Cancer Registry Software Market Size 2025-2029
The cancer registry software market size is forecast to increase by USD 121.9 million, at a CAGR of 14% between 2024 and 2029.
The market is witnessing significant growth due to the escalating prevalence of cancer cases worldwide. The increasing incidence of various types of cancer necessitates the implementation of advanced registry software solutions to manage and analyze patient data more efficiently. Moreover, the burgeoning clinical research in oncology further drives the demand for these systems, as they facilitate data collection, management, and analysis for research purposes. However, the market faces challenges in the form of stringent data privacy and security concerns. With the growing amount of sensitive patient information being stored and shared digitally, ensuring robust data security becomes crucial. The potential risks of data breaches and unauthorized access can significantly impact both patients and healthcare providers, necessitating the adoption of advanced security measures. Companies in the market must prioritize data security and privacy to gain the trust of healthcare organizations and patients alike.
What will be the Size of the Cancer Registry Software Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe market is a dynamic and evolving landscape, continually adapting to advancements in healthcare technology and the growing demand for comprehensive cancer data management. This market encompasses various applications, including disease registry management, cancer staging system, data warehousing, cancer incidence tracking, registry software architecture, data integration platform, clinical data capture, case reporting system, statistical reporting, cancer screening programs, and more. These tools play a crucial role in cancer surveillance systems, enabling the collection, analysis, and reporting of epidemiological data for public health surveillance. They facilitate data encryption for patient data privacy, ensuring HIPAA compliance. Data interoperability and data quality metrics are essential components, allowing for seamless integration of various health informatics tools.
Real-time data updates and database management systems are integral to maintaining accurate and up-to-date information. Predictive modeling tools and data mining techniques contribute to risk factor identification and mortality data analysis. Data visualization tools offer valuable insights into the complexities of cancer data. Cancer registry software architecture supports population-based registry initiatives, ensuring secure data storage and registry reporting features. Oncology data management tools enable clinical data capture, case reporting, and statistical reporting, enhancing overall patient care. The ongoing development and refinement of these tools reflect the continuous unfolding of market activities and evolving patterns in cancer data management.
How is this Cancer Registry Software Industry segmented?
The cancer registry software industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. End-userGovernment and third partyPharma biotech and medical device companiesHospitals and medical practicePrivate payersResearch institutesTypeStand-alone softwareIntegrated softwareDeploymentOn-premisesCloud-basedGeographyNorth AmericaUSCanadaMexicoEuropeFranceGermanyItalySpainUKAPACChinaJapanRest of World (ROW)
By End-user Insights
The government and third party segment is estimated to witness significant growth during the forecast period.Cancer registry software solutions play a vital role in assisting government and third-party agencies in managing and analyzing data related to cancer cases. These systems enable the tracking of cancer incidence, prevalence, and mortality rates, providing essential information for public health planning, resource allocation, and policy development. Analyzing trends and patterns in registry data helps identify high-risk populations, geographic disparities, and emerging cancer types. Governments utilize cancer registry software to monitor and improve the quality of cancer care. By evaluating variations in treatment practices and adherence to clinical guidelines, they can benchmark outcomes against national or international standards. Additionally, these software solutions facilitate data interoperability, ensuring data quality metrics and HIPAA compliance. Data encryption, data visualization tools, and predictive modeling capabilities enhance the functionality of cancer registry software. Epidemiological data analysis and risk factor identification contribute to understand
Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
ObjectiveNumerous studies focusing on sedentary behavior (SB) and physical activity (PA) in the context of cancer have been reported in recent years. We analyzed and visualized studies on SB and PA in patients with cancer over the last 20 years using scientometric methods, to provide insights on gaps and deficiencies in the literature, and to inform future research guidelines.MethodsAll relevant studies in the field from 2001 to October 2022 were reviewed using bibliometric tools, including VOSviewer, Bibliometric online analysis platform, and biblioshiny, to determine the most influential countries, institutions, journals, and authors. We explored current research hotpots and potential research trends, based on keyword clustering and dynamic changes. Our research focuses on PA, SB, and cancer across the entire cancer continuum, from primary prevention to treatment to cancer survivorship.ResultsScientometric analysis identified 4,382 relevant manuscripts on SB and PA in the context of cancer, with a 10-fold increase in articles over the past 20 years. The United States, Canada, and Australia were the most influential countries. The journal, Supportive Care in Cancer, had the highest number of publications, while Clinical Oncology had the highest H-index. K.S. Courneya was the most influential author in this field, with the highest number of publications, total citations, and H-index. Keyword analysis revealed that current research is focused on PA and SB in patients with breast cancer, quality of life, and aerobic exercise. Future frontiers include cancer prehabilitation programs and cardiorespiratory fitness, and remote intervention and social support.ConclusionBy using bibliometrics, we conducted a comprehensive review of SB and PA in cancer-related studies. The current research focused on exercise and sedentariness in breast cancer patients and the role of PA in improving quality of life in survivorship. Emerging research foci were generally around cancer prehabilitation programs and remote intervention issues for PA. In addition, some publication deficits are noted: studies of PA and SB in less common cancers; the recommended doses and intensities of exercise for cancer; the timing of interventions for prehabilitation and the establishment of individualized exercise protocols. These deficiencies align with the needs for future research topics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Our previous study has demonstrated that Uttroside B (Utt-B), a saponin isolated from the leaves of Solanum nigrum Linn induces apoptosis in hepatic cancer cells and exhibits a remarkable growth inhibition of Hepatocellular Carcinoma (HCC). Our innovation has been granted a patent from the US (US 2019/0160088A1), Canada (3,026,426.), Japan (JP2019520425) and South Korea (KR1020190008323) and the technology have been transferred commercially to Q Biomed, a leading US-based Biotech company. Recently, the compound received approval as ‘Orphan Drug’ against HCC from US FDA, which reveals the clinical relevance of evaluating its antitumor efficacy against HCC. In the present study, we report that Utt-B promotes pro-survival autophagy in hepatic cancer cells as evidenced by the increased expression of autophagy-related proteins, including LC3-II, Beclin1, ATG 5, and ATG 7, as well as a rise in the autophagic flux. Hence, we investigated whether Utt-B-induced autophagic response is complementing or contradicting its apoptotic program in HCC. Inhibition of autophagy using the pharmacological inhibitors, Bafilomycin A1(Baf A1), and 3-methyl adenine (3-MA), and the biological inhibitor, Beclin1 siRNA, significantly enhances the apoptosis of hepatic cancer cells and hence the cytotoxicity induced by Utt-B. We also found increased expression of autophagy markers in Utt-B-treated xenografts derived from HCC. We further analyzed whether the antimalarial drug, Chloroquine (Cqn), a well-known autophagy inhibitor, can enhance the anticancer effect of Utt-B against HCC. We found that inhibition of autophagy using Cqn significantly enhances the antitumor efficacy of Utt-B in vitro and in vivo, in NOD SCID mice bearing HCC xenografts. Taken together, our results suggest that the antitumor effect of Utt-B against HCC can be further enhanced by blocking autophagy. Furthermore, Utt-B in combination with Cqn, a clinically approved drug, if repurposed and used in a combinatorial regimen with Utt-B, can further improve the therapeutic efficacy of Utt-B against HCC.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Cancer Registry Software Market Size 2025-2029
The cancer registry software market size is forecast to increase by USD 121.9 million, at a CAGR of 14% between 2024 and 2029.
The market is witnessing significant growth due to the escalating prevalence of cancer cases worldwide. The increasing incidence of various types of cancer necessitates the implementation of advanced registry software solutions to manage and analyze patient data more efficiently. Moreover, the burgeoning clinical research in oncology further drives the demand for these systems, as they facilitate data collection, management, and analysis for research purposes. However, the market faces challenges in the form of stringent data privacy and security concerns. With the growing amount of sensitive patient information being stored and shared digitally, ensuring robust data security becomes crucial. The potential risks of data breaches and unauthorized access can significantly impact both patients and healthcare providers, necessitating the adoption of advanced security measures. Companies in the market must prioritize data security and privacy to gain the trust of healthcare organizations and patients alike.
What will be the Size of the Cancer Registry Software Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe market is a dynamic and evolving landscape, continually adapting to advancements in healthcare technology and the growing demand for comprehensive cancer data management. This market encompasses various applications, including disease registry management, cancer staging system, data warehousing, cancer incidence tracking, registry software architecture, data integration platform, clinical data capture, case reporting system, statistical reporting, cancer screening programs, and more. These tools play a crucial role in cancer surveillance systems, enabling the collection, analysis, and reporting of epidemiological data for public health surveillance. They facilitate data encryption for patient data privacy, ensuring HIPAA compliance. Data interoperability and data quality metrics are essential components, allowing for seamless integration of various health informatics tools.
Real-time data updates and database management systems are integral to maintaining accurate and up-to-date information. Predictive modeling tools and data mining techniques contribute to risk factor identification and mortality data analysis. Data visualization tools offer valuable insights into the complexities of cancer data. Cancer registry software architecture supports population-based registry initiatives, ensuring secure data storage and registry reporting features. Oncology data management tools enable clinical data capture, case reporting, and statistical reporting, enhancing overall patient care. The ongoing development and refinement of these tools reflect the continuous unfolding of market activities and evolving patterns in cancer data management.
How is this Cancer Registry Software Industry segmented?
The cancer registry software industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. End-userGovernment and third partyPharma biotech and medical device companiesHospitals and medical practicePrivate payersResearch institutesTypeStand-alone softwareIntegrated softwareDeploymentOn-premisesCloud-basedGeographyNorth AmericaUSCanadaMexicoEuropeFranceGermanyItalySpainUKAPACChinaJapanRest of World (ROW)
By End-user Insights
The government and third party segment is estimated to witness significant growth during the forecast period.Cancer registry software solutions play a vital role in assisting government and third-party agencies in managing and analyzing data related to cancer cases. These systems enable the tracking of cancer incidence, prevalence, and mortality rates, providing essential information for public health planning, resource allocation, and policy development. Analyzing trends and patterns in registry data helps identify high-risk populations, geographic disparities, and emerging cancer types. Governments utilize cancer registry software to monitor and improve the quality of cancer care. By evaluating variations in treatment practices and adherence to clinical guidelines, they can benchmark outcomes against national or international standards. Additionally, these software solutions facilitate data interoperability, ensuring data quality metrics and HIPAA compliance. Data encryption, data visualization tools, and predictive modeling capabilities enhance the functionality of cancer registry software. Epidemiological data analysis and risk factor identification contribute to understand