100+ datasets found
  1. CDC WONDER: Cancer Statistics

    • catalog.data.gov
    • healthdata.gov
    • +4more
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention, Department of Health & Human Services (2025). CDC WONDER: Cancer Statistics [Dataset]. https://catalog.data.gov/dataset/cdc-wonder-cancer-statistics
    Explore at:
    Dataset updated
    Feb 22, 2025
    Description

    The United States Cancer Statistics (USCS) online databases in WONDER provide cancer incidence and mortality data for the United States for the years since 1999, by year, state and metropolitan areas (MSA), age group, race, ethnicity, sex, childhood cancer classifications and cancer site. Report case counts, deaths, crude and age-adjusted incidence and death rates, and 95% confidence intervals for rates. The USCS data are the official federal statistics on cancer incidence from registries having high-quality data and cancer mortality statistics for 50 states and the District of Columbia. USCS are produced by the Centers for Disease Control and Prevention (CDC) and the National Cancer Institute (NCI), in collaboration with the North American Association of Central Cancer Registries (NAACCR). Mortality data are provided by the Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), National Vital Statistics System (NVSS).

  2. Rate of skin cancer cases in the U.S. in 2021, by race/ethnicity

    • statista.com
    Updated Sep 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Rate of skin cancer cases in the U.S. in 2021, by race/ethnicity [Dataset]. https://www.statista.com/statistics/663907/skin-cancer-incidence-rate-in-us-by-ethnicity/
    Explore at:
    Dataset updated
    Sep 2, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United States
    Description

    As of 2021, non-Hispanic white people in the United States had the highest incidence rates of skin cancer among all races and ethnicities. Skin cancer is one of the most commonly occurring cancers in the world. Furthermore, the United States is among the countries with the highest rates of skin cancer worldwide. Skin cancer in the U.S. There are a few different types of skin cancer and some are more deadly than others. Basal and squamous skin cancers are more common and less dangerous than melanomas. Among U.S. residents, skin cancer has been demonstrated to be more prevalent among men than women. Skin cancer is also more prevalent among older adults. With treatment and early detection, skin cancers have a high survival rate. Fortunately, in recent years the U.S. has seen a reduction in the rate of death from melanoma. Skin cancer prevention Avoiding and protecting exposed skin from the sun (and other sources of UV light) is the primary means of preventing skin cancer. However, a survey of U.S. adults from 2024 found that around a third never used sunscreen.

  3. Rate of prostate cancer among U.S. men from 2018-2022, by race/ethnicity

    • statista.com
    Updated Jun 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Rate of prostate cancer among U.S. men from 2018-2022, by race/ethnicity [Dataset]. https://www.statista.com/statistics/672946/prostate-cancer-incidence-rate-us-by-ethnicity/
    Explore at:
    Dataset updated
    Jun 4, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Prostate cancer incidence rates in the United States vary significantly across racial and ethnic groups, with Non-Hispanic Black men facing the highest risk. According to recent data, Non-Hispanic Black males have an incidence rate of 194.8 per 100,000 population, which is substantially higher than the overall rate of 120.2 per 100,000. This stark disparity highlights the importance of targeted screening and prevention efforts to address this health inequality. Incidence and mortality trends The burden of prostate cancer in the U.S. has grown in recent years. In 2025, approximately 313,780 men were projected to be diagnosed with prostate cancer, representing a significant increase from previous years. Despite this rising incidence, mortality rates have shown improvement. In 2022, the prostate cancer death rate was 18.7 per 100,000 men, compared to a rate of almost 39 per 100,000 in the year 1990. This decrease reflects advancements in treatment and early detection. Risk factors and survival rates Age remains a critical risk factor for prostate cancer, with men aged 65 to 84 having a 10.6 percent chance of developing the disease. However, there is encouraging news regarding survival rates. From 2014 to 2020, the five-year relative survival rate for prostate cancer patients in the U.S. was an impressive 97 percent. This high survival rate underscores the importance of early detection and the effectiveness of current treatment options.

  4. H

    SEER Cancer Statistics Database

    • data.niaid.nih.gov
    • dataverse.harvard.edu
    Updated Jul 11, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2011). SEER Cancer Statistics Database [Dataset]. http://doi.org/10.7910/DVN/C9KBBC
    Explore at:
    Dataset updated
    Jul 11, 2011
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Users can access data about cancer statistics in the United States including but not limited to searches by type of cancer and race, sex, ethnicity, age at diagnosis, and age at death. Background Surveillance Epidemiology and End Results (SEER) database’s mission is to provide information on cancer statistics to help reduce the burden of disease in the U.S. population. The SEER database is a project to the National Cancer Institute. The SEER database collects information on incidence, prevalence, and survival from specific geographic areas representing 28 percent of the United States population. User functionality Users can access a variety of reso urces. Cancer Stat Fact Sheets allow users to look at summaries of statistics by major cancer type. Cancer Statistic Reviews are available from 1975-2008 in table format. Users are also able to build their own tables and graphs using Fast Stats. The Cancer Query system provides more flexibility and a larger set of cancer statistics than F ast Stats but requires more input from the user. State Cancer Profiles include dynamic maps and graphs enabling the investigation of cancer trends at the county, state, and national levels. SEER research data files and SEER*Stat software are available to download through your Internet connection (SEER*Stat’s client-server mode) or via discs shipped directly to you. A signed data agreement form is required to access the SEER data Data Notes Data is available in different formats depending on which type of data is accessed. Some data is available in table, PDF, and html formats. Detailed information about the data is available under “Data Documentation and Variable Recodes”.

  5. Prostate cancer death rate in the U.S. 2018-2022, by race/ethnicity

    • statista.com
    Updated Jun 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Prostate cancer death rate in the U.S. 2018-2022, by race/ethnicity [Dataset]. https://www.statista.com/statistics/672997/prostate-cancer-death-rate-us-by-ethnicity/
    Explore at:
    Dataset updated
    Jun 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the period 2018 to 2022, the death rate for prostate cancer among Hispanic Americans was 15.4 per 100,000 population. This statistic shows the death rate for prostate cancer among U.S. males from 2018 to 2022, by race and ethnicity.

  6. Cancer Incidence in the US by state and race

    • kaggle.com
    Updated Dec 17, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SKariuki (2018). Cancer Incidence in the US by state and race [Dataset]. https://www.kaggle.com/salomekariuki/cancer-incidence-in-the-us-by-state-and-race
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 17, 2018
    Dataset provided by
    Kaggle
    Authors
    SKariuki
    Area covered
    United States
    Description

    I was interested in investigating cancer incidence levels in the US by looking at how they vary by race or state. All the data is collected online from Centers for Disease Control and Prevention, State Cancer Profiles, and United States Census Bureau. This dataset can be used to answer questions on the correlation between poverty levels, insurance levels and cancer incidence levels. Further, one can find which cancers affect a certain race more or a certain state.

  7. f

    DataSheet_1_Changes in Cancer Mortality by Race and Ethnicity Following the...

    • figshare.com
    docx
    Updated Jun 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maria Elena Martinez; Scarlett L. Gomez; Alison J. Canchola; Debora L. Oh; James D. Murphy; Winta Mehtsun; K. Robin Yabroff; Matthew P. Banegas (2023). DataSheet_1_Changes in Cancer Mortality by Race and Ethnicity Following the Implementation of the Affordable Care Act in California.docx [Dataset]. http://doi.org/10.3389/fonc.2022.916167.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 16, 2023
    Dataset provided by
    Frontiers
    Authors
    Maria Elena Martinez; Scarlett L. Gomez; Alison J. Canchola; Debora L. Oh; James D. Murphy; Winta Mehtsun; K. Robin Yabroff; Matthew P. Banegas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Although Affordable Care Act (ACA) implementation has improved cancer outcomes, less is known about how much the improvement applies to different racial and ethnic populations. We examined changes in health insurance coverage and cancer-specific mortality rates by race/ethnicity pre- and post-ACA. We identified newly diagnosed breast (n = 117,738), colorectal (n = 38,334), and cervical cancer (n = 11,109) patients < 65 years in California 2007-2017. Hazard rate ratios (HRR) and 95% confidence intervals (CI) were calculated using multivariable Cox regression to estimate risk of cancer-specific death pre- (2007-2010) and post-ACA (2014-2017) and by race/ethnicity [American Indian/Alaska Natives (AIAN); Asian American; Hispanic; Native Hawaiian or Pacific Islander (NHPI); non-Hispanic Black (NHB); non-Hispanic white (NHW)]. Cancer-specific mortality from colorectal cancer was lower post-ACA among Hispanic (HRR = 0.82, 95% CI = 0.74 to 0.92), NHB (HRR = 0.69, 95% CI = 0.58 to 0.82), and NHW (HRR = 0.90; 95% CI = 0.84 to 0.97) but not Asian American (HRR = 0.95, 95% CI = 0.82 to 1.10) patients. We observed a lower risk of death from cervical cancer post-ACA among NHB women (HRR = 0.68, 95% CI = 0.47 to 0.99). No statistically significant differences in breast cancer-specific mortality were observed for any racial or ethnic group. Cancer-specific mortality decreased following ACA implementation for colorectal and cervical cancers for some racial and ethnic groups in California, suggesting Medicaid expansion is associated with reductions in health inequity.

  8. a

    NCI State Late Stage Breast Cancer Incidence Rates

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jan 21, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Cancer Institute (2020). NCI State Late Stage Breast Cancer Incidence Rates [Dataset]. https://hub.arcgis.com/datasets/9dd0d923f8034cc8806173fdc224777d
    Explore at:
    Dataset updated
    Jan 21, 2020
    Dataset authored and provided by
    National Cancer Institute
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This dataset contains Cancer Incidence data for Breast Cancer (Late Stage^) including: Age-Adjusted Rate, Confidence Interval, Average Annual Count, and Trend field information for US States for the average 5 year span from 2016 to 2020.Data are for females segmented by age (All Ages, Ages Under 50, Ages 50 & Over, Ages Under 65, and Ages 65 & Over), with field names and aliases describing the sex and age group tabulated.For more information, visit statecancerprofiles.cancer.govData NotationsState Cancer Registries may provide more current or more local data.TrendRising when 95% confidence interval of average annual percent change is above 0.Stable when 95% confidence interval of average annual percent change includes 0.Falling when 95% confidence interval of average annual percent change is below 0.† Incidence rates (cases per 100,000 population per year) are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84, 85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Rates calculated using SEER*Stat. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used for SEER and NPCR incidence rates.‡ Incidence Trend data come from different sources. Due to different years of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. Please refer to the source for each area for additional information.Rates and trends are computed using different standards for malignancy. For more information see malignant.^ Late Stage is defined as cases determined to be regional or distant. Due to changes in stage coding, Combined Summary Stage (2004+) is used for data from Surveillance, Epidemiology, and End Results (SEER) databases and Merged Summary Stage is used for data from National Program of Cancer Registries databases. Due to the increased complexity with staging, other staging variables maybe used if necessary.Data Source Field Key(1) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(5) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(6) Source: National Program of Cancer Registries SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention (based on the 2022 submission).(7) Source: SEER November 2022 submission.(8) Source: Incidence data provided by the SEER Program. AAPCs are calculated by the Joinpoint Regression Program and are based on APCs. Data are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84,85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used with SEER November 2022 data.Some data are not available, see Data Not Available for combinations of geography, cancer site, age, and race/ethnicity.Data for the United States does not include data from Nevada.Data for the United States does not include Puerto Rico.

  9. d

    Age-Adjusted Incidence Rates for All Cancer Sites by Jurisdiction, Gender,...

    • catalog.data.gov
    • opendata.maryland.gov
    • +1more
    Updated Aug 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    opendata.maryland.gov (2024). Age-Adjusted Incidence Rates for All Cancer Sites by Jurisdiction, Gender, and Race, Maryland 2009 [Dataset]. https://catalog.data.gov/dataset/age-adjusted-incidence-rates-for-all-cancer-sites-by-jurisdiction-gender-and-race-maryland
    Explore at:
    Dataset updated
    Aug 16, 2024
    Dataset provided by
    opendata.maryland.gov
    Area covered
    Maryland
    Description

    This is historical data. The update frequency has been set to "Static Data" and is here for historic value. Updated 8/14/2024. Definition of "All Cancer Sites": ICD-O-3 Topography (Site) Codes C00.0 – C80.9 with histology codes including all invasive cancers of all sites except basal and squamous cell skin cancers, and in situ cancer cases of the urinary bladder. Rates are per 100,000 population and are age-adjusted to 2000 U.S. standard population. Rates based on case counts of 1-15 are suppressed per DHMH/MCR Data Use Policy and Procedures.

  10. Rate of liver cancer diagnoses in the U.S. in 2021, by race/ethnicity

    • statista.com
    • ai-chatbox.pro
    Updated Jul 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Rate of liver cancer diagnoses in the U.S. in 2021, by race/ethnicity [Dataset]. https://www.statista.com/statistics/951917/new-liver-cancer-cases-rate-by-ethnicity/
    Explore at:
    Dataset updated
    Jul 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United States
    Description

    According to the data, the rate of liver cancer diagnoses among Hispanics in the United States was 13.4 per 100,000 in 2021. This statistic depicts the rate of new U.S. liver cancer diagnoses in 2021, by race and ethnicity.

  11. a

    Medical Service Study Area Demographics

    • usc-geohealth-hub-uscssi.hub.arcgis.com
    Updated Nov 10, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Sciences Institute (2021). Medical Service Study Area Demographics [Dataset]. https://usc-geohealth-hub-uscssi.hub.arcgis.com/datasets/medical-service-study-area-demographics
    Explore at:
    Dataset updated
    Nov 10, 2021
    Dataset authored and provided by
    Spatial Sciences Institute
    Area covered
    Description

    Medical Service Study Areas (MSSAs)As defined by California's Office of Statewide Health Planning and Development (OSHPD) in 2013, "MSSAs are sub-city and sub-county geographical units used to organize and display population, demographic and physician data" (Source). Each census tract in CA is assigned to a given MSSA. The most recent MSSA dataset (2014) was used. Spatial data are available via OSHPD at the California Open Data Portal. This information may be useful in studying health equity.Definitions:Race/Ethnicity: Race/ethnicity is categorized as: All races/ethnicities, Non-Hispanic (NH) White, NH Black, Asian/Pacific Islander, or Hispanic. "All races" includes all of the above, as well as other and unknown race/ethnicity and American Indian/Alaska Native. The latter two groups are not reported separately due to small numbers for many cancer sites.Racial/Ethnic Composition: Distribution of residents' race/ethnicity (e.g., % Hispanic, % non-Hispanic White, % non-Hispanic Black, % non-Hispanic Asian/Pacific Islander). (Source: US Census, 2010.)Rural: Percent of residents who reside in blocks that are designated as rural. (Source: US Census, 2010.)Foreign Born: Percent of residents who were born outside the United States. (Source: American Community Survey, 2008-2012.)Socioeconomic Status (Neighborhood Level): A composite measure of seven indicator variables created by principal component analysis; indicators include: education, blue-collar job, unemployment, household income, poverty, rent, and house value. Quintiles based on state distribution, with quintile 1 being the lowest SES and 5 being the highest. (Source: American Community Survey, 2008-2012.)Spatial extent: CaliforniaSpatial Unit: MSSACreated: n/aUpdated: n/aSource: California Health MapsContact Email: gbacr@ucsf.eduSource Link: https://www.californiahealthmaps.org/?areatype=mssa&address=&sex=Both&site=AllSite&race=&year=05yr&overlays=none&choropleth=Obesity

  12. d

    Ethnicity and Cancer Burden NZ - Dataset - data.govt.nz - discover and use...

    • catalogue.data.govt.nz
    Updated Feb 1, 2001
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2001). Ethnicity and Cancer Burden NZ - Dataset - data.govt.nz - discover and use data [Dataset]. https://catalogue.data.govt.nz/dataset/oai-figshare-com-article-2000295
    Explore at:
    Dataset updated
    Feb 1, 2001
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New Zealand
    Description

    Complete ArcGIS dataset dump for demographic, health and administrative region boundaries describing ethnicity, demographics and cancer burden across a basket of diseases for NZ, ca 2008

  13. d

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    • +1more
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-and-deaths-by-race-ethnicity
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical

  14. S

    Breast Cancer Statistics By Types, Stage And Occurrence (2025)

    • sci-tech-today.com
    Updated May 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sci-Tech Today (2025). Breast Cancer Statistics By Types, Stage And Occurrence (2025) [Dataset]. https://www.sci-tech-today.com/stats/breast-cancer-statistics-updated/
    Explore at:
    Dataset updated
    May 13, 2025
    Dataset authored and provided by
    Sci-Tech Today
    License

    https://www.sci-tech-today.com/privacy-policyhttps://www.sci-tech-today.com/privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    Global
    Description

    Introduction

    Breast Cancer Statistics: Breast cancer remains one of the most prevalent and concerning health challenges, mostly among women. It is the most common cancer diagnosed in women worldwide and the second leading cause of cancer-related deaths among women in the United States. The impact of breast cancer is significant, with millions of new cases diagnosed each year and hundreds of thousands of deaths attributed to the disease.

    This article will provide critical insights into the incidence, survival rates, mortality, and disparities across different demographics, including age, race, and ethnicity. Understanding the latest statistics on breast cancer is crucial for driving progress in reducing the incidence and mortality rates, improving survival outcomes, and ultimately, finding a cure.

  15. U.S. rate of new alcohol-associated cancers 2017-2021, by race and ethnicity...

    • ai-chatbox.pro
    • statista.com
    Updated May 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. rate of new alcohol-associated cancers 2017-2021, by race and ethnicity [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstatistics%2F1319371%2Frate-alcohol-associated-cancers-by-race-ethnicity%2F%23XgboDwS6a1rKoGJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    May 13, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Between 2017 and 2021, the highest incidence of alcohol-associated cancer in the United States was among Black individuals, with a rate of nearly *** per 100,000 people. This graph shows the rate of alcohol-related cancers per 100,000 people from 2017 to 2021 in the United States, by race and ethnicity.

  16. a

    NCI State Cancer Incidence Rates

    • hub.arcgis.com
    Updated Aug 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Cancer Institute (2019). NCI State Cancer Incidence Rates [Dataset]. https://hub.arcgis.com/datasets/NCI::nci-state-cancer-incidence-rates
    Explore at:
    Dataset updated
    Aug 20, 2019
    Dataset authored and provided by
    National Cancer Institute
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This dataset contains Age-Adjusted Rate, Confidence Interval, Average Annual Count, and Trend field information for US States for the average 5 year span from 2012 to 2016.Data is segmented by sex and age, with fields describing the sex and age group tabulated.For more information, visit statecancerprofiles.cancer.gov Data NotationsState Cancer Registries may provide more current or more local data.† Incidence rates (cases per 100,000 population per year) are age-adjusted to the 2000 US standard population seer.cancer.gov/stdpopulations/stdpop.19ages.html. Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Rates calculated using SEER*Stat. [seer.cancer.gov/seerstat]Population counts for denominators are based on Census populations as modified [seer.cancer.gov/popdata] by NCI. The 1969-2016 US Population Data File [seer.cancer.gov/popdata] is used for SEER and NPCR incidence rates.‡ Incidence data come from different sources. Due to different years of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. Please refer to the source for each area for additional information. Rates and trends are computed using different standards for malignancy. For more information see malignant.html.^ All Stages refers to any stage in the Surveillance, Epidemiology, and End Results (SEER) summary stage [seer.cancer.gov/tools/ssm].Healthy People 2020 Objectives [www.healthypeople.gov]provided by the Centers for Disease Control and Prevention [www.cdc.gov]. Michigan Data do not include cases diagnosed in other states for those states in which the data exchange agreement specifically prohibits the release of data to third parties.Trend Data not available for Nevada.Data Source Field Key:(1) Source: CDC's National Program of Cancer Registries Cancer Surveillance System (NPCR-CSS) November 2018 data submission and SEER November 2018 submission as published in United States Cancer Statistics nccd.cdc.gov/uscs Source: State Cancer Registry and the CDC's National Program of Cancer Registries Cancer Surveillance System (NPCR-CSS) November 2018 data submission. State rates include rates from metropolitan areas funded by SEER [seer.cancer.gov/registries].(6) Source: State Cancer Registry and the CDC's National Program of Cancer Registries Cancer Surveillance System (NPCR-CSS) November 2018 data submission.(7) Source: SEER November 2018 submission.8 Source: Incidence data provided by the SEER Program. [seer.cancer.gov] AAPCs are calculated by the Joinpoint Regression Program [surveillance.cancer.gov/joinpoint] and are based on APCs. Data are age-adjusted to the 2000 US standard population www.seer.cancer.gov/stdpopulations/single_age.html. Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Population counts for denominators are based on Census populations as modified by NCI. The 1969-2017 US Population Data [seer.cancer.gov/popdata] File is used with SEER November 2018 data. Please note that the data comes from different sources. Due to different years [statecancerprofiles.cancer.gov/historicaltrend/differences.html] of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. [seer.cancer.gov/seerstat] Please refer to the source for each graph for additional information. Some data are not available [http://statecancerprofiles.cancer.gov/datanotavailable.html] for combinations of geography, cancer site, age, and race/ethnicity.

  17. a

    5 Year Female Cancer Incidence MSSA

    • usc-geohealth-hub-uscssi.hub.arcgis.com
    Updated Nov 10, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Sciences Institute (2021). 5 Year Female Cancer Incidence MSSA [Dataset]. https://usc-geohealth-hub-uscssi.hub.arcgis.com/datasets/5-year-female-cancer-incidence-mssa
    Explore at:
    Dataset updated
    Nov 10, 2021
    Dataset authored and provided by
    Spatial Sciences Institute
    Area covered
    Description

    Medical Service Study Areas (MSSAs)As defined by California's Office of Statewide Health Planning and Development (OSHPD) in 2013, "MSSAs are sub-city and sub-county geographical units used to organize and display population, demographic and physician data" (Source). Each census tract in CA is assigned to a given MSSA. The most recent MSSA dataset (2014) was used. Spatial data are available via OSHPD at the California Open Data Portal. This information may be useful in studying health equity.Age-Adjusted Incidence Rate (AAIR)Age-adjustment is a statistical method that allows comparisons of incidence rates to be made between populations with different age distributions. This is important since the incidence of most cancers increases with age. An age-adjusted cancer incidence (or death) rate is defined as the number of new cancers (or deaths) per 100,000 population that would occur in a certain period of time if that population had a 'standard' age distribution. In the California Health Maps, incidence rates are age-adjusted using the U.S. 2000 Standard Population.

    Cancer incidence rates

    Incidence rates were calculated using case counts from the California Cancer Registry. Population data from 2010 Census and SEER 2015 census tract estimates by race/origin (controlling to Vintage 2015) were used to estimate population denominators. Yearly SEER 2015 census tract estimates by race/origin (controlling to Vintage 2015) were used to estimate population denominators for 5-year incidence rates (2013-2017)According to California Department of Public Health guidelines, cancer incidence rates cannot be reported if based on <15 cancer cases and/or a population <10,000 to ensure confidentiality and stable statistical rates.Spatial extent: CaliforniaSpatial Unit: MSSACreated: n/aUpdated: n/aSource: California Health MapsContact Email: gbacr@ucsf.eduSource Link: https://www.californiahealthmaps.org/?areatype=mssa&address=&sex=Both&site=AllSite&race=&year=05yr&overlays=none&choropleth=Obesity

  18. Cancer Incidence Averages and Rates Per US County

    • kaggle.com
    Updated Apr 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zac Dannelly (2020). Cancer Incidence Averages and Rates Per US County [Dataset]. https://www.kaggle.com/dannellyz/cancer-incidence-totals-and-rates-per-us-county/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 8, 2020
    Dataset provided by
    Kaggle
    Authors
    Zac Dannelly
    Area covered
    United States
    Description

    Context

    This data comes from aggregation of the tables available on the NIH's National Cancer Institutes State Cancer Profiles, specifically with their incidence tables.

    The objective of the State Cancer Profiles Web site is to provide a system to characterize the cancer burden in a standardized manner in order to motivate action, integrate surveillance into cancer control planning, characterize areas and demographic groups, and expose health disparities. The focus is on cancer sites for which there are evidence based control interventions. Interactive graphics and maps provide visual support for deciding where to focus cancer control efforts.

    Content

    This data has cancer Incidence rates broken down by US County and includes data aggregated from 2012-2016. It has both incidence rates per 100k as well as yearly totals averaged over that period

    Potential Future Work

    This data is summarized across other potentially illuminating fields. The State Cancer Profiles can be further broken down by cancer area, race/ethnicity, sex, age, and stage. If more fidelity on the data would be helpful please add it to the discussion section and I can work on adding it!

    Data Use Restrictions

    Read Carefully Before Using

    By using these data, you signify your agreement to comply with the following statutorily based requirements.

    The Public Health Service Act (42 U.S.C. 242m(d)) provides that the data collected by the National Center for Health Statistics (NCHS) may be used only for the purpose for which they were obtained; any effort to determine the identity of any reported cases, or to use the information for any purpose other than for statistical reporting and analysis, is against the law. The National Program of Cancer Registries (NPCR), Centers for Disease Control and Prevention (CDC), has obtained an assurance of confidentiality pursuant to Section 308(d) of the Public Health Service Act, 42 U.S.C. 242m(d). This assurance provides that identifiable or potentially identifiable data collected by the NPCR may be used only for the purpose for which they were obtained unless the person or establishment from which they were obtained has consented to such use. Any effort to determine the identity of any reported cases, or to use the information for any purpose other than statistical reporting and analysis, is a violation of the assurance.

    Therefore users will: - Use the data for statistical reporting and analysis only. - Make no attempt to learn the identity of any person or establishment included in these data. - Make no disclosure or other use of the identity of any person or establishment discovered inadvertently, and advise the appropriate contact for the data provider. In addition to immediately notifying "Contact Us" of the potential disclosure, - For mortality data, notify the Confidentiality Officer at the National Center for Health Statistics (Alvan O. Zarate, Ph.D.), 3311 Toledo Road, Rm 7116, Hyattsville, MD 20782, Phone: 301-458-4601, Fax: 301-458-4021) - For incidence data notify both the Federal agency that provided the data and notify the relevant state or metropolitan area cancer registryExternal Web Site Policy, of any such discovery. - For CDC's National Program of Cancer Registries (NPCR) areas, notify the Associate Director for Science, Office of Science Policy and Technology Transfer, CDC, Mailstop D-50, 1600 Clifton Road, N.E., Atlanta, Georgia, 30333, Phone: 404-639-7240) - For NCI's Surveillance, Epidemiology, and End Results (SEER) Program registry areas, notify the Branch Chief of the Cancer Statistics Branch of the Surveillance Research Program, Division of Cancer Control and Population Sciences, NCI, BG 9609 MSC 9760, 9609 Medical Center Drive, Bethesda, MD 20892-9760, Phone: 301-496-8510, Fax: 301-496-9949.

  19. f

    Data_Sheet_1_Racial disparities in receipt of survivorship care plans among...

    • frontiersin.figshare.com
    docx
    Updated Jan 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mu Jin; Miranda R. Jones; Avonne E. Connor (2024). Data_Sheet_1_Racial disparities in receipt of survivorship care plans among female cancer survivors in Maryland.docx [Dataset]. http://doi.org/10.3389/fcacs.2023.1330410.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jan 5, 2024
    Dataset provided by
    Frontiers
    Authors
    Mu Jin; Miranda R. Jones; Avonne E. Connor
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Maryland
    Description

    BackgroundWith the increasing number of cancer survivors in the US, survivorship care plans (SCP) have been promoted to improve survivorship outcomes for cancer patients. Few studies have assessed if the receipt of SCPs differs by race/ethnicity. This study evaluated if racial/ethnic disparities exist in SCP receipt among female cancer survivors living in Maryland.MethodsSurvey data were analyzed for 1,353 non-Hispanic white (NHW) and 280 non-Hispanic Black (NHB) women with a self-reported history of cancer living in Maryland who completed the Maryland Behavioral Risk Factor Surveillance Survey (BRFSS) between 2011 and 2020. Multivariable logistic regression models were used to estimate prevalence odds ratios (PORs) and 95% confidence intervals (CI) for SCP receipt by race/ethnicity. Models were further stratified by demographic, cancer-related, and lifestyle factors to examine effect modification.ResultsOn average, survivors were 66.8 years of age at time of BRFSS survey and 53.5 years of age at time of cancer diagnosis. Compared with NHW survivors, NHB survivors reported higher odds of receiving a summary of cancer treatments (POR = 3.81, 95% CI: 2.27, 6.39), instructions from a doctor for follow-up check-ups (POR = 2.10, 95% CI: 1.00, 4.39), and written or printed instructions (POR = 4.74, 95% CI: 2.12, 10.61). Age at survey (50k) (p-interaction term = 0.04) significantly modified the relationship between race/ethnicity and receiving SCPs.ConclusionOur findings indicate that NHB female cancer survivors in Maryland are more likely to receive SCP information compared to NHW survivors and this association is significantly modified by age at survey and income level. More research is needed at the patient-provider level to gain a better understanding of the impact of SCP delivery to minority cancer populations.

  20. f

    Ethnicity and Cancer Burden NZ

    • auckland.figshare.com
    application/x-dbf
    Updated May 5, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mark Gahegan (2015). Ethnicity and Cancer Burden NZ [Dataset]. http://doi.org/10.17608/k6.auckland.2000295.v1
    Explore at:
    application/x-dbfAvailable download formats
    Dataset updated
    May 5, 2015
    Dataset provided by
    The University of Auckland
    Authors
    Mark Gahegan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New Zealand
    Description

    Complete ArcGIS dataset dump for demographic, health and administrative region boundaries describing ethnicity, demographics and cancer burden across a basket of diseases for NZ, ca 2008

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Centers for Disease Control and Prevention, Department of Health & Human Services (2025). CDC WONDER: Cancer Statistics [Dataset]. https://catalog.data.gov/dataset/cdc-wonder-cancer-statistics
Organization logoOrganization logo

CDC WONDER: Cancer Statistics

Explore at:
Dataset updated
Feb 22, 2025
Description

The United States Cancer Statistics (USCS) online databases in WONDER provide cancer incidence and mortality data for the United States for the years since 1999, by year, state and metropolitan areas (MSA), age group, race, ethnicity, sex, childhood cancer classifications and cancer site. Report case counts, deaths, crude and age-adjusted incidence and death rates, and 95% confidence intervals for rates. The USCS data are the official federal statistics on cancer incidence from registries having high-quality data and cancer mortality statistics for 50 states and the District of Columbia. USCS are produced by the Centers for Disease Control and Prevention (CDC) and the National Cancer Institute (NCI), in collaboration with the North American Association of Central Cancer Registries (NAACCR). Mortality data are provided by the Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), National Vital Statistics System (NVSS).

Search
Clear search
Close search
Google apps
Main menu