Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionComparable indicators on complete cancer prevalence are increasingly needed in Europe to support survivorship care planning. Direct measures can be biased by limited registration time and estimates are needed to recover long term survivors. The completeness index method, based on incidence and survival modelling, is the standard most validated approach.MethodsWithin this framework, we consider two alternative approaches that do not require any direct modelling activity: i) empirical indices derived from long established European registries; ii) pre-calculated indices derived from US-SEER cancer registries. Relying on the EUROCARE-6 study dataset we compare standard vs alternative complete prevalence estimates using data from 62 registries in 27 countries by sex, cancer type and registration time.ResultsFor tumours mostly diagnosed in the elderly the empirical estimates differ little from standard estimates (on average less than 5% after 10-15 years of registration), especially for low prognosis cancers. For early-onset cancers (bone, brain, cervix uteri, testis, Hodgkin disease, soft tissues) the empirical method may produce substantial underestimations of complete prevalence (up to 20%) even when based on 35-year observations. SEER estimates are comparable to the standard ones for most cancers, including many early-onset tumours, even when derived from short time series (10-15 years). Longer observations are however needed when cancer-specific incidence and prognosis differ remarkably between US and European populations (endometrium, thyroid or stomach).DiscussionThese results may facilitate the dissemination of complete prevalence estimates across Europe and help bridge the current information gaps.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The lung cancer diagnostic tests market size was valued at USD 2.5 billion in 2023 and is projected to reach USD 6.1 billion by 2032, growing at a Compound Annual Growth Rate (CAGR) of 10.5% during the forecast period. This substantial growth can be attributed to the rising prevalence of lung cancer globally, advancements in diagnostic technologies, and increasing awareness regarding early detection and treatment of lung cancer. The growing aging population and the high incidence of smoking, which is a leading cause of lung cancer, further propel the demand for diagnostic tests.
The increasing prevalence of lung cancer is one of the primary drivers of market growth. Lung cancer remains the leading cause of cancer-related deaths worldwide, necessitating the development of more accurate and early diagnostic methods. With advancements in medical technology, such as molecular diagnostics and non-invasive imaging techniques, the accuracy and efficiency of lung cancer diagnosis have significantly improved. These innovations not only enhance the detection rate but also facilitate personalized treatment plans, thereby improving patient outcomes.
Furthermore, government initiatives and funding for cancer research play a crucial role in market expansion. Many countries are investing heavily in cancer research, leading to the development of new diagnostic tools and techniques. For instance, organizations such as the National Cancer Institute (NCI) in the United States provide substantial grants for lung cancer research, fostering innovations in diagnostics. In addition, public awareness campaigns and screening programs conducted by healthcare organizations and governments encourage early diagnosis, which is vital for successful treatment and survival rates.
The integration of artificial intelligence (AI) and machine learning in diagnostic tools is another significant factor contributing to market growth. AI algorithms can analyze medical images with high precision, aiding radiologists in identifying lung cancer at earlier stages. Moreover, AI-driven software can evaluate large datasets from genetic and molecular tests, providing insights into the most effective treatment options based on individual patient profiles. This technological advancement not only enhances the accuracy of diagnostics but also reduces the time required for analysis, thereby increasing the efficiency of healthcare services.
The EGFR Mutation Test is a pivotal advancement in the realm of lung cancer diagnostics, offering a more personalized approach to treatment. This test specifically identifies mutations in the Epidermal Growth Factor Receptor (EGFR) gene, which are often present in non-small cell lung cancer (NSCLC) patients. By detecting these mutations, healthcare providers can tailor therapies that target the specific genetic alterations, thereby improving treatment efficacy and patient outcomes. The growing adoption of EGFR Mutation Tests underscores the shift towards precision medicine, where treatments are increasingly customized based on individual genetic profiles. This approach not only enhances the effectiveness of therapies but also minimizes adverse effects, as treatments are more accurately aligned with the patient's unique genetic makeup.
Regionally, North America holds the largest share of the lung cancer diagnostic tests market, followed by Europe and Asia Pacific. The dominance of North America can be attributed to the presence of advanced healthcare infrastructure, high healthcare expenditure, and a robust research landscape. The Asia Pacific region, however, is expected to witness the highest growth rate during the forecast period, driven by increasing healthcare investments, growing awareness about lung cancer, and rising incidences of the disease in countries like China and India. The growing middle-class population and improving healthcare access in these countries further support market growth.
The lung cancer diagnostic tests market is segmented by test type into imaging tests, sputum cytology, tissue biopsy, molecular tests, and others. Imaging tests are one of the most commonly used diagnostic methods for lung cancer detection. Techniques such as X-rays, CT scans, and PET scans provide detailed visuals of the lungs, helping in identifying abnormal growths or tumors. The non-invasive nature of these tests and their ability to provide quick results make them a preferred choice among healthcare
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset corresponds to a collection of images and/or image-derived data available from National Cancer Institute Imaging Data Commons (IDC) [1]. This dataset was converted into DICOM representation and ingested by the IDC team. You can explore and visualize the corresponding images using IDC Portal here: TCGA-TGCT. You can use the manifests included in this Zenodo record to download the content of the collection following the Download instructions below.
Testicular germ cell cancer is rare, comprising 1-2% of all tumors in males. However, it is the most common cancer in men ages 15 to 35. The incidence of testicular germ cell cancer has been continuously rising in many countries, including Europe and the U.S. In 2013, about 8,000 American men were estimated to be diagnosed with the cancer. Of those, 370 are predicted to die from the disease. Men who are Caucasian, have an undescended testicle, abnormally developed testicles, or a family history of testicular cancer have a greater risk of developing testicular cancer. Fortunately, testicular germ cell cancer is highly treatable.
Please see the TCGA-TGCT information page to learn more about the images and to obtain any supporting metadata for this collection.
Citation guidelines can be found on the Citing TCGA in Publications and Presentations information page.
A manifest file's name indicates the IDC data release in which a version of collection data was first introduced.
For example, collection_id-idc_v8-aws.s5cmd
corresponds to the contents of the
collection_id
collection introduced in IDC data
release v8. If there is a subsequent version of this Zenodo page, it will indicate when a subsequent version of
the corresponding collection was introduced.
tcga_tgct-idc_v10-aws.s5cmd
: manifest of files available for download from public IDC Amazon Web Services bucketstcga_tgct-idc_v10-gcs.s5cmd
: manifest of files available for download from public IDC Google Cloud Storage bucketstcga_tgct-idc_v10-dcf.dcf
: Gen3 manifest (for details see https://learn.canceridc.dev/data/organization-of-data/guids-and-uuids)Note that manifest files that end in -aws.s5cmd
reference files stored in Amazon Web Services (AWS) buckets, while -gcs.s5cmd
reference
files in Google Cloud Storage. The actual files are identical and are mirrored between AWS and GCP.
Each of the manifests include instructions in the header on how to download the included files.
To download the files using .s5cmd
manifests:
pip install --upgrade idc-index
.s5cmd
manifest file: idc download manifest.s5cmd
.To download the files using .dcf
manifest, see manifest header.
Imaging Data Commons team has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Task Order No. HHSN26110071 under Contract No. HHSN261201500003l.
[1] Fedorov, A., Longabaugh, W. J. R., Pot, D., Clunie, D. A., Pieper, S. D., Gibbs, D. L., Bridge, C., Herrmann, M. D., Homeyer, A., Lewis, R., Aerts, H. J. W., Krishnaswamy, D., Thiriveedhi, V. K., Ciausu, C., Schacherer, D. P., Bontempi, D., Pihl, T., Wagner, U., Farahani, K., Kim, E. & Kikinis, R. National Cancer Institute Imaging Data Commons: Toward Transparency, Reproducibility, and Scalability in Imaging Artificial Intelligence. RadioGraphics (2023). https://doi.org/10.1148/rg.230180
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionComparable indicators on complete cancer prevalence are increasingly needed in Europe to support survivorship care planning. Direct measures can be biased by limited registration time and estimates are needed to recover long term survivors. The completeness index method, based on incidence and survival modelling, is the standard most validated approach.MethodsWithin this framework, we consider two alternative approaches that do not require any direct modelling activity: i) empirical indices derived from long established European registries; ii) pre-calculated indices derived from US-SEER cancer registries. Relying on the EUROCARE-6 study dataset we compare standard vs alternative complete prevalence estimates using data from 62 registries in 27 countries by sex, cancer type and registration time.ResultsFor tumours mostly diagnosed in the elderly the empirical estimates differ little from standard estimates (on average less than 5% after 10-15 years of registration), especially for low prognosis cancers. For early-onset cancers (bone, brain, cervix uteri, testis, Hodgkin disease, soft tissues) the empirical method may produce substantial underestimations of complete prevalence (up to 20%) even when based on 35-year observations. SEER estimates are comparable to the standard ones for most cancers, including many early-onset tumours, even when derived from short time series (10-15 years). Longer observations are however needed when cancer-specific incidence and prognosis differ remarkably between US and European populations (endometrium, thyroid or stomach).DiscussionThese results may facilitate the dissemination of complete prevalence estimates across Europe and help bridge the current information gaps.