Breast cancer was the cancer type with the highest rate of death among females worldwide in 2022. That year, there were around 13 deaths from breast cancer among females per 100,000 population. The death rate for all cancers among females was 76.4 per 100,000 population. This statistic displays the rate of cancer deaths among females worldwide in 2022, by type of cancer.
In the period 2018 to 2022, a total of approximately 173 men per 100,000 inhabitants died of cancers of all kinds in the United States, compared to an overall cancer death rate of 126 per 100,000 population among women. This statistic shows cancer death rates in the U.S. for the period from 2018 to 2022, by type and gender.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Annual percent change and average annual percent change in age-standardized cancer mortality rates since 1984 to the most recent data year. The table includes a selection of commonly diagnosed invasive cancers and causes of death are defined based on the World Health Organization International Classification of Diseases, ninth revision (ICD-9) from 1984 to 1999 and on its tenth revision (ICD-10) from 2000 to the most recent year.
Lung cancer was the cancer type with the highest rate of death among males worldwide in 2022. In that year there were around 25 deaths from trachea, bronchus and lung cancer among males per 100,000 population. The death rate for all cancers among males was 109 per 100,000 population. This statistic shows the rate of cancer deaths among males worldwide in 2022, by type of cancer.
Cancer survival statistics are typically expressed as the proportion of patients alive at some point subsequent to the diagnosis of their cancer. Statistics compare the survival of patients diagnosed with cancer with the survival of people in the general population who are the same age, race, and sex and who have not been diagnosed with cancer.
Lung cancer had the highest rate of death among all cancer types worldwide in 2022. In that year, there were around 17 deaths from trachea, bronchus and lung cancer per 100,000 population. The death rate for all cancers was 91.1 per 100,000 population. This statistic shows the rate of cancer deaths worldwide in 2022, by type of cancer.
Cancer was responsible for around 142 deaths per 100,000 population in the United States in 2022. The death rate for cancer has steadily decreased since the 1990’s, but cancer still remains the second leading cause of death in the United States. The deadliest type of cancer for both men and women is cancer of the lung and bronchus which will account for an estimated 65,790 deaths among men alone in 2024. Probability of surviving Survival rates for cancer vary significantly depending on the type of cancer. The cancers with the highest rates of survival include cancers of the thyroid, prostate, and testis, with five-year survival rates as high as 99 percent for thyroid cancer. The cancers with the lowest five-year survival rates include cancers of the pancreas, liver, and esophagus. Risk factors It is difficult to determine why one person develops cancer while another does not, but certain risk factors have been shown to increase a person’s chance of developing cancer. For example, cigarette smoking has been proven to increase the risk of developing various cancers. In fact, around 81 percent of cancers of the lung, bronchus and trachea among adults aged 30 years and older can be attributed to cigarette smoking. A recent poll indicated that many U.S. adults believed smoking cigarettes and using other tobacco products increased a person’s risk of developing cancer, but a much smaller percentage believed the same for proven risk factors such as obesity and drinking alcohol.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT OBJECTIVE To analyze inequalities in incidence, mortality, and estimated survival for neoplasms in men according to social vulnerability. METHODS Analysis of cases and deaths of all neoplasms and the five most common in men aged 30 years or older in the city of Campinas (SP), between 2010 and 2014, using data from the Population-Based Cancer Registry (RCBP) and the Mortality Information System (SIM). The areas of residence were grouped into five social vulnerability strata (SVS) using São Paulo Social Vulnerability Index. For each SVS, age-standardized incidence and mortality rates were calculated. A five-year survival proxy was calculated by complementing the ratio of the mortality rate to the incidence rate. Inequalities between strata were measured by the ratios between rates, the relative inequality index (RII) and the angular inequality index (AII). RESULTS RII revealed that the incidence of all neoplasms (0.66, 95%CI 0.62–0.69) and colorectal and lung cancers were lower among the most socially vulnerable, who presented a higher incidence of stomach and oral cavity cancer. Mortality rates for stomach, oral cavity, prostate and all types of cancer were higher in the most vulnerable segments, with no differences in mortality for colorectal and lung cancer. Survival was lower in the most social vulnerable stratum for all types of cancer studied. AII showed excess cases in the least vulnerable and deaths in the most vulnerable. Social inequalities were different depending on the tumor location and the indicator analyzed. CONCLUSION There is a trend of reversal of inequalities between incidence-mortality and incidence-survival, and the most social vulnerable segment presents lower survival rates for the types of cancer, pointing to the existence of inequality in access to early diagnosis and effective and timely treatment.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data provides high-level data on historical registrations (or cases) and deaths, including information about the cancer types and breakdowns by gender variables.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Mortality from lung cancer, directly age-standardised rate, persons, under 75 years, 2004-08 (pooled) per 100,000 European Standard population by Local Authority by local deprivation quintile. Local deprivation quintiles are calculated by ranking small areas (Lower Super Output Areas (LSOAs)) within each Local Authority based on their Index of Multiple Deprivation 2007 (IMD 2007) deprivation score, and then grouping the LSOAs in each Local Authority into five groups (quintiles) with approximately equal numbers of LSOAs in each. The upper local deprivation quintile (Quintile 1) corresponds with the 20% most deprived small areas within that Local Authority. The mortality rates have been directly age-standardised using the European Standard Population in order to make allowances for differences in the age structure of populations. There are inequalities in health. For example, people living in more deprived areas tend to have shorter life expectancy, and higher prevalence and mortality rates of most cancers. Lung cancer accounts for 7% of all deaths among men and in England every year and 4% of deaths among women every year. This amounts to 24% of all cancer deaths among men in England and 18% of all cancer deaths among women in England1. Reducing inequalities in premature mortality from all cancers is a national priority, as set out in the Department of Health’s Vital Signs Operating Framework 2008/09-2010/111. This indicator has been produced in order to quantify inequalities in lung cancer mortality by deprivation. This indicator has been discontinued and so there will be no further updates. Legacy unique identifier: P01406
https://media.market.us/privacy-policyhttps://media.market.us/privacy-policy
(Source: WHO, American Cancer Society)
https://www.krebsdaten.de/Krebs/EN/Database/databasequery_step1_node.htmlhttps://www.krebsdaten.de/Krebs/EN/Database/databasequery_step1_node.html
The German Centre for Cancer Registry Data (ZfKD) provides the topical cancer statistics for Germany. In an interactive database query you will get information on incidence and mortality rates as well as for prevalence and survival rates for different types of cancer.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
AbstractIn Italy, approximately 400.000 new cases of malignant tumors are recorded every year. The average of annual deaths caused by tumors, according to the Italian Cancer Registers, is about 3.5 deaths and about 2.5 per 1,000 men and women respectively, for a total of about 3 deaths every 1,000 people. Long-term (at least a decade) and spatially detailed data (up to the municipality scale) are neither easily accessible nor fully available for public consultation by the citizens, scientists, research groups, and associations. Therefore, here we present a ten-year (2009–2018) database on cancer mortality rates (in the form of Standardized Mortality Ratios, SMR) for 23 cancer macro-types in Italy on municipal, provincial, and regional scales. We aim to make easily accessible a comprehensive, ready-to-use, and openly accessible source of data on the most updated status of cancer mortality in Italy for local and national stakeholders, researchers, and policymakers and to provide researchers with ready-to-use data to perform specific studies. Methods For a given locality, year, and cause of death, the SMR is the ratio between the observed number of deaths (Om) and the number of expected deaths (Em): SMR = Om/Em (1) where Om should be an available observational data and Em is estimated as the weighted sum of age-specific population size for the given locality (ni) per age-specific death rates of the reference population (MRi): Em = sum(MRi x ni) (2) MRi could be provided by a public health organization or be estimated as the ratio between the age-specific number of deaths of reference population (Mi) to the age-specific reference population size (Ni): MRi = Mi/Ni (3) Thus, the value of Em is weighted by the age distribution of deaths and population size. SMR assumes value 1 when the number of observed and expected deaths are equal. Following eqns. (1-3), the SMR was computed for single years of the period 2009-2018 and for single cause of death as defined by the International ICD-10 classification system by using the following data: age-specific number of deaths by cause of reference population (i.e., Mi) from the Italian National Institute of Statistics (ISTAT, (http://www.istat.it/en/, last access: 26/01/2022)); age-specific census data on reference population (i.e., Ni) from ISTAT; the observed number of deaths by cause (i.e., Om) from ISTAT; the age-specific census data on population (ni); the SMR was estimated at three different level of aggregation: municipal, provincial (equivalent to the European classification NUTS 3) and regional (i.e., NUTS2). The SMR was also computed for the broad category of malignant tumors (i.e. C00-C979, hereinafter cancer macro-type C), and for the broad category of malignant tumor plus non-malignant tumors (i.e. C00-C979 plus D0-D489, hereinafter cancer macro-type CD). Lower 90% and 95% confidence intervals of 10-year average values were computed according to the Byar method.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Deaths from lung cancer - Directly age-Standardised Rates (DSR) per 100,000 population Source: Office for National Statistics (ONS) Publisher: Information Centre (IC) - Clinical and Health Outcomes Knowledge Base Geographies: Local Authority District (LAD), Government Office Region (GOR), National, Primary Care Trust (PCT), Strategic Health Authority (SHA) Geographic coverage: England Time coverage: 2005-07, 2007 Type of data: Administrative data
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Mortality from lung cancer (ICD-10 C33-C34 equivalent to ICD-9 162). To reduce deaths from lung cancer. Legacy unique identifier: P00511
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Cancer diagnoses and age-standardised incidence rates for all types of cancer by age and sex including breast, prostate, lung and colorectal cancer.
The U.S. states are divided into groups based on the rates at which women developed or died from breast cancer in 2013, which is the most recent year for which incidence data are available.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Mortality from cervical cancer (ICD-10 C53 equivalent to ICD-9 180). To reduce deaths from cervical cancer Legacy unique identifier: P00188
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Projected lung cancer morality reduction and deaths avoided by smoker type, 2020–2040.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Overall-temporal-changes (ACd,r, per 100,000 people) from 2001 to 2016, in age-standardised fitted mortality rates for deprivation levels 1 and 10 and all regions in England for both genders; 95% credible intervals in brackets.
Breast cancer was the cancer type with the highest rate of death among females worldwide in 2022. That year, there were around 13 deaths from breast cancer among females per 100,000 population. The death rate for all cancers among females was 76.4 per 100,000 population. This statistic displays the rate of cancer deaths among females worldwide in 2022, by type of cancer.