent deaths that could be prevented through improved public health programs that support healthier behaviors and neighborhoods or better access to health care services.

    Mortality data for U.S. residents come from the National Vital Statistics System. Estimates based on fewer than 10 observed deaths are not shown and shaded yellow on the map.

    Underlying cause of death is based on the International Classification of Diseases, 10th Revision (ICD-10)

    Heart disease (I00-I09, I11, I13, and I20–I51) Cancer (C00–C97) Unintentional injury (V01–X59 and Y85–Y86) Chronic lower respiratory disease (J40–J47) Stroke (I60–I69) Locality (nonmetropolitan vs. metropolitan) is based on the Office of Management and Budget’s 2013 county-based classification scheme.

    Benchmarks are based on the three states with the lowest age and cause-specific mortality rates.

    Potentially excess deaths for each state are calculated by subtracting deaths at the benchmark rates (expected deaths) from observed deaths.

    Users can explore three benchmarks:

    “2010 Fixed” is a fixed benchmark based on the best performing States in 2010. “2005 Fixed” is a fixed benchmark based on the best performing States in 2005. “Floating” is based on the best performing States in each year so change from year to year.

    SOURCES

    CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov).

    REFERENCES

    1. Moy E, Garcia MC, Bastian B, Rossen LM, Ingram DD, Faul M, Massetti GM, Thomas CC, Hong Y, Yoon PW, Iademarco MF. Leading Causes of Death in Nonmetropolitan and Metropolitan Areas – United States, 1999-2014. MMWR Surveillance Summary 2017; 66(No. SS-1):1-8.

    2. Garcia MC, Faul M, Massetti G, Thomas CC, Hong Y, Bauer UE, Iademarco MF. Reducing Potentially Excess Deaths from the Five Leading Causes of Death in the Rural United States. MMWR Surveillance Summary 2017; 66(No. SS-2):1–7.

    --- Original source retains full ownership of the source dataset ---

  15. G

    Health Status: Breast Cancer Rates, 1986 to 1995

    • open.canada.ca
    • data.amerigeoss.org
    • +1more
    jp2, zip
    Updated Mar 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2022). Health Status: Breast Cancer Rates, 1986 to 1995 [Dataset]. https://open.canada.ca/data/dataset/f146e480-8893-11e0-b60f-6cf049291510
    Explore at:
    zip, jp2Available download formats
    Dataset updated
    Mar 14, 2022
    Dataset provided by
    Natural Resources Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    One woman in nine can expect to develop breast cancer during her lifetime and one in 25 will die from the disease. Statistically low incidences of breast cancer are found in Newfoundland and Labrador, the territories, and northern areas of most provinces. Otherwise, each province has one or more pockets of significantly high breast cancer incidence. These are often located in more southerly areas, but they do not seem to be restricted to either urban or rural areas alone. Breast cancer rates are a health status indicator. They can be used to help assess health conditions. Health status refers to the state of health of a person or group, and measures causes of sickness and death. It can also include people’s assessment of their own health.

  16. G

    Health Status: Breast Cancer Ratios, 1986 to 1995

    • open.canada.ca
    jp2, zip
    Updated Mar 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2022). Health Status: Breast Cancer Ratios, 1986 to 1995 [Dataset]. https://open.canada.ca/data/en/dataset/f1505a5e-8893-11e0-8db2-6cf049291510
    Explore at:
    zip, jp2Available download formats
    Dataset updated
    Mar 14, 2022
    Dataset provided by
    Natural Resources Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    This map uses age-standardized ratios to further aid in regional comparisons. A value of 1.0 would indicate that the region rate is identical to the overall Canadian rate; a value greater than 1.0 would indicate that the rate for that region is higher than the Canadian rate; and, in turn, a ratio value less than 1.0 would indicate that the rate for the specific region is lower than the Canadian rate. Statistically low incidences of breast cancer are found in Newfoundland and Labrador, the territories, and northern areas of most provinces. Otherwise, each province has one or more pockets of significantly high breast cancer incidence. Health status refers to the state of health of a person or group, and measures causes of sickness and death. It can also include people’s assessment of their own health.

  17. Where should we focus on improving life expectancy?

    • coronavirus-resources.esri.com
    • gis-for-racialequity.hub.arcgis.com
    Updated Mar 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). Where should we focus on improving life expectancy? [Dataset]. https://coronavirus-resources.esri.com/maps/af2472aaa9e94814b06e950db53f18f3
    Explore at:
    Dataset updated
    Mar 26, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This multi-scale map shows life expectancy - a widely-used measure of health and mortality. From the County Health Rankings page about Life Expectancy:"Life Expectancy is an AverageLife Expectancy measures the average number of years from birth a person can expect to live, according to the current mortality experience (age-specific death rates) of the population. Life Expectancy takes into account the number of deaths in a given time period and the average number of people at risk of dying during that period, allowing us to compare data across counties with different population sizes.Life Expectancy is Age-AdjustedAge is a non-modifiable risk factor, and as age increases, poor health outcomes are more likely. Life Expectancy is age-adjusted in order to fairly compare counties with differing age structures.What Deaths Count Toward Life Expectancy?Deaths are counted in the county where the individual lived. So, even if an individual dies in a car crash on the other side of the state, that death is attributed to his/her home county.Some Data are SuppressedA missing value is reported for counties with fewer than 5,000 population-years-at-risk in the time frame.Measure LimitationsLife Expectancy includes mortality of all age groups in a population instead of focusing just on premature deaths and thus can be dominated by deaths of the elderly.[1] This could draw attention to areas with higher mortality rates among the oldest segment of the population, where there may be little that can be done to change chronic health problems that have developed over many years. However, this captures the burden of chronic disease in a population better than premature death measures.[2]Furthermore, the calculation of life expectancy is complex and not easy to communicate. Methodologically, it can produce misleading results caused by hidden differences in age structure, is sensitive to infant and child mortality, and tends to be overestimated in small populations."Breakdown by race/ethnicity in pop-up: (This map has been updated with new data, so figures may vary from those in this image.)There are many factors that play into life expectancy: rates of noncommunicable diseases such as cancer, diabetes, and obesity, prevalence of tobacco use, prevalence of domestic violence, and many more.Proven strategies to improve life expectancy and health in general A database of dozens of strategies can be found at County Health Rankings' What Works for Health site, sorted by Health Behaviors, Clinical Care, Social & Economic Factors, and Physical Environment. Policies and Programs listed here have been evaluated as to their effectiveness. For example, consumer-directed health plans received an evidence rating of "mixed evidence" whereas cultural competence training for health care professionals received a rating of "scientifically supported." Data from County Health Rankings (layer referenced below), available for nation, state, and county, and available in ArcGIS Living Atlas of the World.

  18. What is the Life Expectancy of Black People in the U.S.?

    • gis-for-racialequity.hub.arcgis.com
    Updated Jun 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). What is the Life Expectancy of Black People in the U.S.? [Dataset]. https://gis-for-racialequity.hub.arcgis.com/maps/e18d0cdecbd9440c84757853f0700bf8
    Explore at:
    Dataset updated
    Jun 18, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This multi-scale map shows life expectancy - a widely-used measure of health and mortality. From the 2020 County Health Rankings page about Life Expectancy:"Life Expectancy is an AverageLife Expectancy measures the average number of years from birth a person can expect to live, according to the current mortality experience (age-specific death rates) of the population. Life Expectancy takes into account the number of deaths in a given time period and the average number of people at risk of dying during that period, allowing us to compare data across counties with different population sizes.Life Expectancy is Age-AdjustedAge is a non-modifiable risk factor, and as age increases, poor health outcomes are more likely. Life Expectancy is age-adjusted in order to fairly compare counties with differing age structures.What Deaths Count Toward Life Expectancy?Deaths are counted in the county where the individual lived. So, even if an individual dies in a car crash on the other side of the state, that death is attributed to his/her home county.Some Data are SuppressedA missing value is reported for counties with fewer than 5,000 population-years-at-risk in the time frame.Measure LimitationsLife Expectancy includes mortality of all age groups in a population instead of focusing just on premature deaths and thus can be dominated by deaths of the elderly.[1] This could draw attention to areas with higher mortality rates among the oldest segment of the population, where there may be little that can be done to change chronic health problems that have developed over many years. However, this captures the burden of chronic disease in a population better than premature death measures.[2]Furthermore, the calculation of life expectancy is complex and not easy to communicate. Methodologically, it can produce misleading results caused by hidden differences in age structure, is sensitive to infant and child mortality, and tends to be overestimated in small populations."Click on the map to see a breakdown by race/ethnicity in the pop-up: Full details about this measureThere are many factors that play into life expectancy: rates of noncommunicable diseases such as cancer, diabetes, and obesity, prevalence of tobacco use, prevalence of domestic violence, and many more.Data from County Health Rankings 2020 (in this layer and referenced below), available for nation, state, and county, and available in ArcGIS Living Atlas of the World

  19. H

    CDC Wonder

    • dataverse.harvard.edu
    Updated Nov 30, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harvard Dataverse (2010). CDC Wonder [Dataset]. http://doi.org/10.7910/DVN/UA0YGE
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 30, 2010
    Dataset provided by
    Harvard Dataverse
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Users can use WONDER to access data on a variety of topics from many of the CDC's data systems. Background CDC Wonder (Wide-ranging Online Data for Epidemiological Research) is part of the Centers for Disease Control and provides access to a wide variety of public health information. Wonder uses data systems, which include AIDS Public Use Data, Births, Cancer Statistics, Infant Deaths, Mortality, Population Data, Sexually Transmitted Disease Morbidity and Vaccine Adverse Effects Reporting databases. User Functionality From Wonder, users can get to other databases and data sources organized by topic category (which include chronic conditions, health practice and prevention, communicable diseases, environmental health, occupational health, and injury prevention), or by alphabetical index. From this site, users gain access to all of the CDC data centers. Users can find reports and other publications on their specific top ic of interest or generate their own. After filling out a simple request form that allows users to determine how the data is grouped and the unit of analysis, users can customize if the view in either chart or map form. Data can be grouped by a variety of demographic characteristics, including: race, age group, ethnicity, region, state or county or by characteristics and conditions related to the specific data system. Information can be viewed online or exported into a variety of forms including word processing, spreadsheets or other data analysis packages such as Epi-Info. Data Notes Summaries of all the data sets are available from the homepage, and data sources are listed under each table, chart, map or report.

  20. Diet-Related Deaths

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Dec 24, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Agriculture and Consumer Services (2014). Diet-Related Deaths [Dataset]. https://hub.arcgis.com/maps/FDACS::diet-related-deaths/about
    Explore at:
    Dataset updated
    Dec 24, 2014
    Dataset authored and provided by
    Florida Department of Agriculture and Consumer Serviceshttps://www.fdacs.gov/
    Area covered
    Description

    Diet-related deaths by 2010 US Census tract in the state of Florida. This data should be paired with rural and urban high impact areas. Data for each cause of death was aggregated for the years 2007-2013. Diet-related causes include cancer, diabetes, heart, liver, and stroke (deaths by accident are included for comparison). For detailed information, refer to the technical addendum developed by Mari Gallagher Research & Consulting Group (MG).This service is intended for use at very large scales or for popups with tile cached services.This service is tile cached for scale levels L06-L14.

    This data layer is part of Florida’s Roadmap to Living Healthy web map produced by the Florida Department of Agriculture and Consumer Services (FDACS), Division of Food, Nutrition and Wellness (DFNW).For technical assistance, contact the Florida's Roadmap to Healthy Living Administrator

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Department of Health & Human Services (2025). State Cancer Profiles Web site [Dataset]. https://catalog.data.gov/dataset/state-cancer-profiles-web-site
Organization logo

State Cancer Profiles Web site

Explore at:
20 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 17, 2025
Dataset provided by
United States Department of Health and Human Serviceshttp://www.hhs.gov/
Description

The State Cancer Profiles (SCP) web site provides statistics to help guide and prioritize cancer control activities at the state and local levels. SCP is a collaborative effort using local and national level cancer data from the Centers for Disease Control and Prevention's National Program of Cancer Registries (NPCR) and National Cancer Institute's Surveillance, Epidemiology and End Results Registries (SEER). SCP address select types of cancer and select behavioral risk factors for which there are evidence-based control interventions. The site provides incidence, mortality and prevalence comparison tables as well as interactive graphs and maps and support data. The graphs and maps provide visual support for deciding where to focus cancer control efforts.

Search
Clear search
Close search
Google apps
Main menu