100+ datasets found
  1. d

    CONABIO Metadata and Digital Map Library of Mexico

    • search.dataone.org
    Updated Nov 17, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kérmez, Dr. José Sarukhán (2014). CONABIO Metadata and Digital Map Library of Mexico [Dataset]. https://search.dataone.org/view/CONABIO_Metadata_and_Digital_Map_Library_of_Mexico.xml
    Explore at:
    Dataset updated
    Nov 17, 2014
    Dataset provided by
    Regional and Global Biogeochemical Dynamics Data (RGD)
    Authors
    Kérmez, Dr. José Sarukhán
    Time period covered
    Jan 1, 1999
    Area covered
    Description

    CONABIO provides online cartography through cartographic metadata distributed following the guidelines in the Standards for Digital Geospatial Metadata of FGDC-NBII (Federal Geographic Data Committee – National Biological Information Infrastructure), 1996. The cartographic information is queried through a database that is organized based on themes (biotic, physical and social aspects, regionalization and others), scales, and geographic area. The metadata content is presented as basic information, reports of the information (methodology) and spatial data information. The cartography is available online at no charge in distinct formats like: export file for Arc/Info (.E00) and shape file (ESRI), and DXF (Drawing eXchange Format). Maps is presented in cartographic projections: Lambert Conic Conformal, UTM and geographic coordinates system. GIF format of map images can be obtained as well.

  2. W

    Cartographic masks for map products COO 120 v02

    • cloud.csiss.gmu.edu
    • gimi9.com
    • +3more
    zip
    Updated Dec 14, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australia (2019). Cartographic masks for map products COO 120 v02 [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/9d711dbb-cfe7-42bc-ab60-f6a1086c33a8
    Explore at:
    zip(9581)Available download formats
    Dataset updated
    Dec 14, 2019
    Dataset provided by
    Australia
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    Abstract

    This dataset was created within the Bioregional Assessment Programme for cartographic purposes. Data has not been derived from any source datasets. Metadata has been compiled by the Bioregional Assessment Programme.

    Cartographic masks for map products COO_120, used for clear annotation and masking unwanted features from report maps.

    Dataset History

    Masks created using the 'Features Outline Masks (Cartography)' tool on annotation layers within ArcCatalog.

    Dataset Citation

    Bioregional Assessment Programme (2015) Cartographic masks for map products COO 120 v02. Bioregional Assessment Source Dataset. Viewed 27 November 2017, http://data.bioregionalassessments.gov.au/dataset/9d711dbb-cfe7-42bc-ab60-f6a1086c33a8.

  3. USGS National Map

    • data.openlaredo.com
    • data.baltimorecity.gov
    • +13more
    html
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Portal (2025). USGS National Map [Dataset]. https://data.openlaredo.com/dataset/usgs-national-map
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    GIS Portal
    Description

    The USGS Topo base map service from The National Map is a combination of contours, shaded relief, woodland and urban tint, along with vector layers, such as geographic names, governmental unit boundaries, hydrography, structures, and transportation, to provide a composite topographic base map. Data sources are the National Atlas for small scales, and The National Map for medium to large scales.

  4. Digital Map Service Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Digital Map Service Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-digital-map-service-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Sep 22, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Digital Map Service Market Outlook



    The global digital map service market size is projected to grow significantly, from approximately $18.9 billion in 2023 to an estimated $53.1 billion by 2032, reflecting a compelling Compound Annual Growth Rate (CAGR) of 12.5%. This robust growth is driven by the increasing adoption of digital mapping technologies across diverse industries and the rising demand for real-time geographic and navigation data in both consumer and enterprise applications.



    One of the primary growth factors for the digital map service market is the expanding use of digital maps in the automotive sector, particularly in the development of Advanced Driver Assistance Systems (ADAS) and autonomous vehicles. These technologies rely heavily on precise and up-to-date mapping data for navigation, obstacle detection, and other functionalities, making digital maps indispensable. Additionally, the proliferation of mobile devices and the integration of mapping services in applications such as ride-sharing, logistics, and local search have significantly contributed to market expansion.



    Another significant driver is the increasing reliance on Geographic Information Systems (GIS) across various industries. GIS technology enables organizations to analyze spatial information, improve decision-making processes, and enhance operational efficiencies. Industries such as government, defense, agriculture, and urban planning utilize GIS for land use planning, disaster management, and resource allocation, among other applications. The continuous advancements in GIS technology and the integration of artificial intelligence (AI) and machine learning (ML) are expected to further propel market growth.



    The rising demand for real-time location data is also a crucial factor fueling the growth of the digital map service market. Real-time location data is essential for applications such as fleet management, asset tracking, and public safety. Businesses leverage this data to optimize routes, monitor assets, and enhance customer service. The increasing implementation of Internet of Things (IoT) devices and the growing importance of location-based services are likely to sustain the demand for real-time mapping solutions in the coming years.



    Regionally, North America leads the digital map service market, driven by the high adoption rate of advanced technologies and the presence of major players in the region. However, the Asia Pacific region is expected to witness the fastest growth, attributed to rapid urbanization, increasing smartphone penetration, and government initiatives to develop smart cities. Europe, Latin America, and the Middle East & Africa are also anticipated to experience substantial growth, fueled by the rising demand for digital mapping solutions across various sectors.



    Service Type Analysis



    In the digital map service market, the service type segment includes mapping and navigation, geographic information systems (GIS), real-time location data, and others. Mapping and navigation services hold a significant share in the market, primarily due to their extensive use in personal and commercial navigation systems. These services provide detailed road maps, traffic updates, and route planning, which are essential for everyday commuting and logistics operations. The continuous advancements in navigation technologies, such as integration with AI and ML for predictive analytics, are expected to enhance the accuracy and functionality of these services.



    Geographic Information Systems (GIS) represent another critical segment within the digital map service market. GIS technology is widely used in various applications, including urban planning, environmental management, and disaster response. The ability to analyze and visualize spatial data in multiple layers allows organizations to make informed decisions and optimize resource allocation. The integration of GIS with other emerging technologies, such as drones and remote sensing, is further expanding its application scope and driving market growth.



    Real-time location data services are gaining traction due to their importance in applications like fleet management, asset tracking, and location-based services. These services provide up-to-the-minute information on the geographical position of assets, vehicles, or individuals, enabling businesses to improve operational efficiency and customer satisfaction. The growing adoption of IoT devices and the increasing need for real-time visibility in supply chain operations are expected to bolster the demand for real-time location data services.</p&

  5. Digital Geologic Map of International Boundary and Water Commission Mapping...

    • catalog.data.gov
    • datadiscoverystudio.org
    • +1more
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic Map of International Boundary and Water Commission Mapping in Amistad National Recreation Area, Texas and Mexico (NPS, GRD, GRI, AMIS, IBWC digital map) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-map-of-international-boundary-and-water-commission-mapping-in-amistad-nat
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Texas, Mexico
    Description

    The Digital Geologic Map of International Boundary and Water Commission Mapping in Amistad National Recreation Area, Texas and Mexico is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary GIS tables, a Map PDF document with ancillary map text, figures and tables, a FGDC metadata record and a 9.3 ArcMap (.MXD) Document that displays the digital map in 9.3 ArcGIS. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Eddie Collins, Amanda Masterson and Tom Tremblay (Texas Bureau of Economic Geology); Rick Page (U.S. Geological Survey); Gilbert Anaya (International Boundary and Water Commission). Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation sections(s) of this metadata record (ibwc_metadata.txt; available at http://nrdata.nps.gov/amis/nrdata/geology/gis/ibwc_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.3 personal geodatabase (ibwc_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 14N. The data is within the area of interest of Amistad National Recreation Area.

  6. Data from: Source Index Map Layer for High-Resolution Orthorectified Imagery...

    • dataone.org
    • portal.edirepository.org
    • +1more
    Updated Mar 11, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    William Manley; Eric Parrish; Leanne Lestak (2015). Source Index Map Layer for High-Resolution Orthorectified Imagery from Approximately 1990, Niwot Ridge LTER Project Area, Colorado [Dataset]. https://dataone.org/datasets/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-nwt%2F712%2F2
    Explore at:
    Dataset updated
    Mar 11, 2015
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    William Manley; Eric Parrish; Leanne Lestak
    Time period covered
    Sep 4, 1988
    Area covered
    Description

    Citation Manley, W.F., Parrish, E.G., and Lestak, L.R., 2009, High-Resolution Orthorectified Imagery and Digital Elevation Models for Study of Environmental Change at Niwot Ridge and Green Lakes Valley, Colorado: Niwot Ridge LTER, INSTAAR, University of Colorado at Boulder, digital media. This vector shapefile is a source index map layer for the mosaic of orthorectified aerial photography from 1988 and 1990 for the Niwot Ridge Long Term Ecological Research (LTER) project. The index also covers the Green Lakes Valley portion of the Boulder Creek Critical Zone Observatory (CZO). The index polygons are attributed with source photo date and photo year. The mosaic is derived from approx. 1:40,000 scale, color infrared (CIR) photographs acquired by the United States Geological Survery (USGS) National Aerial Photography Program (NAPP). Other datasets available in this series includes orthorectified aerial photograph mosaics (for 1953, 1972, 1985, approximately 1990, 1999, 2000, 2002, 2004, 2006 and 2008), digital elevation models (DEM's), and accessory map layers. Together, the DEM's and imagery will be of interest to students, research scientists, and others for observation and analysis of natural features and ecosystems. NOTE: This EML metadata file does not contain important geospatial data processing information. Before using any NWT LTER geospatial data read the arcgis metadata XML file in either ISO or FGDC compliant format, using ArcGIS software (ArcCatalog > description), or by viewing the .xml file provided with the geospatial dataset.

  7. (Digital) Humanities and Media Labs Around the World

    • zenodo.org
    • explore.openaire.eu
    • +1more
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urszula Pawlicka-Deger; Urszula Pawlicka-Deger (2020). (Digital) Humanities and Media Labs Around the World [Dataset]. http://doi.org/10.5281/zenodo.2631219
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Urszula Pawlicka-Deger; Urszula Pawlicka-Deger
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    The dataset presents a list of laboratories set up in the humanities, digital humanities, and media studies within universities across the world in 1983-2018. The data are collected and organized in an interactive map designed in the digital StoryMapJS tool, creating a valuable visible representation of the laboratory concept from a geographical and historical perspective. Based on the interactive map, I analyze the history of the laboratory in the humanities within a global context from the 1980s to 2018. The dataset includes 214 laboratories.

    Data collection

    I identified laboratories by using different resources such as universities’ websites, articles, and research projects. Besides, I sent a questionnaire to the most relevant networks in October 2018 to identify even more labs created in (digital) humanities and media studies at universities.

    Data organization

    I collected data about each lab based on its website and other resources. I extracted the following data: year established, year ended (if applicable), lab’s name, university, city, country, affiliation and location (if provided), disciplines and keywords (based on labs’ statements and projects and aiming to situate a lab), selected projects (if provided), purpose (a short quotation of a lab’s statement published on its website), website, and geographical latitude and longitude. I organized all the data in chronological order according to year established in Google Sheets. Next, I used StoryMapJS, a free tool designed by the Northwestern University’s Knight Lab, to map my data.

  8. Maps generator

    • zenodo.org
    text/x-python, zip
    Updated Mar 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marcos Terol; Marcos Terol; Pedro Gomez-Gasquet; Pedro Gomez-Gasquet; Francisco Fraile; Francisco Fraile; Andrés Boza; Andrés Boza (2024). Maps generator [Dataset]. http://doi.org/10.5281/zenodo.10796431
    Explore at:
    text/x-python, zipAvailable download formats
    Dataset updated
    Mar 8, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Marcos Terol; Marcos Terol; Pedro Gomez-Gasquet; Pedro Gomez-Gasquet; Francisco Fraile; Francisco Fraile; Andrés Boza; Andrés Boza
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Python code provided generates polygonal maps resembling geographical landscapes, where certain areas may represent features like lakes or inaccessible regions. These maps are generated with specified characteristics such as regularity, gap density, and gap scale.

    Features:

    1. Polygon Generation:

      • The code utilizes the Shapely library to generate polygonal shapes within specified bounding boxes. These polygons serve as the primary representation of the map.
    2. Gap Generation:

      • Within the generated polygons, the code introduces gaps to simulate features like lakes or inaccessible areas. These gaps are represented as holes within the central polygon.
    3. Forest Generation
      • Within the generated polygons, the code introduces different forest areas. These forest are added like a new Feature inside the GEOJSON.
    4. Parameterized Generation:

      • The generation process is parameterized, allowing control over features such as regularity (shape uniformity), gap density (homogeneity of gaps), and gap scale (size of gaps relative to the polygon).

    Components:

    1. PolygonGenerator Class:

      • Responsible for generating the outer polygon shape and introducing gaps to simulate features.
      • Offers methods to generate individual polygons with specified characteristics.
    2. Parameter Ranges and Experimentation:

      • The code includes predefined ranges for regularity, gap density, vertex number, bounding box, forest density and forest scale range in 3 different CSV.
      • It conducts experiments by generating maps with different parameter combinations, offering insights into how these parameters affect the map's appearance.

    Usage:

    1. Map Generation:

      • Users can instantiate the PolygonGenerator class to generate individual polygons representing maps with specific features.
      • Parameters such as regularity, gap density, and gap scale can be adjusted to customize the map generation process.
    2. Experimentation:

      • Users can experiment with different parameter combinations to observe the effects on map generation.
      • This allows for exploration and understanding of how different parameters influence the characteristics of generated maps.

    Potential Applications:

    • The code can be used in various applications requiring the generation of simulated landscapes, such as in gaming, geographical analysis, or educational tools.
    • It provides a flexible and customizable framework for creating maps with specific features, allowing users to tailor the generated maps to their requirements.
    • Can be applied to generate maps for drone scanning operations, facilitating optimized area division and efficient data collection.
  9. 10 powerful tools and maps with which to teach about population and...

    • library.ncge.org
    Updated Jul 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2021). 10 powerful tools and maps with which to teach about population and demographics [Dataset]. https://library.ncge.org/documents/bae1d5f1cba243ea88d09b043b8444ee
    Explore at:
    Dataset updated
    Jul 27, 2021
    Dataset provided by
    National Council for Geographic Educationhttp://www.ncge.org/
    Authors
    NCGE
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Author: Joseph Kerski, post_secondary_educator, Esri and University of DenverGrade/Audience: high school, ap human geography, post secondary, professional developmentResource type: lessonSubject topic(s): population, maps, citiesRegion: africa, asia, australia oceania, europe, north america, south america, united states, worldStandards: All APHG population tenets. Geography for Life cultural and population geography standards. Objectives: 1. Understand how population change and demographic characteristics are evident at a variety of scales in a variety of places around the world. 2. Understand the whys of where through analysis of change over space and time. 3. Develop skills using spatial data and interactive maps. 4. Understand how population data is communicated using 2D and 3D maps, visualizations, and symbology. Summary: Teaching and learning about demographics and population change in an effective, engaging manner is enriched and enlivened through the use of web mapping tools and spatial data. These tools, enabled by the advent of cloud-based geographic information systems (GIS) technology, bring problem solving, critical thinking, and spatial analysis to every classroom instructor and student (Kerski 2003; Jo, Hong, and Verma 2016).

  10. Digital Geomorphic-GIS Map of Cape Hatteras National Seashore (1:10,000...

    • catalog.data.gov
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of Cape Hatteras National Seashore (1:10,000 scale 2006 mapping), North Carolina (NPS, GRD, GRI, CAHA, CAHA_geomorphology digital map) adapted from East Carolina University unpublished digital data maps by Ames and Riggs (2006) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-cape-hatteras-national-seashore-1-10000-scale-2006-mapping-n
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Cape Hatteras, North Carolina, Hatteras Island
    Description

    The Digital Geomorphic-GIS Map of Cape Hatteras National Seashore (1:10,000 scale 2006 mapping), North Carolina is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (caha_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (caha_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (caha_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (caha_fora_wrbr_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (caha_fora_wrbr_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (caha_geomorphology_metadata_faq.pdf). Please read the caha_fora_wrbr_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: East Carolina University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (caha_geomorphology_metadata.txt or caha_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:10,000 and United States National Map Accuracy Standards features are within (horizontally) 8.5 meters or 27.8 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  11. a

    Oregon Statewide Habitat Map

    • hub.arcgis.com
    • data.oregon.gov
    Updated Jun 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Oregon (2023). Oregon Statewide Habitat Map [Dataset]. https://hub.arcgis.com/documents/894a627ba88b45b89d91ed37bc347365
    Explore at:
    Dataset updated
    Jun 16, 2023
    Dataset authored and provided by
    State of Oregon
    Area covered
    Oregon
    Description

    This is a dataset download, not a document. The Open button will start the download.In 2015, the Oregon Biodiversity Information Center at Portland State University worked with the Oregon Department of Fish and Wildlife (ODFW), to assist in their 2015 conservation strategy update. This work involved updating the maps of each of ODFW’s conservation strategy habitats originally created for the first strategy in 2006,and integrating these into a 2015 strategy habitat map. The updated maps took advantage of new data and spatial modeling tools. However, strategy habitats only represent only 11 of the approximately 77 Oregon habitats, and are only mapped in the ecoregions in which they are conservation priorities. As a result, there was a strong interest in using this 2015 data to create a statewide, comprehensive habitat map. In 2017, the Oregon Department of Administrative Services, Geographic Enterprise Office (DAS-GEO), through their Framework Implementation program, with additional support from ODFW, funded the completion of a statewide habitat map, which was completed at the end of 2018. The habitat map is a compilation of a number of recent regional and ecosystem focused vegetation-mapping efforts. It includes the best available data for each of the habitat types. As a result, different parts of the map rely on varied methods and data. For detailed methodology please see the enclosed PDF document.

  12. OpenStreetMap

    • esriindia.hub.arcgis.com
    • cacgeoportal.com
    • +27more
    Updated Nov 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri India SAAS App (2024). OpenStreetMap [Dataset]. https://esriindia.hub.arcgis.com/maps/671a954016794bef88b76ac215ec5fef
    Explore at:
    Dataset updated
    Nov 21, 2024
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri India SAAS App
    License

    Attribution-ShareAlike 2.0 (CC BY-SA 2.0)https://creativecommons.org/licenses/by-sa/2.0/
    License information was derived automatically

    Description

    This web map references the live tiled map service from the OpenStreetMap (OSM) project. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap server: https://www.OpenStreetMap.org. See that website for additional information about OpenStreetMap. It is made available as a basemap for GIS work in ESRI products under a Creative Commons Attribution-ShareAlike license. Tip: This service is one of the basemaps used in the ArcGIS.com map viewer. Simply click one of those links to launch the interactive application of your choice, and then choose Open Street Map from the Basemap control to start using this service. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10. Tip: Here are some well known locations as they appear in this web map, accessed by launching the web map with a URL that contains location parameters: Athens, Cairo, Jakarta, Moscow, Mumbai, Nairobi, Paris, Rio De Janeiro, Shanghai

  13. w

    Cartographic masks for map products COO 113

    • data.wu.ac.at
    • researchdata.edu.au
    • +2more
    zip
    Updated Dec 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Programme (2017). Cartographic masks for map products COO 113 [Dataset]. https://data.wu.ac.at/schema/data_gov_au/YWYxYWE1YTItNGI3NS00OTQwLWIzNDMtZDM3ZjcyNTkyZjUx
    Explore at:
    zip(837240.0)Available download formats
    Dataset updated
    Dec 1, 2017
    Dataset provided by
    Bioregional Assessment Programme
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract

    This dataset was derived by the Bioregional Assessment Programme from the

    GABATLAS - Cadna-Owie-Hooray Aquifer and Equivalents - Thickness and Extent (GUID: bc55589c-1c6f-47ba-a1ac-f81b0151c630), GABATLAS - Adori-Springbok Aquifer - Thickness and Extent (GUID: 6df0da09-5e9f-4656-b2f8-b87e5dbfde92), GABATLAS - Birkhead-Walloon Aquitard - Thickness and Extent (GUID: a5912292-10cd-42e2-aefe-49aae2eead4b), GABATLAS - Hutton Aquifer and Equivalents - Thickness and Extent (GUID: 97def8b6-2c88-41cf-b77a-3433dfdc4470), GABATLAS - Evergreen-Poolowanna Aquitard and Equivalents - Thickness and Extent (GUID: b9c0d451-e7f0-4810-95eb-51fa6d9f552b), GABATLAS - Precipice Aquifer & Equivalents - Thickness and Extent (GUID: aeeead0e-9637-4f6f-b870-df4bc66dc81c) and GABATLAS - Rolling Downs Aquitard - Thickness and Extent (GUID: 0c4f0e0e-2d1d-4dee-9a57-36ecdd1d9a1f) datasets. You can find a link to the parent datasets in the Lineage Field in this metadata statement. The History Field in this metadata statement describes how this dataset was derived.

    Cartographic masks for map products COO 113, used to enable clear annotation in report maps by masking unwanted features and the area outside of the Great Artesian Basin from.

    Purpose

    To enable clear annotation in report maps for product COO 1.1.3, by masking unwanted features and the area outside of the Great Artesian Basin from.

    Dataset History

    Hydrogeology formation polygon extents from the GABATLAS - Cadna-owie-Hooray Aquifer and Equivalents - Thickness and Extent (GUID: bc55589c-1c6f-47ba-a1ac-f81b0151c630), GABATLAS - Adori-Springbok Aquifer - Thickness and Extent (GUID: 6df0da09-5e9f-4656-b2f8-b87e5dbfde92), GABATLAS - Birkhead-Walloon Aquitard - Thickness and Extent (GUID: a5912292-10cd-42e2-aefe-49aae2eead4b), GABATLAS - Hutton Aquifer and Equivalents - Thickness and Extent (GUID: 97def8b6-2c88-41cf-b77a-3433dfdc4470), GABATLAS - Evergreen-Poolowanna Aquitard and Equivalents - Thickness and Extent (GUID: b9c0d451-e7f0-4810-95eb-51fa6d9f552b), GABATLAS - Precipice Aquifer & Equivalents - Thickness and Extent (GUID: aeeead0e-9637-4f6f-b870-df4bc66dc81c) and GABATLAS - Rolling Downs Aquitard - Thickness and Extent (GUID: 0c4f0e0e-2d1d-4dee-9a57-36ecdd1d9a1f) datasets were merged together. This merged output was then clipped from a rectangular polygon with an arbitrary extent of:

    Degrees:

    North - 4.59227640453251

    West - 115.709908155637

    East - 172.674204635436

    South - -50.431469899816

    Annotation masks were created using the 'Features Outline Masks (Cartography)' tool on annotation layers (labels) within ArcMap.

    Dataset Citation

    Bioregional Assessment Programme (2015) Cartographic masks for map products COO 113. Bioregional Assessment Derived Dataset. Viewed 27 November 2017, http://data.bioregionalassessments.gov.au/dataset/3222f91a-25c4-4cc8-a418-8425485d87d0.

    Dataset Ancestors

  14. d

    Data from: California State Waters Map Series--Offshore of Santa Cruz Web...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). California State Waters Map Series--Offshore of Santa Cruz Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-offshore-of-santa-cruz-web-services
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Santa Cruz, California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Santa Cruz map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Santa Cruz map area data layers. Data layers are symbolized as shown on the associated map sheets.

  15. a

    How to Smart Map: Color & Size

    • hub.arcgis.com
    • schoolboard-esrica-k12admin.hub.arcgis.com
    Updated Mar 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2017). How to Smart Map: Color & Size [Dataset]. https://hub.arcgis.com/items/cc8ed7ffcd5a4e329cdc552d6856abe4
    Explore at:
    Dataset updated
    Mar 1, 2017
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Description

    This story map explains how to use two attributes to make a map using both color and size using the smart mapping capability within ArcGIS Online and ArcGIS Enterprise. You can easily select two attributes, and one will be shown in your map using color, while the other will be used to represent size. This mapping technique can help to show relationships you might not have known existed. This method can also help turn multiple maps into a single map to share with others. This story map walks you through multiple examples, which can help get you started with smart mapping color and size.

  16. 3D Map System Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). 3D Map System Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-3d-map-system-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Dec 3, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    3D Map System Market Outlook



    The global 3D map system market size was valued at approximately $4.2 billion in 2023 and is projected to reach around $11.3 billion by 2032, growing at a robust CAGR of 11.5% during the forecast period. The increasing demand for advanced mapping solutions across various sectors such as automotive, urban planning, and infrastructure development is a significant growth factor propelling this market. The adoption of 3D maps, driven by technological advancements and the need for precise spatial data, is transforming how industries manage and utilize geospatial information.



    One of the primary growth factors of the 3D map system market is the burgeoning demand within the automotive industry. The rise of autonomous and connected vehicles relies heavily on high-precision 3D mapping systems to ensure safety and efficiency. As vehicles become increasingly sophisticated, the need for accurate terrain and environmental data becomes paramount, driving the integration of these systems into modern automobiles. Additionally, the evolution of smart cities and infrastructure projects around the globe has necessitated the use of 3D maps for planning and management, further fueling market growth.



    The aerospace and defense sectors are also major proponents of 3D map systems, utilizing them for navigation, simulation, and mission planning. The accuracy and detailed visualization provided by these maps are indispensable in military applications, where precise terrain understanding can critically impact operations and strategy development. Furthermore, the expansion of drone technology has increased the demand for 3D mapping solutions, as these aerial vehicles increasingly rely on detailed geospatial data to perform a variety of tasks ranging from surveillance to environmental monitoring.



    In urban planning, the use of 3D mapping systems has gained significant traction due to their ability to provide a comprehensive view of urban landscapes, aiding in efficient planning and decision-making. These systems enable planners to visualize and simulate different developmental scenarios, assessing their impact on the environment and city infrastructure. Such capabilities are invaluable in developing sustainable urban areas that can accommodate growing populations while minimizing ecological footprints. Moreover, as environmental concerns and regulatory pressures increase, the use of 3D maps is becoming more prevalent in infrastructure planning and development.



    Regionally, North America dominates the 3D map system market, driven by technological innovation and high adoption rates across various industries. The presence of key market players and substantial investment in research and development further bolster the region's dominance. Meanwhile, the Asia Pacific is experiencing the fastest growth, attributed to rapid urbanization and infrastructure development, particularly in countries like China and India. The implementation of smart city initiatives and the expansion of automotive and defense sectors are significant factors contributing to the region's market expansion.



    Component Analysis



    The component segment of the 3D map system market is subdivided into software, hardware, and services, each playing a pivotal role in the overall functionality and utilization of 3D mapping technologies. Software components are at the core of the 3D map system market, offering essential functionalities for creating, editing, and managing 3D spatial data. The demand for sophisticated software solutions is rising as users seek advanced features such as real-time data processing, analytics, and augmented reality integration. These software solutions enable various applications, from navigation and simulation to geospatial data analysis, making them indispensable across multiple industries.



    Hardware components include the physical devices and infrastructure required to capture, store, and process 3D mapping data. This includes GPS devices, LiDAR systems, and high-resolution cameras, which are critical for accurate data acquisition. The hardware segment is experiencing growth due to technological advances that enhance data capture accuracy and efficiency. The integration of artificial intelligence and machine learning with hardware components further improves the capability of 3D mapping systems, enabling automated data processing and real-time applications.



    The services component encompasses the various support and maintenance services essential for the optimal functioning of 3D map systems. These services include system integration,

  17. TMS of Raster Cartography of Spain

    • data.europa.eu
    wms
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centro Nacional de Información Geográfica (CNIG), TMS of Raster Cartography of Spain [Dataset]. https://data.europa.eu/data/datasets/spaigntms_mapa-raster?locale=en
    Explore at:
    wmsAvailable download formats
    Dataset provided by
    Centro Nacional de Información Geográfica
    Authors
    Centro Nacional de Información Geográfica (CNIG)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Spain
    Description

    TMS (Tile Map Service) of IGN raster mapping at different scales. The Map of Spain is published at scale 1:2,000,000 up to a resolution of 420 m/pixel. The Map of Spain at scale 1:1,250,000 up to a resolution of 238 m/pixel. The Map of Spain at scale 1:500,000 up to a resolution of 140.28 m/pixel. The Provincial Map at 1:200,000 scale up to a resolution of 14.28 m/pixel. The National Topographic Map at 1:50,000 scale up to a resolution of 7.56 m/pixel. The National Topographic Map at 1:25,000 scale from a resolution of 7.56 m/pixel and the National Topographic Map High Resolution from a resolution of 1.4 m/pixel. It is considered a standard pixel size of 0.28 mm. Background layer made from GEBCO Compilation Group (2021) GEBCO 2021 Grid (doi:10.5285/a29c5465-b138-234d-e053-6c86abc040b9).

  18. Data from: Evaluating the usability of 3D thematic maps; a survey with...

    • figshare.com
    7z
    Updated Jan 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eleni Tomai; Margarita Kokla (2022). Evaluating the usability of 3D thematic maps; a survey with visually impaired students [Dataset]. http://doi.org/10.6084/m9.figshare.16884724.v3
    Explore at:
    7zAvailable download formats
    Dataset updated
    Jan 18, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Eleni Tomai; Margarita Kokla
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The documents included in this dataset provide information on:a) personal questions given to survey participants (DemographicsQuestionnaire.pdf)b) spatial questions given to participants (SpatialQuestions.pdf)c) the adapted SUS questionnaire (MapUsabilityScale.pdf)d) The dataset of collected participants responses, in the form of a zip archive (3D_printed_map.7z). e) a document with brief guidelines for conducting the survey (Guidelines.docx).f) Finally, the R script (experiment.R) to run the statistical analysis detailed in the paper and to generate Tables 1-4 and the contents of Figure 9 are also included. The R script needs calling the above-mentioned dataset of participants' responses (d), to run effectively.

  19. a

    Alaska Digital Atlas web map

    • noaa.hub.arcgis.com
    Updated Jan 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2020). Alaska Digital Atlas web map [Dataset]. https://noaa.hub.arcgis.com/maps/ab13fb57761a447f95928ba20e503929
    Explore at:
    Dataset updated
    Jan 15, 2020
    Dataset authored and provided by
    NOAA GeoPlatform
    Area covered
    Description

    Welcome to the Alaska Deep-Sea Coral Initiative (ADSCI) Digital Atlas, an interactive, online map designed to let partners explore readily-available seafloor mapping and deep-sea coral and sponge data offshore of Alaska. This viewer will be used by ADSCI participants to help identify priorities for seafloor mapping and visual surveys offshore Alaska during a workshop in 2020. These priorities will enable participating organizations to more effectively coordinate assets, and efficiently guide future seafloor mapping, research, and exploration activities during the ADSCI field campaigns in FY21-22. This work is funded by NOAA’s Deep Sea Coral Research and Technology Program (DSCRTP).

    For more information on this initiative, please see NOAA’s Deep-sea Coral Research and Technology website.

  20. d

    Google Address Data, Google Address API, Google location API, Google Map...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    APISCRAPY, Google Address Data, Google Address API, Google location API, Google Map API, Business Location Data- 100 M Google Address Data Available [Dataset]. https://datarade.ai/data-products/google-address-data-google-address-api-google-location-api-apiscrapy
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset authored and provided by
    APISCRAPY
    Area covered
    Moldova (Republic of), Åland Islands, China, Luxembourg, Estonia, Monaco, United Kingdom, Liechtenstein, Andorra, Spain
    Description

    Welcome to Apiscrapy, your ultimate destination for comprehensive location-based intelligence. As an AI-driven web scraping and automation platform, Apiscrapy excels in converting raw web data into polished, ready-to-use data APIs. With a unique capability to collect Google Address Data, Google Address API, Google Location API, Google Map, and Google Location Data with 100% accuracy, we redefine possibilities in location intelligence.

    Key Features:

    Unparalleled Data Variety: Apiscrapy offers a diverse range of address-related datasets, including Google Address Data and Google Location Data. Whether you seek B2B address data or detailed insights for various industries, we cover it all.

    Integration with Google Address API: Seamlessly integrate our datasets with the powerful Google Address API. This collaboration ensures not just accessibility but a robust combination that amplifies the precision of your location-based insights.

    Business Location Precision: Experience a new level of precision in business decision-making with our address data. Apiscrapy delivers accurate and up-to-date business locations, enhancing your strategic planning and expansion efforts.

    Tailored B2B Marketing: Customize your B2B marketing strategies with precision using our detailed B2B address data. Target specific geographic areas, refine your approach, and maximize the impact of your marketing efforts.

    Use Cases:

    Location-Based Services: Companies use Google Address Data to provide location-based services such as navigation, local search, and location-aware advertisements.

    Logistics and Transportation: Logistics companies utilize Google Address Data for route optimization, fleet management, and delivery tracking.

    E-commerce: Online retailers integrate address autocomplete features powered by Google Address Data to simplify the checkout process and ensure accurate delivery addresses.

    Real Estate: Real estate agents and property websites leverage Google Address Data to provide accurate property listings, neighborhood information, and proximity to amenities.

    Urban Planning and Development: City planners and developers utilize Google Address Data to analyze population density, traffic patterns, and infrastructure needs for urban planning and development projects.

    Market Analysis: Businesses use Google Address Data for market analysis, including identifying target demographics, analyzing competitor locations, and selecting optimal locations for new stores or offices.

    Geographic Information Systems (GIS): GIS professionals use Google Address Data as a foundational layer for mapping and spatial analysis in fields such as environmental science, public health, and natural resource management.

    Government Services: Government agencies utilize Google Address Data for census enumeration, voter registration, tax assessment, and planning public infrastructure projects.

    Tourism and Hospitality: Travel agencies, hotels, and tourism websites incorporate Google Address Data to provide location-based recommendations, itinerary planning, and booking services for travelers.

    Discover the difference with Apiscrapy – where accuracy meets diversity in address-related datasets, including Google Address Data, Google Address API, Google Location API, and more. Redefine your approach to location intelligence and make data-driven decisions with confidence. Revolutionize your business strategies today!

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Kérmez, Dr. José Sarukhán (2014). CONABIO Metadata and Digital Map Library of Mexico [Dataset]. https://search.dataone.org/view/CONABIO_Metadata_and_Digital_Map_Library_of_Mexico.xml

CONABIO Metadata and Digital Map Library of Mexico

Explore at:
Dataset updated
Nov 17, 2014
Dataset provided by
Regional and Global Biogeochemical Dynamics Data (RGD)
Authors
Kérmez, Dr. José Sarukhán
Time period covered
Jan 1, 1999
Area covered
Description

CONABIO provides online cartography through cartographic metadata distributed following the guidelines in the Standards for Digital Geospatial Metadata of FGDC-NBII (Federal Geographic Data Committee – National Biological Information Infrastructure), 1996. The cartographic information is queried through a database that is organized based on themes (biotic, physical and social aspects, regionalization and others), scales, and geographic area. The metadata content is presented as basic information, reports of the information (methodology) and spatial data information. The cartography is available online at no charge in distinct formats like: export file for Arc/Info (.E00) and shape file (ESRI), and DXF (Drawing eXchange Format). Maps is presented in cartographic projections: Lambert Conic Conformal, UTM and geographic coordinates system. GIF format of map images can be obtained as well.

Search
Clear search
Close search
Google apps
Main menu