Prostate cancer incidence rates in the United States vary significantly across racial and ethnic groups, with Non-Hispanic Black men facing the highest risk. According to recent data, Non-Hispanic Black males have an incidence rate of 194.8 per 100,000 population, which is substantially higher than the overall rate of 120.2 per 100,000. This stark disparity highlights the importance of targeted screening and prevention efforts to address this health inequality. Incidence and mortality trends The burden of prostate cancer in the U.S. has grown in recent years. In 2025, approximately 313,780 men were projected to be diagnosed with prostate cancer, representing a significant increase from previous years. Despite this rising incidence, mortality rates have shown improvement. In 2022, the prostate cancer death rate was 18.7 per 100,000 men, compared to a rate of almost 39 per 100,000 in the year 1990. This decrease reflects advancements in treatment and early detection. Risk factors and survival rates Age remains a critical risk factor for prostate cancer, with men aged 65 to 84 having a 10.6 percent chance of developing the disease. However, there is encouraging news regarding survival rates. From 2014 to 2020, the five-year relative survival rate for prostate cancer patients in the U.S. was an impressive 97 percent. This high survival rate underscores the importance of early detection and the effectiveness of current treatment options.
As of 2021, non-Hispanic white people in the United States had the highest incidence rates of skin cancer among all races and ethnicities. Skin cancer is one of the most commonly occurring cancers in the world. Furthermore, the United States is among the countries with the highest rates of skin cancer worldwide. Skin cancer in the U.S. There are a few different types of skin cancer and some are more deadly than others. Basal and squamous skin cancers are more common and less dangerous than melanomas. Among U.S. residents, skin cancer has been demonstrated to be more prevalent among men than women. Skin cancer is also more prevalent among older adults. With treatment and early detection, skin cancers have a high survival rate. Fortunately, in recent years the U.S. has seen a reduction in the rate of death from melanoma. Skin cancer prevention Avoiding and protecting exposed skin from the sun (and other sources of UV light) is the primary means of preventing skin cancer. However, a survey of U.S. adults from 2024 found that around ******* never used sunscreen.
The United States Cancer Statistics (USCS) online databases in WONDER provide cancer incidence and mortality data for the United States for the years since 1999, by year, state and metropolitan areas (MSA), age group, race, ethnicity, sex, childhood cancer classifications and cancer site. Report case counts, deaths, crude and age-adjusted incidence and death rates, and 95% confidence intervals for rates. The USCS data are the official federal statistics on cancer incidence from registries having high-quality data and cancer mortality statistics for 50 states and the District of Columbia. USCS are produced by the Centers for Disease Control and Prevention (CDC) and the National Cancer Institute (NCI), in collaboration with the North American Association of Central Cancer Registries (NAACCR). Mortality data are provided by the Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), National Vital Statistics System (NVSS).
This is historical data. The update frequency has been set to "Static Data" and is here for historic value. Updated 8/14/2024.
Definition of "All Cancer Sites": ICD-O-3 Topography (Site) Codes C00.0 – C80.9 with histology codes including all invasive cancers of all sites except basal and squamous cell skin cancers, and in situ cancer cases of the urinary bladder. Rates are per 100,000 population and are age-adjusted to 2000 U.S. standard population. Rates based on case counts of 1-15 are suppressed per DHMH/MCR Data Use Policy and Procedures.
In the period 2018 to 2022, the death rate for prostate cancer among Hispanic Americans was **** per 100,000 population. This statistic shows the death rate for prostate cancer among U.S. males from 2018 to 2022, by race and ethnicity.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Although Affordable Care Act (ACA) implementation has improved cancer outcomes, less is known about how much the improvement applies to different racial and ethnic populations. We examined changes in health insurance coverage and cancer-specific mortality rates by race/ethnicity pre- and post-ACA. We identified newly diagnosed breast (n = 117,738), colorectal (n = 38,334), and cervical cancer (n = 11,109) patients < 65 years in California 2007-2017. Hazard rate ratios (HRR) and 95% confidence intervals (CI) were calculated using multivariable Cox regression to estimate risk of cancer-specific death pre- (2007-2010) and post-ACA (2014-2017) and by race/ethnicity [American Indian/Alaska Natives (AIAN); Asian American; Hispanic; Native Hawaiian or Pacific Islander (NHPI); non-Hispanic Black (NHB); non-Hispanic white (NHW)]. Cancer-specific mortality from colorectal cancer was lower post-ACA among Hispanic (HRR = 0.82, 95% CI = 0.74 to 0.92), NHB (HRR = 0.69, 95% CI = 0.58 to 0.82), and NHW (HRR = 0.90; 95% CI = 0.84 to 0.97) but not Asian American (HRR = 0.95, 95% CI = 0.82 to 1.10) patients. We observed a lower risk of death from cervical cancer post-ACA among NHB women (HRR = 0.68, 95% CI = 0.47 to 0.99). No statistically significant differences in breast cancer-specific mortality were observed for any racial or ethnic group. Cancer-specific mortality decreased following ACA implementation for colorectal and cervical cancers for some racial and ethnic groups in California, suggesting Medicaid expansion is associated with reductions in health inequity.
I was interested in investigating cancer incidence levels in the US by looking at how they vary by race or state. All the data is collected online from Centers for Disease Control and Prevention, State Cancer Profiles, and United States Census Bureau. This dataset can be used to answer questions on the correlation between poverty levels, insurance levels and cancer incidence levels. Further, one can find which cancers affect a certain race more or a certain state.
This dataset contains the annual age-adjusted death rates by race from all forms of cancer among Fulton County residents since 1994. Included are racial groups for which population numbers are large enough to provide accurate figures. The data were extracted from Georgia Department of Public Health Oasis.
According to the data, the rate of liver cancer diagnoses among Hispanics in the United States was **** per 100,000 in 2021. This statistic depicts the rate of new U.S. liver cancer diagnoses in 2021, by race and ethnicity.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Trends in incidence and mortality rates by race and region.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cumulative breast cancer incidence rates by race (CIRW, CIRB) and corresponding scaling coefficient ().
The US Cancer Incidence Rates dataset includes data about cancer occurrence estimates for various cancer sites among men and women under age 18 in the United States by race and Hispanic origin between 1990 and 2014.
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Some racial and ethnic categories are suppressed for privacy and to avoid misleading estimates when the relative standard error exceeds 30% or the unweighted sample size is less than 50 respondents. Margins of error are estimated at the 90% confidence level.
Data Source: Centers for Disease Control and Prevention (CDC). Behavioral Risk Factor Surveillance System Survey (BRFSS) Data
Why This Matters
Colorectal cancer is the third leading cause of cancer death in the U.S. for men and women. Although colorectal cancer is most common among people aged 65 to 74, there has been an increase in incidences among people aged 40 to 49.
Nationally, Black people are disproportionately likely to both have colorectal cancer and die from it. Hispanic residents, and especially those with limited English proficiency, report having the lowest rate of colorectal cancer screenings.
Racial disparities in education, poverty, health insurance coverage, and English language proficiency are all factors that contribute to racial gaps in receiving colorectal cancer screenings. Increased colorectal cancer screening utilization has been shown to nearly erase the racial disparities in the death rate of colorectal cancer.
The District Response
The Colorectal Cancer Control Program (DC3C) aims to reduce colon cancer incidence and mortality by increasing colorectal cancer screening rates among District residents.
DC Health’s Cancer and Chronic Disease Prevention Bureau works with healthcare providers to improve the use of preventative health services and provide colorectal cancer screening services.
DC Health maintains the District of Columbia Cancer Registry (DCCR) to track cancer incidences, examine environmental substances that cause cancer, and identify differences in cancer incidences by age, gender, race, and geographical location.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Lung cancer incidence rates by race, 1999–2012 (cases per 100,000).
Medical Service Study Areas (MSSAs)As defined by California's Office of Statewide Health Planning and Development (OSHPD) in 2013, "MSSAs are sub-city and sub-county geographical units used to organize and display population, demographic and physician data" (Source). Each census tract in CA is assigned to a given MSSA. The most recent MSSA dataset (2014) was used. Spatial data are available via OSHPD at the California Open Data Portal. This information may be useful in studying health equity.Age-Adjusted Incidence Rate (AAIR)Age-adjustment is a statistical method that allows comparisons of incidence rates to be made between populations with different age distributions. This is important since the incidence of most cancers increases with age. An age-adjusted cancer incidence (or death) rate is defined as the number of new cancers (or deaths) per 100,000 population that would occur in a certain period of time if that population had a 'standard' age distribution. In the California Health Maps, incidence rates are age-adjusted using the U.S. 2000 Standard Population.Cancer incidence ratesIncidence rates were calculated using case counts from the California Cancer Registry. Population data from 2010 Census and SEER 2015 census tract estimates by race/origin (controlling to Vintage 2015) were used to estimate population denominators. Yearly SEER 2015 census tract estimates by race/origin (controlling to Vintage 2015) were used to estimate population denominators for 5-year incidence rates (2013-2017)According to California Department of Public Health guidelines, cancer incidence rates cannot be reported if based on <15 cancer cases and/or a population <10,000 to ensure confidentiality and stable statistical rates.Spatial extent: CaliforniaSpatial Unit: MSSACreated: n/aUpdated: n/aSource: California Health MapsContact Email: gbacr@ucsf.eduSource Link: https://www.californiahealthmaps.org/?areatype=mssa&address=&sex=Both&site=AllSite&race=&year=05yr&overlays=none&choropleth=Obesity
https://www.sci-tech-today.com/privacy-policyhttps://www.sci-tech-today.com/privacy-policy
Breast Cancer Statistics: Breast cancer remains one of the most prevalent and concerning health challenges, mostly among women. It is the most common cancer diagnosed in women worldwide and the second leading cause of cancer-related deaths among women in the United States. The impact of breast cancer is significant, with millions of new cases diagnosed each year and hundreds of thousands of deaths attributed to the disease.
This article will provide critical insights into the incidence, survival rates, mortality, and disparities across different demographics, including age, race, and ethnicity. Understanding the latest statistics on breast cancer is crucial for driving progress in reducing the incidence and mortality rates, improving survival outcomes, and ultimately, finding a cure.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Some racial and ethnic categories are suppressed for privacy and to avoid misleading estimates when the relative standard error exceeds 30% or the unweighted sample size is less than 50 respondents.
Data Source: Centers for Disease Control and Prevention (CDC). Behavioral Risk Factor Surveillance System Survey (BRFSS) Data
Why This Matters
Breast cancer is the most commonly diagnosed cancer in women and people assigned female at birth (AFAB) and the second leading cause of cancer death in the U.S. Breast cancer screenings can save lives by helping to detect breast cancer in its early stages when treatment is more effective.
While non-Hispanic white women and AFAB individuals are more likely to be diagnosed with breast cancer than their counterparts of other races and ethnicities, non-Hispanic Black women and AFAB individuals die from breast cancer at a significantly higher rate than their counterparts races and ethnicities.
Later-stage diagnoses and prolonged treatment duration partly explain these disparities in mortality rate. Structural barriers to quality health care, insurance, education, affordable housing, and sustainable income that disproportionately affect communities of color also drive racial inequities in breast cancer screenings and mortality.
The District Response
Project Women Into Staying Healthy (WISH) provides free breast and cervical cancer screenings to uninsured or underinsured women and AFAB adults aged 21 to 64. Patient navigation, transportation assistance, and cancer education are also provided.
DC Health’s Cancer and Chronic Disease Prevention Bureau works with healthcare providers to improve the use of preventative health services and provide breast cancer screening services.
DC Health maintains the District of Columbia Cancer Registry (DCCR) to track cancer incidences, examine environmental substances that cause cancer, and identify differences in cancer incidences by age, gender, race, and geographical location.
Population based cancer incidence rates were abstracted from National Cancer Institute, State Cancer Profiles for all available counties in the United States for which data were available. This is a national county-level database of cancer data that are collected by state public health surveillance systems. All-site cancer is defined as any type of cancer that is captured in the state registry data, though non-melanoma skin cancer is not included. All-site age-adjusted cancer incidence rates were abstracted separately for males and females. County-level annual age-adjusted all-site cancer incidence rates for years 2006–2010 were available for 2687 of 3142 (85.5%) counties in the U.S. Counties for which there are fewer than 16 reported cases in a specific area-sex-race category are suppressed to ensure confidentiality and stability of rate estimates; this accounted for 14 counties in our study. Two states, Kansas and Virginia, do not provide data because of state legislation and regulations which prohibit the release of county level data to outside entities. Data from Michigan does not include cases diagnosed in other states because data exchange agreements prohibit the release of data to third parties. Finally, state data is not available for three states, Minnesota, Ohio, and Washington. The age-adjusted average annual incidence rate for all counties was 453.7 per 100,000 persons. We selected 2006–2010 as it is subsequent in time to the EQI exposure data which was constructed to represent the years 2000–2005. We also gathered data for the three leading causes of cancer for males (lung, prostate, and colorectal) and females (lung, breast, and colorectal). The EQI was used as an exposure metric as an indicator of cumulative environmental exposures at the county-level representing the period 2000 to 2005. A complete description of the datasets used in the EQI are provided in Lobdell et al. and methods used for index construction are described by Messer et al. The EQI was developed for the period 2000– 2005 because it was the time period for which the most recent data were available when index construction was initiated. The EQI includes variables representing each of the environmental domains. The air domain includes 87 variables representing criteria and hazardous air pollutants. The water domain includes 80 variables representing overall water quality, general water contamination, recreational water quality, drinking water quality, atmospheric deposition, drought, and chemical contamination. The land domain includes 26 variables representing agriculture, pesticides, contaminants, facilities, and radon. The built domain includes 14 variables representing roads, highway/road safety, public transit behavior, business environment, and subsidized housing environment. The sociodemographic environment includes 12 variables representing socioeconomics and crime. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Human health data are not available publicly. EQI data are available at: https://edg.epa.gov/data/Public/ORD/NHEERL/EQI. Format: Data are stored as csv files. This dataset is associated with the following publication: Jagai, J., L. Messer, K. Rappazzo , C. Gray, S. Grabich , and D. Lobdell. County-level environmental quality and associations with cancer incidence#. Cancer. John Wiley & Sons Incorporated, New York, NY, USA, 123(15): 2901-2908, (2017).
In 2022, the highest incidence of alcohol-associated cancer in the United States was among Black individuals, with a rate of nearly *** per 100,000 people. This graph shows the rate of alcohol-related cancers per 100,000 people in the United States in 2022, by race and ethnicity.
Prostate cancer incidence rates in the United States vary significantly across racial and ethnic groups, with Non-Hispanic Black men facing the highest risk. According to recent data, Non-Hispanic Black males have an incidence rate of 194.8 per 100,000 population, which is substantially higher than the overall rate of 120.2 per 100,000. This stark disparity highlights the importance of targeted screening and prevention efforts to address this health inequality. Incidence and mortality trends The burden of prostate cancer in the U.S. has grown in recent years. In 2025, approximately 313,780 men were projected to be diagnosed with prostate cancer, representing a significant increase from previous years. Despite this rising incidence, mortality rates have shown improvement. In 2022, the prostate cancer death rate was 18.7 per 100,000 men, compared to a rate of almost 39 per 100,000 in the year 1990. This decrease reflects advancements in treatment and early detection. Risk factors and survival rates Age remains a critical risk factor for prostate cancer, with men aged 65 to 84 having a 10.6 percent chance of developing the disease. However, there is encouraging news regarding survival rates. From 2014 to 2020, the five-year relative survival rate for prostate cancer patients in the U.S. was an impressive 97 percent. This high survival rate underscores the importance of early detection and the effectiveness of current treatment options.