About 228,200 Americans had a license to operate a motor vehicle in the United States in 2020. That year, an estimated 36,680 people died on U.S. roads. Traffic-related fatalities per 100,000 licensed drivers stood at 17.01 in 2020.
Road safety rankings
The United States has among the highest rates of road fatalities per population worldwide. Possible contributing factors to deaths on the road can include speeding, not wearing a seatbelt, driving while under the influence of drugs or alcohol, and driving while fatigued. Traffic fatalities caused by speeding in the United States have declined since 2008, with less than 10,000 deaths recorded annually over recent years.
Automation for the nation
94 percent of severe automobile crashes are due to human error — but driving safety is taken much more seriously today than in the past, with roughly 90 percent of U.S. drivers wearing their seatbelts while driving in 2020. Over recent years, car manufacturers and developers have striven to reduce car crashes even further with partially and fully automated safety features such as forward collision warnings, lane departure warnings, rearview video systems, and automatic emergency braking. Self-driving vehicles are also set to take to the roads in the future, with car brands such as Toyota, Ford, and GM registering over 350 autonomous driving patents respectively in the United States.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph displays the number of car accident fatalities by gender in the United States from 2010 to 2022. The x-axis represents the years, labeled from '10 to '22, while the y-axis indicates the number of fatalities. Each year includes data points for both males and females. Male fatalities range from a low of 22,937 in 2011 to a high of 30,964 in 2021. Female fatalities vary between 9,463 in 2014 and 12,135 in 2021. The data consistently shows that male fatalities are higher than female fatalities each year. There is a noticeable upward trend in fatalities for both genders in the later years, particularly in 2020 and 2021.
Motor-vehicle deaths in the United States have decreased greatly since the 1970s and 1980s. In 2023, there were around **** deaths from motor vehicles per 100,000 population, compared to a rate of **** deaths per 100,000 in 1970. Laws requiring drivers and passengers to wear safety belts and advancements in safety technology in vehicles are major drivers for these reductions. Motor-vehicle accidents in the U.S. Americans spend a significant amount of time behind the wheel. Many cities lack convenient and reliable public transportation and, especially in rural areas, cars are a necessary means of transportation. In 2020, August was the month with the highest number of fatal crashes, followed by September and June. The deadliest time of day for fatal vehicle crashes is between * and * p.m., most likely due to the after-work rush hour and more people who are under the influence of alcohol. Drinking and driving among youth Drinking and driving remains a relevant problem across the United States and can be especially problematic among younger people. In 2023, around *** percent of those aged 21 to 25 years in the United States reported driving under the influence of alcohol in the preceding year. Furthermore, around ***** percent of those aged 16 to 20 drove after drinking within the past year.
The number of road traffic fatalities per one million inhabitants in the United States was forecast to continuously increase between 2024 and 2029 by in total 18.5 deaths (+13.81 percent). After the tenth consecutive increasing year, the number is estimated to reach 152.46 deaths and therefore a new peak in 2029. Depicted here are the estimated number of deaths which occured in relation to road traffic. They are set in relation to the population size and depicted as deaths per 100,000 inhabitants.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of road traffic fatalities per one million inhabitants in countries like Mexico and Canada.
Some 44,800 road traffic fatalities occurred in the United States in 2023, and projections estimate 2024 fatalities could drop to 44,700. Motor vehicle crashes and drug overdoses are the leading causes of death among those under the age of 55 in the United States.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph illustrates the number of car accidents in the United States from 2013 to 2023. The x-axis represents the years, abbreviated from '13 to '23, while the y-axis displays the annual number of crashes. Over this 11-year period, the number of accidents ranges from a low of 5,251,006 in 2020 to a high of 6,821,129 in 2016. Other notable figures include 6,756,084 crashes in 2019 and 5,686,891 in 2013. The data exhibits significant fluctuations, with a peak in 2016, a sharp decline in 2020, and subsequent variations in the following years. This information is presented in a line graph format, effectively highlighting the yearly changes and overall variability in car accidents across the United States.
The number of road-traffic related injuries in the United States has decreased by roughly 17 percent between 2019 and 2020, whereas fatalities increased by almost 8 percent. Between 2010 and 2020, road traffic injuries in the United States grew by nearly 34,000 incidents to some 2.28 million road traffic related injuries in 2020. Over the same period, fatalities also increased by about 5,800. This follows two decades of a general decrease in the amount of traffic-related injuries.
Why are traffic injuries increasing? In the United States, male drivers are behind the wheel in the majority of fatal crashes. Though speeding and driving under the influence of alcohol are often to blame, neither have led to a rise in traffic fatalities in the U.S.: instead, cellphones are primarily the cause. Smartphone ownership has become almost omnipresent in the U.S. since 2010, and drivers are likely to be distracted by texting and using social media. Young drivers are the ones accounting for the highest share of cellphone use fatalities.
Changes in mobility Another reason why fatal accidents are rising in number is that non-occupants’ exposure to risk is also increasing. As residents become more encouraged to walk or cycle in cities, the extra time amongst traffic has led to higher rates of fatalities and injuries amongst cyclists and pedestrians. Lastly, poor infrastructure and lack of awareness by motorists is prevalent in large parts of the United States.
The Motor Vehicle Collisions crash table contains details on the crash event. Each row represents a crash event. The Motor Vehicle Collisions data tables contain information from all police reported motor vehicle collisions in NYC. The police report (MV104-AN) is required to be filled out for collisions where someone is injured or killed, or where there is at least $1000 worth of damage (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ny_overlay_mv-104an_rev05_2004.pdf). It should be noted that the data is preliminary and subject to change when the MV-104AN forms are amended based on revised crash details.For the most accurate, up to date statistics on traffic fatalities, please refer to the NYPD Motor Vehicle Collisions page (updated weekly) or Vision Zero View (updated monthly). Due to success of the CompStat program, NYPD began to ask how to apply the CompStat principles to other problems. Other than homicides, the fatal incidents with which police have the most contact with the public are fatal traffic collisions. Therefore in April 1998, the Department implemented TrafficStat, which uses the CompStat model to work towards improving traffic safety. Police officers complete form MV-104AN for all vehicle collisions. The MV-104AN is a New York State form that has all of the details of a traffic collision. Before implementing Trafficstat, there was no uniform traffic safety data collection procedure for all of the NYPD precincts. Therefore, the Police Department implemented the Traffic Accident Management System (TAMS) in July 1999 in order to collect traffic data in a uniform method across the City. TAMS required the precincts manually enter a few selected MV-104AN fields to collect very basic intersection traffic crash statistics which included the number of accidents, injuries and fatalities. As the years progressed, there grew a need for additional traffic data so that more detailed analyses could be conducted. The Citywide traffic safety initiative, Vision Zero started in the year 2014. Vision Zero further emphasized the need for the collection of more traffic data in order to work towards the Vision Zero goal, which is to eliminate traffic fatalities. Therefore, the Department in March 2016 replaced the TAMS with the new Finest Online Records Management System (FORMS). FORMS enables the police officers to electronically, using a Department cellphone or computer, enter all of the MV-104AN data fields and stores all of the MV-104AN data fields in the Department’s crime data warehouse. Since all of the MV-104AN data fields are now stored for each traffic collision, detailed traffic safety analyses can be conducted as applicable.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Fatality Analysis Reporting System (FARS) was created in the United States by the National Highway Traffic Safety Administration (NHTSA) to provide an overall measure of highway safety, to help suggest solutions, and to help provide an objective basis to evaluate the effectiveness of motor vehicle safety standards and highway safety programs.
FARS contains data on a census of fatal traffic crashes within the 50 States, the District of Columbia, and Puerto Rico. To be included in FARS, a crash must involve a motor vehicle traveling on a trafficway customarily open to the public and result in the death of a person (occupant of a vehicle or a non-occupant) within 30 days of the crash. FARS has been operational since 1975 and has collected information on over 989,451 motor vehicle fatalities and collects information on over 100 different coded data elements that characterizes the crash, the vehicle, and the people involved.
FARS is vital to the mission of NHTSA to reduce the number of motor vehicle crashes and deaths on our nation's highways, and subsequently, reduce the associated economic loss to society resulting from those motor vehicle crashes and fatalities. FARS data is critical to understanding the characteristics of the environment, trafficway, vehicles, and persons involved in the crash.
NHTSA has a cooperative agreement with an agency in each state government to provide information in a standard format on fatal crashes in the state. Data is collected, coded and submitted into a micro-computer data system and transmitted to Washington, D.C. Quarterly files are produced for analytical purposes to study trends and evaluate the effectiveness highway safety programs.
There are 40 separate data tables. You can find the manual, which is too large to reprint in this space, here.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.nhtsa_traffic_fatalities.[TABLENAME]
. Fork this kernel to get started.
This dataset was provided by the National Highway Traffic Safety Administration.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph displays the number of car accident fatalities in the United States from 2011 to 2024. The x-axis represents the years, labeled from '11 to '24, while the y-axis indicates the number of deaths resulting from car accidents. Fatalities range from a low of 29,135 in 2024 to a high of 43,230 in 2021. Over the period from 2011 to 2021, there is a general upward trend in fatalities, peaking in 2021. The data shows a slight decrease in 2022 and 2023, with fatalities at 42,514 and 40,990, respectively. In early estimates of 2024, there were 39,345 deaths, but this only includes the first three quarters. This data highlights fluctuations in annual car accident fatalities over the years.
In 2024, the state of California reported ***** motor-vehicle deaths, an increase from the year before. Death from motor-vehicles remains a relevant problem across the United States. Motor-vehicle deaths in the United States In the United States, a person’s lifetime odds of dying in a motor vehicle accident is around * in **. Death rates from motor vehicles have decreased in recent years and are significantly lower than the rates recorded in the ***** and *****. This is due to a mass improvement in car safety standards and features. For example, all states, with the exception of New Hampshire, have laws against not wearing safety belts. Drinking and driving One of the biggest causes of motor-vehicle deaths is driving while under the influence of alcohol. The state with the highest number of fatalities due to alcohol-impaired driving in 2022 was Texas, followed by California and Florida. Light trucks are the vehicle type most often involved in fatal crashes caused by alcohol-impaired drivers, with around ***** such accidents in the United States in 2022.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Road Fatalities: Per One Million Vehicle-km data was reported at 7.805 Ratio in 2023. This records a decrease from the previous number of 8.265 Ratio for 2022. United States US: Road Fatalities: Per One Million Vehicle-km data is updated yearly, averaging 8.404 Ratio from Dec 1994 (Median) to 2023, with 30 observations. The data reached an all-time high of 10.731 Ratio in 1994 and a record low of 6.725 Ratio in 2014. United States US: Road Fatalities: Per One Million Vehicle-km data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s United States – Table US.OECD.ITF: Road Traffic and Road Accident Fatalities: OECD Member: Annual. [COVERAGE] ROAD FATALITIES A road fatality is any person killed immediately or dying within 30 days as a result of an injury accident, excluding suicides. A killed person is excluded if the competent authority declares the cause of death to be suicide, i.e. a deliberate act to injure oneself resulting in death. For countries that do not apply the threshold of 30 days, conversion coefficients are estimated so that comparison on the basis of the 30-day definition can be made. ROAD TRAFFIC Road traffic is any movement of a road vehicle on a given road network. When a road vehicle is being carried on another vehicle, only the movement of the carrying (active mode) is considered. [COVERAGE] ROAD TRAFFIC IRTAD - Data refer to road motor vehicle traffic of motorised two-wheelers, passenger cars, goods road motor vehicles and buses. [STAT_CONC_DEF] ROAD TRAFFIC IRTAD - Data are calculated using automatic and manual roadside traffic counts.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph presents the number of accidental deaths in the United States from 1980 to 2023. The x-axis represents the years, labeled with two-digit abbreviations from '80 to '23, while the y-axis displays the annual number of accidental deaths. Throughout this 43-year period, the number of accidental deaths fluctuates between a low of 83,952 in 1992 and a high of 227,039 in 2022. The data illustrates a relatively stable number of accidental deaths from 1980 to the early 2000s, followed by a significant and steady increase in the subsequent two decades. The information is depicted in a line graph format, highlighting the upward trend in accidental deaths over the years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Road Fatalities: Per One Million Road Motor Vehicles data was reported at 120.615 Ratio in 2019. This records a decrease from the previous number of 123.083 Ratio for 2018. United States US: Road Fatalities: Per One Million Road Motor Vehicles data is updated yearly, averaging 165.059 Ratio from Dec 1994 (Median) to 2019, with 26 observations. The data reached an all-time high of 212.199 Ratio in 1995 and a record low of 118.903 Ratio in 2014. United States US: Road Fatalities: Per One Million Road Motor Vehicles data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s United States – Table US.OECD.ITF: Road Traffic and Road Accident Fatalities: OECD Member: Annual. VEHICLES The stock of road motor vehicles is the number of road motor vehicles registered at a given date in a country and licenced to use roads open to public traffic. This includes road vehicles exempted from annual taxes or licence fee; it also includes imported second-hand vehicles and other road vehicles according to national practices. It should not include military vehicles.; ROAD FATALITIES A road fatality is any person killed immediately or dying within 30 days as a result of an injury accident, excluding suicides. A killed person is excluded if the competent authority declares the cause of death to be suicide, i.e. a deliberate act to injure oneself resulting in death. For countries that do not apply the threshold of 30 days, conversion coefficients are estimated so that comparison on the basis of the 30-day definition can be made. VEHICLES A road motor vehicle is a road vehicle fitted with an engine whence it derives its sole means of propulsion, which is normally used for carrying persons or goods or for drawing, on the road, vehicles used for the carriage of persons or goods.; VEHICLES Motor vehicle refers to any motorised (mechanically or electronically powered) road vehicle not operated on rail.
In 2022, over 4.5 million light trucks were involved in U.S. traffic crashes, accounting for 43.2 percent of the overall total. The second highest were passenger cars, being involved in four million car crashes and accounting for 38.1 percent of the total. Motor vehicle crashes are among the leading causes of death among those under the age of 55 in the United States.
This indicator provides information about the mortality rate from motor vehicle crashes and traffic-related injuries, including among pedestrians. Death rate has been age-adjusted to the 2000 U.S. standard population. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Motor vehicle crashes are a leading cause of death from unintentional injury both in Los Angeles County and in the US. While many factors contribute to motor vehicle crash mortality, the built environment plays a critical role. Communities that are exposed to heavy traffic or that lack adequate walking infrastructure for pedestrians have higher rates of motor vehicle crash-related injuries and deaths. They are also more impacted by traffic-related environmental hazards, such as vehicle emissions and air pollution. In Los Angeles County, many of these communities are also home to a large number of low-income residents. Thus, motor vehicle crash mortality can be viewed as an environmental justice issue.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
The Motor Vehicle Collisions vehicle table contains details on each vehicle involved in the crash. Each row represents a motor vehicle involved in a crash. The data in this table goes back to April 2016 when crash reporting switched to an electronic system. The Motor Vehicle Collisions data tables contain information from all police reported motor vehicle collisions in NYC. The police report (MV104-AN) is required to be filled out for collisions where someone is injured or killed, or where there is at least $1000 worth of damage (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ny_overlay_mv-104an_rev05_2004.pdf). It should be noted that the data is preliminary and subject to change when the MV-104AN forms are amended based on revised crash details. Due to success of the CompStat program, NYPD began to ask how to apply the CompStat principles to other problems. Other than homicides, the fatal incidents with which police have the most contact with the public are fatal traffic collisions. Therefore in April 1998, the Department implemented TrafficStat, which uses the CompStat model to work towards improving traffic safety. Police officers complete form MV-104AN for all vehicle collisions. The MV-104AN is a New York State form that has all of the details of a traffic collision. Before implementing Trafficstat, there was no uniform traffic safety data collection procedure for all of the NYPD precincts. Therefore, the Police Department implemented the Traffic Accident Management System (TAMS) in July 1999 in order to collect traffic data in a uniform method across the City. TAMS required the precincts manually enter a few selected MV-104AN fields to collect very basic intersection traffic crash statistics which included the number of accidents, injuries and fatalities. As the years progressed, there grew a need for additional traffic data so that more detailed analyses could be conducted. The Citywide traffic safety initiative, Vision Zero started in the year 2014. Vision Zero further emphasized the need for the collection of more traffic data in order to work towards the Vision Zero goal, which is to eliminate traffic fatalities. Therefore, the Department in March 2016 replaced the TAMS with the new Finest Online Records Management System (FORMS). FORMS enables the police officers to electronically, using a Department cellphone or computer, enter all of the MV-104AN data fields and stores all of the MV-104AN data fields in the Department’s crime data warehouse. Since all of the MV-104AN data fields are now stored for each traffic collision, detailed traffic safety analyses can be conducted as applicable.
This dataset describes injury mortality in the United States beginning in 1999. Two concepts are included in the circumstances of an injury death: intent of injury and mechanism of injury. Intent of injury describes whether the injury was inflicted purposefully (intentional injury) and, if purposeful, whether the injury was self-inflicted (suicide or self-harm) or inflicted by another person (homicide). Injuries that were not purposefully inflicted are considered unintentional (accidental) injuries. Mechanism of injury describes the source of the energy transfer that resulted in physical or physiological harm to the body. Examples of mechanisms of injury include falls, motor vehicle traffic crashes, burns, poisonings, and drownings (1,2). Data are based on information from all resident death certificates filed in the 50 states and the District of Columbia. Age-adjusted death rates (per 100,000 standard population) are based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2015 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for non-census years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Causes of injury death are classified by the International Classification of Diseases, Tenth Revision (ICD–10). Categories of injury intent and injury mechanism generally follow the categories in the external-cause-of-injury mortality matrix (1,2). Cause-of-death statistics are based on the underlying cause of death. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics. ICD–10: External cause of injury mortality matrix. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Murphy SL, Xu JQ, Kochanek KD, Curtin SC, and Arias E. Deaths: Final data for 2015. National vital statistics reports; vol 66. no. 6. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_06.pdf. Miniño AM, Anderson RN, Fingerhut LA, Boudreault MA, Warner M. Deaths: Injuries, 2002. National vital statistics reports; vol 54 no 10. Hyattsville, MD: National Center for Health Statistics. 2006.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph illustrates the number of fatal truck accidents in the United States from 2021 to 2025. The x-axis represents the years, ranging from 2021 to 2025, while the y-axis shows the number of fatal truck accidents. In 2022, the number of fatal accidents was the highest, reaching 5,797. Last year, in 2024, it was the lowest. The year 2025 has just begun, so it is too early to make predictions. This information is presented in a bar graph format, effectively highlighting the annual changes and trends in fatal truck accident occurrences in the United States.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Road Fatalities: Per One Million Inhabitants data was reported at 12.239 Ratio in 2023. This records a decrease from the previous number of 12.757 Ratio for 2022. United States US: Road Fatalities: Per One Million Inhabitants data is updated yearly, averaging 12.844 Ratio from Dec 1994 (Median) to 2023, with 30 observations. The data reached an all-time high of 15.704 Ratio in 1995 and a record low of 10.284 Ratio in 2014. United States US: Road Fatalities: Per One Million Inhabitants data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s United States – Table US.OECD.ITF: Road Traffic and Road Accident Fatalities: OECD Member: Annual. [COVERAGE] ROAD FATALITIES A road fatality is any person killed immediately or dying within 30 days as a result of an injury accident, excluding suicides. A killed person is excluded if the competent authority declares the cause of death to be suicide, i.e. a deliberate act to injure oneself resulting in death. For countries that do not apply the threshold of 30 days, conversion coefficients are estimated so that comparison on the basis of the 30-day definition can be made.
About 228,200 Americans had a license to operate a motor vehicle in the United States in 2020. That year, an estimated 36,680 people died on U.S. roads. Traffic-related fatalities per 100,000 licensed drivers stood at 17.01 in 2020.
Road safety rankings
The United States has among the highest rates of road fatalities per population worldwide. Possible contributing factors to deaths on the road can include speeding, not wearing a seatbelt, driving while under the influence of drugs or alcohol, and driving while fatigued. Traffic fatalities caused by speeding in the United States have declined since 2008, with less than 10,000 deaths recorded annually over recent years.
Automation for the nation
94 percent of severe automobile crashes are due to human error — but driving safety is taken much more seriously today than in the past, with roughly 90 percent of U.S. drivers wearing their seatbelts while driving in 2020. Over recent years, car manufacturers and developers have striven to reduce car crashes even further with partially and fully automated safety features such as forward collision warnings, lane departure warnings, rearview video systems, and automatic emergency braking. Self-driving vehicles are also set to take to the roads in the future, with car brands such as Toyota, Ford, and GM registering over 350 autonomous driving patents respectively in the United States.