Prostate cancer incidence rates in the United States vary significantly across racial and ethnic groups, with Non-Hispanic Black men facing the highest risk. According to recent data, Non-Hispanic Black males have an incidence rate of 194.8 per 100,000 population, which is substantially higher than the overall rate of 120.2 per 100,000. This stark disparity highlights the importance of targeted screening and prevention efforts to address this health inequality. Incidence and mortality trends The burden of prostate cancer in the U.S. has grown in recent years. In 2025, approximately 313,780 men were projected to be diagnosed with prostate cancer, representing a significant increase from previous years. Despite this rising incidence, mortality rates have shown improvement. In 2022, the prostate cancer death rate was 18.7 per 100,000 men, compared to a rate of almost 39 per 100,000 in the year 1990. This decrease reflects advancements in treatment and early detection. Risk factors and survival rates Age remains a critical risk factor for prostate cancer, with men aged 65 to 84 having a 10.6 percent chance of developing the disease. However, there is encouraging news regarding survival rates. From 2014 to 2020, the five-year relative survival rate for prostate cancer patients in the U.S. was an impressive 97 percent. This high survival rate underscores the importance of early detection and the effectiveness of current treatment options.
As of 2021, non-Hispanic white people in the United States had the highest incidence rates of skin cancer among all races and ethnicities. Skin cancer is one of the most commonly occurring cancers in the world. Furthermore, the United States is among the countries with the highest rates of skin cancer worldwide. Skin cancer in the U.S. There are a few different types of skin cancer and some are more deadly than others. Basal and squamous skin cancers are more common and less dangerous than melanomas. Among U.S. residents, skin cancer has been demonstrated to be more prevalent among men than women. Skin cancer is also more prevalent among older adults. With treatment and early detection, skin cancers have a high survival rate. Fortunately, in recent years the U.S. has seen a reduction in the rate of death from melanoma. Skin cancer prevention Avoiding and protecting exposed skin from the sun (and other sources of UV light) is the primary means of preventing skin cancer. However, a survey of U.S. adults from 2024 found that around a third never used sunscreen.
From 2018 to 2022, the overall death rate for lung and bronchus cancer in the United States was 38.7 per 100,000 for males and 27.6 per 100,000 for females. This statistic presents the death rates for lung and bronchus cancer in the United States from 2018 to 2022, by gender and race/ethnicity.
The United States Cancer Statistics (USCS) online databases in WONDER provide cancer incidence and mortality data for the United States for the years since 1999, by year, state and metropolitan areas (MSA), age group, race, ethnicity, sex, childhood cancer classifications and cancer site. Report case counts, deaths, crude and age-adjusted incidence and death rates, and 95% confidence intervals for rates. The USCS data are the official federal statistics on cancer incidence from registries having high-quality data and cancer mortality statistics for 50 states and the District of Columbia. USCS are produced by the Centers for Disease Control and Prevention (CDC) and the National Cancer Institute (NCI), in collaboration with the North American Association of Central Cancer Registries (NAACCR). Mortality data are provided by the Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), National Vital Statistics System (NVSS).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Although Affordable Care Act (ACA) implementation has improved cancer outcomes, less is known about how much the improvement applies to different racial and ethnic populations. We examined changes in health insurance coverage and cancer-specific mortality rates by race/ethnicity pre- and post-ACA. We identified newly diagnosed breast (n = 117,738), colorectal (n = 38,334), and cervical cancer (n = 11,109) patients < 65 years in California 2007-2017. Hazard rate ratios (HRR) and 95% confidence intervals (CI) were calculated using multivariable Cox regression to estimate risk of cancer-specific death pre- (2007-2010) and post-ACA (2014-2017) and by race/ethnicity [American Indian/Alaska Natives (AIAN); Asian American; Hispanic; Native Hawaiian or Pacific Islander (NHPI); non-Hispanic Black (NHB); non-Hispanic white (NHW)]. Cancer-specific mortality from colorectal cancer was lower post-ACA among Hispanic (HRR = 0.82, 95% CI = 0.74 to 0.92), NHB (HRR = 0.69, 95% CI = 0.58 to 0.82), and NHW (HRR = 0.90; 95% CI = 0.84 to 0.97) but not Asian American (HRR = 0.95, 95% CI = 0.82 to 1.10) patients. We observed a lower risk of death from cervical cancer post-ACA among NHB women (HRR = 0.68, 95% CI = 0.47 to 0.99). No statistically significant differences in breast cancer-specific mortality were observed for any racial or ethnic group. Cancer-specific mortality decreased following ACA implementation for colorectal and cervical cancers for some racial and ethnic groups in California, suggesting Medicaid expansion is associated with reductions in health inequity.
In the period 2018 to 2022, the death rate for prostate cancer among Hispanic Americans was 15.4 per 100,000 population. This statistic shows the death rate for prostate cancer among U.S. males from 2018 to 2022, by race and ethnicity.
This is historical data. The update frequency has been set to "Static Data" and is here for historic value. Updated 8/14/2024. Definition of "All Cancer Sites": ICD-O-3 Topography (Site) Codes C00.0 – C80.9 with histology codes including all invasive cancers of all sites except basal and squamous cell skin cancers, and in situ cancer cases of the urinary bladder. Rates are per 100,000 population and are age-adjusted to 2000 U.S. standard population. Rates based on case counts of 1-15 are suppressed per DHMH/MCR Data Use Policy and Procedures.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectivesCompared to other racial and ethnic groups, little to no disaggregated cancer incidence data exist for subgroups of non-Hispanic Blacks (NHBs), despite heterogeneity in sociodemographic characteristics and cancer risk factors within this group. Our objective was to examine age-adjusted cancer incidence by nativity and birthplace among NHB cancer cases diagnosed in New Jersey.MethodsRace, ethnicity, and birthplace data from the New Jersey State Cancer Registry were used to classify NHB cancer cases diagnosed between 2005-2017. Thirteen waves of population estimates (by county, nativity, gender, age-group) were derived from the American Community Survey using Integrated Public-Use Microdata to approximate yearly demographics. Age-adjusted cancer incidence rates (overall and by site) by birthplace were generated using SEER*Stat 8.3.8. Bivariate associations were assessed using chi-square and Fisher’s exact tests. Trend analyses were performed using Joinpoint 4.7.ResultsBirthplace was available for 62.3% of the 71,019 NHB cancer cases. Immigrants represented 12.3%, with African-born, Haitian-born, Jamaican-born, ‘other-Caribbean-born’, and ‘other-non-American-born’ accounting for 18.5%, 17.7%, 16.5%, 10.6%, and 36.8%, respectively. Overall, age-adjusted cancer incidence rates were lower for NHB immigrants for all sites combined and for several of the top five cancers, relative to American-born NHBs. Age-adjusted cancer incidence was lower among immigrant than American-born males (271.6 vs. 406.8 per 100,000) and females (191.9 vs. 299.2 per 100,000). Age-adjusted cancer incidence was lower for Jamaican-born (114.6 per 100,000) and other-Caribbean-born females (128.8 per 100,000) than African-born (139.4 per 100,000) and Haitian-born females (149.9 per 100,000). No significant differences in age-adjusted cancer incidence were observed by birthplace among NHB males. Age-adjusted cancer incidence decreased for all sites combined from 2005-2017 among American-born males, immigrant males, and American-born females, while NHB immigrant female rates remained relatively stable.ConclusionsThere is variation in age-adjusted cancer incidence rates across NHB subgroups, highlighting the need for more complete birthplace information in population-based registries to facilitate generating disaggregated cancer surveillance statistics by birthplace. This study fills a knowledge gap of critical importance for understanding and ultimately addressing cancer inequities.
According to the data, the rate of liver cancer diagnoses among Hispanics in the United States was 13.4 per 100,000 in 2021. This statistic depicts the rate of new U.S. liver cancer diagnoses in 2021, by race and ethnicity.
I was interested in investigating cancer incidence levels in the US by looking at how they vary by race or state. All the data is collected online from Centers for Disease Control and Prevention, State Cancer Profiles, and United States Census Bureau. This dataset can be used to answer questions on the correlation between poverty levels, insurance levels and cancer incidence levels. Further, one can find which cancers affect a certain race more or a certain state.
In the period from 2017 to 2021, approximately 513 cases of cancer per 100,000 population were reported among white males in the United States. This statistic illustrates the incidence rate of cancer in the United States for the period 2017 to 2021, by ethnic group and gender.
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical
Between 2017 and 2021, the highest incidence of alcohol-associated cancer in the United States was among Black individuals, with a rate of nearly *** per 100,000 people. This graph shows the rate of alcohol-related cancers per 100,000 people from 2017 to 2021 in the United States, by race and ethnicity.
Layers in this service includes: Birth, Cancer, Hospitalization Discharge, Mortality and STI Rates, as well as Demographics.
https://www.sci-tech-today.com/privacy-policyhttps://www.sci-tech-today.com/privacy-policy
Breast Cancer Statistics: Breast cancer remains one of the most prevalent and concerning health challenges, mostly among women. It is the most common cancer diagnosed in women worldwide and the second leading cause of cancer-related deaths among women in the United States. The impact of breast cancer is significant, with millions of new cases diagnosed each year and hundreds of thousands of deaths attributed to the disease.
This article will provide critical insights into the incidence, survival rates, mortality, and disparities across different demographics, including age, race, and ethnicity. Understanding the latest statistics on breast cancer is crucial for driving progress in reducing the incidence and mortality rates, improving survival outcomes, and ultimately, finding a cure.
You can see the numbers by sex, age, race and ethnicity, trends over time, survival, and prevalence.Link: https://gis.cdc.gov/Cancer/USCS/#/AtAGlance
Between 2017 and 2021, the highest incidence of obesity-associated cancer in the United States was among Black individuals, with a rate of 184.8 per 100,000 people. This graph shows the rate of obesity-related cancers per 100,000 people from 2017 to 2021 in the United States, by race and ethnicity.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundThe relationships between neighborhood factors (i.e., neighborhood socioeconomic status (nSES) and ethnic enclave) and histologic subtypes of lung cancer for racial/ethnic groups, particularly Hispanics and Asian American/Pacific Islanders (AAPIs), are poorly understood.MethodsWe conducted a population-based study of 75,631 Californians diagnosed with lung cancer from 2008 through2012. We report incidence rate ratios (IRRs) for lung cancer histologic cell-types by nSES among racial/ethnic groups (non-Hispanic (NH) Whites, NH Blacks, Hispanics and AAPIs) and according to Hispanic or Asian neighborhood ethnic enclave status among Hispanics and AAPIs, respectively. In addition, we examined incidence jointly by nSES and ethnic enclave.ResultsPatterns of lung cancer incidence by nSES and ethnic enclave differed across race/ethnicity, sex, and histologic cell-type. For adenocarcinoma, Hispanic males and females, residing in both low nSES and high nSES neighborhoods that were low enclave, had higher incidence rates compared to those residing in low nSES, high enclave neighborhoods; males (IRR, 1.17 [95% CI, 1.04–1.32] and IRR, 1.15 [95% CI, 1.02–1.29], respectively) and females (IRR, 1.29 [95% CI, 1.15–1.44] and IRR, 1.51 [95% CI, 1.36–1.67], respectively). However, AAPI males residing in both low and high SES neighborhoods that were also low enclave had lower adenocarcinoma incidence.ConclusionsNeighborhood factors differentially influence the incidence of lung cancer histologic cell-types with heterogeneity in these associations by race/ethnicity and sex. For Hispanic males and females and AAPI males, neighborhood ethnic enclave status is strongly associated with lung adenocarcinoma incidence.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Users can access data about cancer statistics in the United States including but not limited to searches by type of cancer and race, sex, ethnicity, age at diagnosis, and age at death. Background Surveillance Epidemiology and End Results (SEER) database’s mission is to provide information on cancer statistics to help reduce the burden of disease in the U.S. population. The SEER database is a project to the National Cancer Institute. The SEER database collects information on incidence, prevalence, and survival from specific geographic areas representing 28 percent of the United States population. User functionality Users can access a variety of reso urces. Cancer Stat Fact Sheets allow users to look at summaries of statistics by major cancer type. Cancer Statistic Reviews are available from 1975-2008 in table format. Users are also able to build their own tables and graphs using Fast Stats. The Cancer Query system provides more flexibility and a larger set of cancer statistics than F ast Stats but requires more input from the user. State Cancer Profiles include dynamic maps and graphs enabling the investigation of cancer trends at the county, state, and national levels. SEER research data files and SEER*Stat software are available to download through your Internet connection (SEER*Stat’s client-server mode) or via discs shipped directly to you. A signed data agreement form is required to access the SEER data Data Notes Data is available in different formats depending on which type of data is accessed. Some data is available in table, PDF, and html formats. Detailed information about the data is available under “Data Documentation and Variable Recodes”.
This data comes from aggregation of the tables available on the NIH's National Cancer Institutes State Cancer Profiles, specifically with their incidence tables.
The objective of the State Cancer Profiles Web site is to provide a system to characterize the cancer burden in a standardized manner in order to motivate action, integrate surveillance into cancer control planning, characterize areas and demographic groups, and expose health disparities. The focus is on cancer sites for which there are evidence based control interventions. Interactive graphics and maps provide visual support for deciding where to focus cancer control efforts.
This data has cancer Incidence rates broken down by US County and includes data aggregated from 2012-2016. It has both incidence rates per 100k as well as yearly totals averaged over that period
This data is summarized across other potentially illuminating fields. The State Cancer Profiles can be further broken down by cancer area, race/ethnicity, sex, age, and stage. If more fidelity on the data would be helpful please add it to the discussion section and I can work on adding it!
By using these data, you signify your agreement to comply with the following statutorily based requirements.
The Public Health Service Act (42 U.S.C. 242m(d)) provides that the data collected by the National Center for Health Statistics (NCHS) may be used only for the purpose for which they were obtained; any effort to determine the identity of any reported cases, or to use the information for any purpose other than for statistical reporting and analysis, is against the law. The National Program of Cancer Registries (NPCR), Centers for Disease Control and Prevention (CDC), has obtained an assurance of confidentiality pursuant to Section 308(d) of the Public Health Service Act, 42 U.S.C. 242m(d). This assurance provides that identifiable or potentially identifiable data collected by the NPCR may be used only for the purpose for which they were obtained unless the person or establishment from which they were obtained has consented to such use. Any effort to determine the identity of any reported cases, or to use the information for any purpose other than statistical reporting and analysis, is a violation of the assurance.
Therefore users will: - Use the data for statistical reporting and analysis only. - Make no attempt to learn the identity of any person or establishment included in these data. - Make no disclosure or other use of the identity of any person or establishment discovered inadvertently, and advise the appropriate contact for the data provider. In addition to immediately notifying "Contact Us" of the potential disclosure, - For mortality data, notify the Confidentiality Officer at the National Center for Health Statistics (Alvan O. Zarate, Ph.D.), 3311 Toledo Road, Rm 7116, Hyattsville, MD 20782, Phone: 301-458-4601, Fax: 301-458-4021) - For incidence data notify both the Federal agency that provided the data and notify the relevant state or metropolitan area cancer registryExternal Web Site Policy, of any such discovery. - For CDC's National Program of Cancer Registries (NPCR) areas, notify the Associate Director for Science, Office of Science Policy and Technology Transfer, CDC, Mailstop D-50, 1600 Clifton Road, N.E., Atlanta, Georgia, 30333, Phone: 404-639-7240) - For NCI's Surveillance, Epidemiology, and End Results (SEER) Program registry areas, notify the Branch Chief of the Cancer Statistics Branch of the Surveillance Research Program, Division of Cancer Control and Population Sciences, NCI, BG 9609 MSC 9760, 9609 Medical Center Drive, Bethesda, MD 20892-9760, Phone: 301-496-8510, Fax: 301-496-9949.
Prostate cancer incidence rates in the United States vary significantly across racial and ethnic groups, with Non-Hispanic Black men facing the highest risk. According to recent data, Non-Hispanic Black males have an incidence rate of 194.8 per 100,000 population, which is substantially higher than the overall rate of 120.2 per 100,000. This stark disparity highlights the importance of targeted screening and prevention efforts to address this health inequality. Incidence and mortality trends The burden of prostate cancer in the U.S. has grown in recent years. In 2025, approximately 313,780 men were projected to be diagnosed with prostate cancer, representing a significant increase from previous years. Despite this rising incidence, mortality rates have shown improvement. In 2022, the prostate cancer death rate was 18.7 per 100,000 men, compared to a rate of almost 39 per 100,000 in the year 1990. This decrease reflects advancements in treatment and early detection. Risk factors and survival rates Age remains a critical risk factor for prostate cancer, with men aged 65 to 84 having a 10.6 percent chance of developing the disease. However, there is encouraging news regarding survival rates. From 2014 to 2020, the five-year relative survival rate for prostate cancer patients in the U.S. was an impressive 97 percent. This high survival rate underscores the importance of early detection and the effectiveness of current treatment options.