Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
https://i.imgur.com/ztezlER.png" alt="Image example">
This dataset contains 627 images of various vehicle classes for object detection. These images are derived from the Open Images open source computer vision datasets.
This dataset only scratches the surface of the Open Images dataset for vehicles!
https://i.imgur.com/4ZHN8kk.png" alt="Image example">
https://i.imgur.com/1U0M573.png" alt="Image example">
These images were gathered via the OIDv4 Toolkit This toolkit allows you to pick an object class and retrieve a set number of images from that class with bound box lables.
We provide this dataset as an example of the ability to query the OID for a given subdomain. This dataset can easily be scaled up - please reach out to us if that interests you.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is designed for the detection of persons and cars in surveillance camera footage. It can be utilized for various useful applications, including:
This dataset is based on images collected from various sources, including:
https://universe.roboflow.com/radoslaw-kawczak/virat-ve02s
https://universe.roboflow.com/seminar-object-detection/cars-o1ljf
With this dataset, you can train and develop machine learning models capable of accurately detecting persons and cars, thus empowering surveillance and security systems with advanced object recognition capabilities.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Aerial Multi-Vehicle Detection Dataset: Efficient road traffic monitoring is playing a fundamental role in successfully resolving traffic congestion in cities. Unmanned Aerial Vehicles (UAVs) or drones equipped with cameras are an attractive proposition to provide flexible and infrastructure-free traffic monitoring. Due to the affordability of such drones, computer vision solutions for traffic monitoring have been widely used. Therefore, this dataset provide images that can be used for either training or evaluating Traffic Monitoring applications. More specifically, it can be used for training an aerial vehicle detection algorithm, benchmark an already trained vehicle detection algorithm, enhance an existing dataset and aid in traffic monitoring and analysis of road segments.
The dataset construction involved manually collecting all aerial images of vehicles using UAV drones and manually annotated into three classes 'Car', 'Bus', and ''Truck'.The aerial images were collected through manual flights in road segments in Nicosia or Limassol, Cyprus, during busy hours. The images are in High Quality, Full HD (1080p) to 4k (2160p) but are usually resized before training. All images were manually annotated and inspected afterward with the vehicles that indicate 'Car' for small to medium sized vehicles, 'Bus' for busses, and 'Truck' for large sized vehicles and trucks. All annotations were converted into VOC and COCO formats for training in numerous frameworks. The data collection took part in different periods, covering busy road segments in the cities of Nicosia and Limassol in Cyprus. The altitude of the flights varies between 150 to 250 meters high, with a top view perspective. Some of the images found in this dataset are taken from Harpy Data dataset [1]
The dataset includes a total of 9048 images of which 904 are split for validation, 905 for testing, and the rest 7239 for training.
Subset | Images | Car | Bus | Truck |
Training | 7239 | 200301 | 1601 | 6247 |
Validation | 904 | 23397 | 193 | 727 |
Testing | 905 | 24715 | 208 | 770 |
It is advised to further enhance the dataset so that random augmentations are probabilistically applied to each image prior to adding it to the batch for training. Specifically, there are a number of possible transformations such as geometric (rotations, translations, horizontal axis mirroring, cropping, and zooming), as well as image manipulations (illumination changes, color shifting, blurring, sharpening, and shadowing).
[1] Makrigiorgis, R., 2021. Harpy Data Dataset. [online] Kios.ucy.ac.cy. Available at: <https://www.kios.ucy.ac.cy/harpydata/> [Accessed 22 September 2022].
**NOTE** If you use this dataset in your research/publication please cite us using the following :
Rafael Makrigiorgis, Panayiotis Kolios, & Christos Kyrkou. (2022). Aerial Multi-Vehicle Detection Dataset (1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7053442
This dataset was created by VivekPadmanaban
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created by Kinda Mashal
Released under Apache 2.0
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Cars Object Detection is a dataset for object detection tasks - it contains Cars I579 annotations for 552 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Cars Object Tracking
Dataset comprises 10,000+ video frames featuring both light vehicles (cars) and heavy vehicles (minivans). This extensive collection is meticulously designed for research in multi-object tracking and object detection, providing a robust foundation for developing and evaluating various tracking algorithms for road safety system development. By utilizing this dataset, researchers can significantly enhance their understanding of vehicle dynamics and improve… See the full description on the dataset page: https://huggingface.co/datasets/UniDataPro/cars-object-tracking.
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
This repository has VME dataset (images and annotations files). Also, it has the script for constructing CDSI dataset.
VME is a satellite imagery dataset built for vehicle detection in the Middle East. VME images (satellite_images folder) are under https://creativecommons.org/licenses/by-nc-nd/4.0/" target="_blank" rel="noopener">CC BY-NC-ND 4.0 license, whereas the rest of folders (annotations_HBB, annotations_OBB, CDSI_construction_scripts) are under https://creativecommons.org/licenses/by/4.0/" target="_blank" rel="noopener">CC BY 4.0 license.
VME_CDSI_datasets.zip has four components:
annotations_HBB, annotations_OBB, CDSI_construction_scripts, are available in our GitHub repository
Please cite our dataset & paper with the preferred format as shown in the "Citation" section
@article{al-emadi_vme_2025,
title = {{VME: A Satellite Imagery Dataset and Benchmark for Detecting Vehicles in the Middle East and Beyond}},
volume = {12},
issn = {2052-4463},
url = {https://doi.org/10.1038/s41597-025-04567-y},
doi = {10.1038/s41597-025-04567-y},
pages = {500},
number = {1},
journal = {Scientific Data},
author = {Al-Emadi, Noora and Weber, Ingmar and Yang, Yin and Ofli, Ferda},
date = {2025-03-25},
publisher={Spring Nature},
year={2025}
}
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
If you use this dataset, please cite this paper: Puertas, E.; De-Las-Heras, G.; Fernández-Andrés, J.; Sánchez-Soriano, J. Dataset: Roundabout Aerial Images for Vehicle Detection. Data 2022, 7, 47. https://doi.org/10.3390/data7040047
This publication presents a dataset of Spanish roundabouts aerial images taken from an UAV, along with annotations in PASCAL VOC XML files that indicate the position of vehicles within them. Additionally, a CSV file is attached containing information related to the location and characteristics of the captured roundabouts. This work details the process followed to obtain them: image capture, processing and labeling. The dataset consists of 985,260 total instances: 947,400 cars, 19,596 cycles, 2,262 trucks, 7,008 buses and 2,208 empty roundabouts, in 61,896 1920x1080px JPG images. These are divided into 15,474 extracted images from 8 roundabouts with different traffic flows and 46,422 images created using data augmentation techniques. The purpose of this dataset is to help research on computer vision on the road, as such labeled images are not abundant. It can be used to train supervised learning models, such as convolutional neural networks, which are very popular in object detection.
Roundabout (scenes) |
Frames |
Car |
Truck |
Cycle |
Bus |
Empty |
1 (00001) |
1,996 |
34,558 |
0 |
4229 |
0 |
0 |
2 (00002) |
514 |
743 |
0 |
0 |
0 |
157 |
3 (00003-00017) |
1,795 |
4822 |
58 |
0 |
0 |
0 |
4 (00018-00033) |
1,027 |
6615 |
0 |
0 |
0 |
0 |
5 (00034-00049) |
1,261 |
2248 |
0 |
550 |
0 |
81 |
6 (00050-00052) |
5,501 |
180,342 |
1420 |
120 |
1376 |
0 |
7 (00053) |
2,036 |
5,789 |
562 |
0 |
226 |
92 |
8 (00054) |
1,344 |
1,733 |
222 |
0 |
150 |
222 |
Total |
15,474 |
236,850 |
2,262 |
4,899 |
1,752 |
552 |
Data augmentation |
x4 |
x4 |
x4 |
x4 |
x4 |
x4 |
Total |
61,896 |
947,400 |
9048 |
19,596 |
7,008 |
2,208 |
This dataset was created by ORN
Released under Other (specified in description)
This dataset features over 750,000 high-quality images of cars sourced from photographers worldwide. Designed to support AI and machine learning applications, it provides a diverse and richly annotated collection of flower imagery.
Key Features: 1. Comprehensive Metadata: the dataset includes full EXIF data, detailing camera settings such as aperture, ISO, shutter speed, and focal length. Additionally, each image is pre-annotated with object and scene detection metadata, making it ideal for tasks like classification, detection, and segmentation. Popularity metrics, derived from engagement on our proprietary platform, are also included.
Unique Sourcing Capabilities: the images are collected through a proprietary gamified platform for photographers. Competitions focused on flower photography ensure fresh, relevant, and high-quality submissions. Custom datasets can be sourced on-demand within 72 hours, allowing for specific requirements such as particular flower species or geographic regions to be met efficiently.
Global Diversity: photographs have been sourced from contributors in over 100 countries, ensuring a vast array of flower species, colors, and environmental settings. The images feature varied contexts, including natural habitats, gardens, bouquets, and urban landscapes, providing an unparalleled level of diversity.
High-Quality Imagery: the dataset includes images with resolutions ranging from standard to high-definition to meet the needs of various projects. Both professional and amateur photography styles are represented, offering a mix of artistic and practical perspectives suitable for a variety of applications.
Popularity Scores Each image is assigned a popularity score based on its performance in GuruShots competitions. This unique metric reflects how well the image resonates with a global audience, offering an additional layer of insight for AI models focused on user preferences or engagement trends.
I-Ready Design: this dataset is optimized for AI applications, making it ideal for training models in tasks such as image recognition, classification, and segmentation. It is compatible with a wide range of machine learning frameworks and workflows, ensuring seamless integration into your projects.
Licensing & Compliance: the dataset complies fully with data privacy regulations and offers transparent licensing for both commercial and academic use.
Use Cases 1. Training AI systems for plant recognition and classification. 2. Enhancing agricultural AI models for plant health assessment and species identification. 3. Building datasets for educational tools and augmented reality applications. 4. Supporting biodiversity and conservation research through AI-powered analysis.
This dataset offers a comprehensive, diverse, and high-quality resource for training AI and ML models, tailored to deliver exceptional performance for your projects. Customizations are available to suit specific project needs. Contact us to learn more!
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
This dataset comprises a collection of images captured through DVRs (Digital Video Recorders) showcasing roads. Each image is accompanied by segmentation masks demarcating different entities (road surface, cars, road signs, marking and background) within the scene.
The dataset can be utilized for enhancing computer vision algorithms involved in road surveillance, navigation, and intelligent transportation systemsand and in autonomous driving systems.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2Fb0789a0ec8075d9c7abdb0aa9faced59%2FFrame%2012.png?generation=1694606364403023&alt=media" alt="">
Each image from images
folder is accompanied by an XML-annotation in the annotations.xml
file indicating the coordinates of the polygons and labels . For each point, the x and y coordinates are provided.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2Fa74a4214f4dd89a35527ef008abfc151%2Fcarbon.png?generation=1694608637609153&alt=media" alt="">
keywords: road surface, road scene, off-road, vehicle segmentation dataset, semantic segmentation for self driving cars, self driving cars dataset, semantic segmentation for autonomous driving, car segmentation dataset, car dataset, car images, car parts segmentation, self-driving cars deep learning, cctv, image dataset, image classification, semantic segmentation
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset was created by Nguyễn Mạnh Cường
Released under MIT
Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
The Dataset
A collection of images of parking lots for vehicle detection, segmentation, and counting.
Each image is manually labeled with pixel-wise masks and bounding boxes localizing vehicle instances.
The dataset includes about 250 images depicting several parking areas describing most of the problematic situations that we can find in a real scenario: seven different cameras capture the images under various weather conditions and viewing angles. Another challenging aspect is the presence of partial occlusion patterns in many scenes such as obstacles (trees, lampposts, other cars) and shadowed cars.
The main peculiarity is that images are taken during the day and the night, showing utterly different lighting conditions.
We suggest a three-way split (train-validation-test). The train split contains images taken during the daytime while validation and test splits include images gathered at night.
In line with these splits we provide some annotation files:
train_coco_annotations.json and val_coco_annotations.json --> JSON files that follow the golden standard MS COCO data format (for more info see https://cocodataset.org/#format-data) for the training and the validation splits, respectively. All the vehicles are labeled with the COCO category 'car'. They are suitable for vehicle detection and instance segmentation.
train_dot_annotations.csv and val_dot_annotations.csv --> CSV files that contain xy coordinates of the centroids of the vehicles for the training and the validation splits, respectively. Dot annotation is commonly used for the visual counting task.
ground_truth_test_counting.csv --> CSV file that contains the number of vehicles present in each image. It is only suitable for testing vehicle counting solutions.
Citing our work
If you found this dataset useful, please cite the following paper
@inproceedings{Ciampi_visapp_2021, doi = {10.5220/0010303401850195}, url = {https://doi.org/10.5220%2F0010303401850195}, year = 2021, publisher = {{SCITEPRESS} - Science and Technology Publications}, author = {Luca Ciampi and Carlos Santiago and Joao Costeira and Claudio Gennaro and Giuseppe Amato}, title = {Domain Adaptation for Traffic Density Estimation}, booktitle = {Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications} }
and this Zenodo Dataset
@dataset{ciampi_ndispark_6560823, author = {Luca Ciampi and Carlos Santiago and Joao Costeira and Claudio Gennaro and Giuseppe Amato}, title = {{Night and Day Instance Segmented Park (NDISPark) Dataset: a Collection of Images taken by Day and by Night for Vehicle Detection, Segmentation and Counting in Parking Areas}}, month = may, year = 2022, publisher = {Zenodo}, version = {1.0.0}, doi = {10.5281/zenodo.6560823}, url = {https://doi.org/10.5281/zenodo.6560823} }
Contact Information
If you would like further information about the dataset or if you experience any issues downloading files, please contact us at luca.ciampi@isti.cnr.it
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
person straight straight-right crossing-zebra obstacle red-area
This dataset contains 9 fifteen-second driving scene videos sourced from the internet. The collection aims to provide visual data for developing and testing machine learning and computer vision models. The videos depict common driving conditions and street environments, making them useful for vehicle detection, object recognition, and traffic analysis. Video quality varies, with some videos of excellent quality and others of average quality. All videos are in MP4 format at 30 frames per second
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We collected and annotated a dataset containing 105,544 annotated vehicle instances from 24700 image frames within seven different videos, sourced online under creative commons license. The video frames are annotated using DarkLabel tool. In the interest of reusability and generalisation of the deep learning model, we consider the diversity within the collected dataset. This diversity includes changes of lighting amongst the video, as well as other factors such as weather conditions, angle of observation, varying speed of the moving vehicles, traffic flow, and road conditions etc. The videos collected obviously include stationary vehicles, to perform the validation of stopped vehicle detection method. It can be noticed that the road conditions (e.g., motorways, city, country roads), directions, data capture timings and camera views, vary in the dataset producing annotated dataset with diversity. the dataset may have several uses such as vehicle detection, vehicle identification, stopped vehicle detection on smart motorways and local roads (smart city applications) and many more.
A large vehicle detection dataset with almost two million annotated vehicles for training and evaluating object detection methods for self-driving cars on freeways.
The dataset consists of:
200,000 images 1,990,000 annotated vehicles 5 Megapixel resolution Sunshine, rain, dusk, night Clear freeways, heavy traffic, traffic jams
Paper: Boxy Vehicle Detection in Large Images
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The PaCaBa (Parking Cars Barcelona) dataset is a WorldView-3 stereo satellite image dataset with labeled parking cars. It consists of three parts:
The image data is available for four connected regions in the city of Barcelona covering roughly 5 km2. The four regions of interest include all street areas whereas other areas are masked out in the images. Annotation of these areas has given 12088 and 12248 cars in the individual stereo images, respectively, and 7303 parking cars.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The original Udacity Self Driving Car Dataset is missing labels for thousands of pedestrians, bikers, cars, and traffic lights. This will result in poor model performance. When used in the context of self driving cars, this could even lead to human fatalities.
We re-labeled the dataset to correct errors and omissions. We have provided convenient downloads in many formats including VOC XML, COCO JSON, Tensorflow Object Detection TFRecords, and more.
Some examples of labels missing from the original dataset:
https://i.imgur.com/A5J3qSt.jpg" alt="Examples of Missing Labels">
The dataset contains 97,942 labels across 11 classes and 15,000 images. There are 1,720 null examples (images with no labels).
All images are 1920x1200 (download size ~3.1 GB). We have also provided a version downsampled to 512x512 (download size ~580 MB) that is suitable for most common machine learning models (including YOLO v3, Mask R-CNN, SSD, and mobilenet).
Annotations have been hand-checked for accuracy by Roboflow.
https://i.imgur.com/bOFkueI.pnghttps://" alt="Class Balance">
Annotation Distribution:
https://i.imgur.com/NwcrQKK.png" alt="Annotation Heatmap">
Udacity is building an open source self driving car! You might also try using this dataset to do person-detection and tracking.
Our updates to the dataset are released under the MIT License (the same license as the original annotations and images).
Note: the dataset contains many duplicated bounding boxes for the same subject which we have not corrected. You will probably want to filter them by taking the IOU for classes that are 100% overlapping or it could affect your model performance (expecially in stoplight detection which seems to suffer from an especially severe case of duplicated bounding boxes).
Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless.
Developers reduce 50% of their boilerplate code when using Roboflow's workflow, save training time, and increase model reproducibility. :fa-spacer:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
https://i.imgur.com/ztezlER.png" alt="Image example">
This dataset contains 627 images of various vehicle classes for object detection. These images are derived from the Open Images open source computer vision datasets.
This dataset only scratches the surface of the Open Images dataset for vehicles!
https://i.imgur.com/4ZHN8kk.png" alt="Image example">
https://i.imgur.com/1U0M573.png" alt="Image example">
These images were gathered via the OIDv4 Toolkit This toolkit allows you to pick an object class and retrieve a set number of images from that class with bound box lables.
We provide this dataset as an example of the ability to query the OID for a given subdomain. This dataset can easily be scaled up - please reach out to us if that interests you.