Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Participants in this course will learn about remote sensing of wildfires from instructors at the University of Alaska Fairbanks, located in one of the world’s most active wildfire zones. Students will learn about wildfire behavior, and get hands-on experience with tools and resources used by professionals to create geospatial maps that support firefighters on the ground. Upon completion, students will be able to: Access web resources that provide near real-time updates on active wildfires, Navigate databases of remote sensing imagery and data, Analyze geospatial data to detect fire hot spots, map burn areas, and assess severity, Process image and GIS data in open source tools like QGIS and Google Earth Engine.
CONABIO provides online cartography through cartographic metadata distributed following the guidelines in the Standards for Digital Geospatial Metadata of FGDC-NBII (Federal Geographic Data Committee – National Biological Information Infrastructure), 1996. The cartographic information is queried through a database that is organized based on themes (biotic, physical and social aspects, regionalization and others), scales, and geographic area. The metadata content is presented as basic information, reports of the information (methodology) and spatial data information. The cartography is available online at no charge in distinct formats like: export file for Arc/Info (.E00) and shape file (ESRI), and DXF (Drawing eXchange Format). Maps is presented in cartographic projections: Lambert Conic Conformal, UTM and geographic coordinates system. GIF format of map images can be obtained as well.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
Bucknell's summer 2015 "New Orleans in 12 Movements" course aims to help students view New Orleans' natural environment, built infrastructure, and human experience in an integrated way. The course is co-taught by faculty from 3 departments and includes a week of field work in New Orleans. In this course, students will develop an integrated, holistic understanding of how the city of New Orleans has evolved over time. To support this learning, students have been provided an ArcGIS Online web-based map containing key cultural and historic information about New Orleans selected by their instructors. This interactive tool will enable them to explore New Orleans’ natural environment, built infrastructure and human experience through a variety of lenses. Faculty will use the map to deliver presentations and course materials to students. Students will use their own copy of the map to take notes, complete and deliver course assignments, and add their own materials to the course collection. Link to ArcGIS Online resource guide for class: click hereLink to data dictionary for NOLA class map layers: click hereLink to class website/blog: click here
The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
This webmap is a subset of Global Landcover 1992 - 2020 Image Layer. You can access the source data from here. This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies
Sixty-seven maps from Indian Land Cessions in the United States, compiled by Charles C. Royce and published as the second part of the two-part Eighteenth Annual Report of the Bureau of American Ethnology to the Secretary of the Smithsonian Institution, 1896-1897 have been scanned, georeferenced in JPEG2000 format, and digitized to create this feature class of cession maps. The mapped cessions and reservations included in the 67 maps correspond to entries in the Schedule of Indian Land Cessions, indicating the number and location of each cession by or reservation for the Indian tribes from the organization of the Federal Government to and including 1894, together with descriptions of the tracts so ceded or reserved, the date of the treaty, law or executive order governing the same, the name of the tribe or tribes affected thereby, and historical data and references bearing thereon, as set forth in the subtitle of the Schedule. Go to this URL for full metadata: https://data.fs.usda.gov/geodata/edw/edw_resources/meta/S_USA.TRIBALCEDEDLANDS.xml Each Royce map was georeferenced against one or more of the following USGS 1:2,000,000 National Atlas Feature Classes contained in \NatlAtlas_USGS.gdb: cities_2mm, hydro_ln_2mm, hydro_pl_2mm, plss_2mm, states_2mm. Cessions were digitized as a file geodatabase (GDB) polygon feature class, projected as NAD83 USA_Contiguous_Lambert_Conformal_Conic, which is the same projection used to georeference the maps. The feature class was later reprojected to WGS 1984 Web Mercator (auxiliary sphere) to optimize it for the Tribal Connections Map Viewer. Polygon boundaries were digitized as to not deviate from the drawn polygon edge to the extent that space could be seen between the digitized polygon and the mapped polygon at a viewable scale. Topology was maintained between coincident edges of adjacent polygons. The cession map number assigned by Royce was entered into the feature class as a field attribute. The Map Cession ID serves as the link referencing relationship classes and joining additional attribute information to 752 polygon features, to include the following: 1. Data transcribed from Royce's Schedule of Indian Land Cessions: a. Date(s), in the case of treaties, the date the treaty was signed, not the date of the proclamation; b. Tribe(s), the tribal name(s) used in the treaty and/or the Schedule; and c. Map Name(s), the name of the map(s) on which a cession number appears; 2. URLs for the corresponding entry in the Schedule of Indian Land Cessions (Internet Archive) for each unique combination of a Date and reference to a Map Cession ID (historical references in the Schedule are included); 3. URLs for the corresponding treaty text, including the treaties catalogued by Charles J. Kappler in Indian Affairs: Laws and Treaties (HathiTrust Digital Library), executive order or other federal statute (Library of Congress and University of Georgia) identified in each entry with a reference to a Map Cession ID or IDs; 4. URLs for the image of the Royce map(s) (Library of Congress) on which a given cession number appears; 5. The name(s) of the Indian tribe or tribes related to each mapped cession, including the name as it appeared in the Schedule or the corresponding primary text, as well as the name of the present-day Indian tribe or tribes; and 6. The present-day states and counties included wholly or partially within a Map Cession boundary. During the 2017-2018 revision of the attribute data, it was noted that 7 of the Cession Map IDs are missing spatial representation in the Feature Class. The missing data is associated with the following Cession Map IDs: 47 (Illinois 1), 65 (Tennessee and Bordering States), 128 (Georgia), 129 (Georgia), 130 (Georgia), 543 (Indian Territory 3), and 690 (Iowa 2), which will be updated in the future. This dataset revises and expands the dataset published in 2015 by the U.S. Forest Service and made available through the Tribal Connections viewer, the Forest Service Geodata Clearinghouse, and Data.gov. The 2018 dataset is a result of collaboration between the Department of Agriculture, U.S. Forest Service, Office of Tribal Relations (OTR); the Department of the Interior, National Park Service, National NAGPRA Program; the U.S. Environmental Protection Agency, Office of International and Tribal Affairs, American Indian Environmental Office; and Dr. Claudio Saunt of the University of Georgia. The Forest Service and Dr. Saunt independently digitized and georeferenced the Royce cession maps and developed online map viewers to display Native American land cessions and reservations. Dr. Saunt subsequently undertook additional research to link Schedule entries, treaty texts, federal statutes and executive orders to cession and reservation polygons, which he agreed to share with the U.S. Forest Service. OTR revised the data, linking the Schedule entries, treaty texts, federal statues and executive orders to all 1,172 entries in the attribute table. The 2018 dataset has incorporated data made available by the National NAGPRA Program, specifically the Indian tribe or tribes related to each mapped cession, including the name as it appeared in the Schedule or the corresponding primary text and the name of the present-day Indian tribe or tribes, as well as the present-day states and counties included wholly or partially within a Map Cession boundary. This data replaces in its entirety the National NAGPRA data included in the dataset published in 2015. The 2015 dataset incorporated data presented in state tables compiled from the Schedule of Indian Land Cessions by the National NAGPRA Program. In recent years the National NAGPRA Program has been working to ensure the accuracy of this data, including the reevaluation of the present-day Indian tribes and the provision of references for their determinations. Changes made by the OTR have not been reviewed or approved by the National NAGPRA Program. The Forest Service will continue to collaborate with other federal agencies and work to improve the accuracy of the data included in this dataset. Errors identified since the dataset was published in 2015 have been corrected, and we request that you notify us of any additional errors we may have missed or that have been introduced. Please contact Rebecca Hill, Policy Analyst, U.S. Forest Service, Office of Tribal Relations, at rebeccahill@fs.usda.gov with any questions or concerns with regard to the data included in this dataset.
This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years since 1992. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2019Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: AnnualWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.CitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc
This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meter Source Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary Sphere Extent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer? This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro. In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend. To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth. Different Classifications Available to Map Five processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display. Using Time By default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year. In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change. Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009. This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover. Land Cover Processing To provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015. Source data The datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.php CitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%) 50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies
This reference contains the imagery data used in the completion of the baseline vegetation inventory project for the NPS park unit. Orthophotos, raw imagery, and scanned aerial photos are common files held here. Remotely-sensed imagery provides the foundation for mapping vegetation types and other land cover classes. Imagery taken by the GeoEye-1 satellite/sensor was acquired from LandInfo Worldwide Mapping, LLC. The product was delivered as bundled 50 cm panchromatic and 2 meter 4-band multispectral (R, G, B, and NIR) images. The imagery has a positional accuracy of <3 m. Specifications for the GeoEye acquisition included the following: Total area for new collection of 372 square kilometers, 10% or less cloud cover , 0-20 off-nadir angle guarantee, Acquisition dates between late May and late June, 2011 Imagery satisfying the requirements was successfully acquired for the BICA project area on June 15, 2011 and delivered to CSU in July 2011. Each image was delivered as a geo-referenced product mosaicked as a single scene/image. We created a 50 cm resolution pan-sharpened set of multispectral bands to use for interpretation of vegetation. The acquisition provided 4-band imagery during the peak growing season. Additional imagery supplementing interpretation included 30 cm true-color Google Earth/Bing imagery imported to ArcGIS using Arc2Earth™ software and older true-color imagery viewed using the Google Earth online viewer.
Landforms are large recognizable features such as mountains, hills and plains; they are an important determinant of ecological character, habitat definition and terrain analysis. Landforms are important to the distribution of life in natural systems and are the basis for opportunities in built systems, and therefore landforms play a useful role in all natural science fields of study and planning disciplines.Dataset SummaryPhenomenon Mapped: LandformsUnits: MetersCell Size: 231.91560581932 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: EsriPublication Date: May 2016ArcGIS Server URL: https://landscape7.arcgis.com/arcgis/In February 2017, Esri updated the World Landforms - Improved Hammond Method service with two display functions: Ecological Land Units landform classes and Ecological Facets landform classes. This layer represents Ecological Facets landform classes. You can view the Ecological Land Units landform classes by choosing Image Display, and changing the Renderer. This layer was produced using the Improved Hammond Landform Classification Algorithm produced by Esri in 2016. This algorithm published and described by Karagulle et al. 2017: Modeling global Hammond landform regions from 250-m elevation data in Transactions in GIS.The algorithm, which is based on the most recent work in this area by Morgan, J. & Lesh, A. 2005: Developing Landform Maps Using Esri’s Model Builder., Esri converted Morgan’s model into a Python script and revised it to work on global 250-meter resolution GMTED2010 elevation data. Hammond’s landform classification characterizes regions rather than identifying individual features, thus, this layer contains sixteen classes of landforms:Nearly flat plainsSmooth plains with some local reliefIrregular plains with moderate relief Irregular plains with low hillsScattered moderate hillsScattered high hillsScattered low mountainsScattered high mountainsModerate hillsHigh hills Tablelands with moderate reliefTablelands with considerable reliefTablelands with high relief Tablelands with very high relief Low mountainsHigh mountainsTo produce these classes, Esri staff first projected the 250-meter resolution GMTED elevation data to the World Equidistant Cylindrical coordinate system. Each cell in this dataset was assigned three characteristics: slope based on 3-km neighborhood, relief based on 6 km neighborhood, and profile based on 6-km neighborhood. The last step was to overlay the combination of these three characteristics with areas that are exclusively plains. Slope is the percentage of the 3-km neighborhood occupied by gentle slope. Hammond specified 8% as the threshold for gentle slope. Slope is used to define how flat or steep the terrain is. Slope was classified into one of four classes:
Percent of neighborhood over 8% of slope
Slope Classes
0 - 20%
400
21% -50%
300
51% - 80%
200
81%
100
Local Relief is the difference between the maximum and minimum elevation within in the 6-km neighborhood. Local relief is used to define terrain how rugged or the complexity of the terrain's texture. Relief was assigned one of six classes:
Change in elevation
Relief Class ID
0 – 30 meters
10
31 meter – 90 meters
20
91 meter – 150 meters
30
151 meter – 300 meters
40
301 meter – 900 meters
50
900 meters
60
The combination of slope and relief begin to define terrain as mountains, hills and plains. However, the difference between mountains or hills and tablelands cannot be distinguished using only these parameters. Profile is used to determine tableland areas. Profile identifies neighborhoods with upland and lowland areas, and calculates the percent area of gently sloping terrain within those upland and lowland areas. A 6-km circular neighborhood was used to calculate the profile parameter. Upland/lowland is determined by the difference between average local relief and elevation. In the 6-km neighborhood window, if the difference between maximum elevation and cell’s elevation is smaller than half of the local relief it’s an upland. If the difference between maximum elevation and cell’s elevation is larger than half of the local relief it’s a lowland. Profile was assigned one of five classes:
Percent of neighborhood over 8% slope in upland or lowland areas
Profile Class
Less than 50% gentle slope is in upland or lowland
0
More than 75% of gentle slope is in lowland
1
50%-75% of gentle slope is in lowland
2
50-75% of gentle slope is in upland
3
More than 75% of gentle slope is in upland
4
Early reviewers of the resulting classes noted one confusing outcome, which was that areas were classified as "plains with low mountains", or "plains with hills" were often mostly plains, and the hills or mountains were part of an adjacent set of exclusively identified hills or mountains. To address this areas that are exclusively plains were produced, and used to override these confusing areas. The hills and mountains within those areas were converted to their respective landform class.The combination of slope, relief and profile merged with the areas of plains, can be better understood using the following diagram, which uses the colors in this layer to show which classes are present and what parameter values produced them:What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations. Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals. Data from thegSSURGO databasewas used to create this layer. To download ready-to-use project packages of useful soil data derived from the SSURGO dataset, please visit the USA SSURGO Downloader app. Dataset Summary Phenomenon Mapped:Soils of the United States and associated territoriesGeographic Extent:The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaCoordinate System:Web Mercator Auxiliary SphereVisible Scale:1:144,000 to 1:1,000Source:USDA Natural Resources Conservation Service Update Frequency:AnnualPublication Date:December 2024 What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS Online Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:144,000 or larger but avector tile layercreated from the same data can be used at smaller scales to produce awebmapthat displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter forFarmland Class= "All areas are prime farmland" to create a map of only prime farmland.Add labels and set their propertiesCustomize the pop-upArcGIS Pro Add this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of theLiving Atlas of the Worldthat provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics. Data DictionaryAttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them. Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units. Area SymbolSpatial VersionMap Unit Symbol Map Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field. Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability Rating Legend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field. Project Scale Survey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields. Survey Area VersionTabular Version Map Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field. Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - Presence Rating for Manure and Food Processing Waste - Weighted Average Component Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected. Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent Key Component Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r). Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence -
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
WSDOT template for Esri file geodatabase polygon feature class. Template has pre-defined attribute schema to help users create data that is more consistent or compliant with agency standards. Metadata has been created using the FGDC metadata style but stored in the ArcGIS format. Content presentation will change upon export to FGDC format.This service is maintained by the WSDOT Transportation Data, GIS & Modeling Office. If you are having trouble viewing the service, please contact Online Map Support at onlinemapsupport@wsdot.wa.gov.
The description of the chemistry, mineral composition, and physical properties of rocks is known as lithology. The study of lithology can yield valuable insights into the formation and productivity of soils, agricultural suitability, the movement of water, and other important properties of the environment that are influenced by underlying rock type.Dataset SummaryThe data for this layer comes from the Global Lithological map (GLiM). Esri obtained the data in late 2013 and rasterized it at 250m resolution to produce the data in this layer. The basis for lithological types in this layer was the Level1 field value in the GLiM attribute data, which contained these potential values (see below for index of values and Lithology Classes):Unconsolidated SedimentCarbonate Sedimentary RocksMixed Sedimentary RocksSiliclastic Sedimentary RocksEvaporitesPyroclasticMetamorphic RockAcid PlutonicsIntermediate PlutonicsBasic PlutonicsAcid VolcanicsIntermediate VolcanicsBasic VolcanicsIce and GlaciersWater BodiesNo DataThe GLiM represents the rock types of the Earth surface with 1,235,400 polygons that were characterized by the authors as being of an average mapping scale of 1:3,750,000 and over 100 times more detailed than previous global lithological maps.The recommended citation for source data is:Hartmann, Jörg; Moosdorf, Nils (2012): Global Lithological Map Database v1.0 (gridded to 0.5° spatial resolution). doi:10.1594/PANGAEA.788537,Supplement to: Hartmann, Jens; Moosdorf, Nils (2012): The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochemistry, Geophysics, Geosystems, 13, Q12004, doi:10.1029/2012GC004370This layer is part of the Ecophysiographic Project and is one of the four input layers used to create the World Ecological Land Units Map.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. The source data for this layer are available here.A service is available providing access to the data table associated with this layer. The data table services can be used by developers to quickly and efficiently query the data and to create custom applications. For more information see the World Ecophysiographic Tables.Value,EF Lithology Class,ELU Lithology Class1,Unconsolidated Sediment,Unconsolidated Sediment2,Siliciclastic Sedimentary Rock,Non-Carbonate Sedimentary Rock3,Pyroclastics,Pyroclastics4,Mixed Sedimentary Rock,Mixed Sedimentary Rock5,Carbonate Sedimentary Rock,Carbonate Sedimentary Rock6,Evaporite,Evaporite7,Acid Volcanic,Acidic Volcanics8,Intermediate Volcanics,Non-Acidic Volcanics9,Basic Volcanics,Non-Acidic Volcanics10,Acid Plutonics,Acidic Plutonics11,Intermediate Plutonics,Non-Acidic Plutonics12,Basic Plutonics,Non-Acidic Plutonics13,Metamorphics,Metamorphic Rock14,Unconsolidated Sediment,Unconsolidated Sediment15,Ice and Glaciers,Ice and Glaciers16,Non-defined,Non-Defined
This data set contains information on the agricultural land use in Germany for the year 2020.
The map was derived from dense time series of Sentinel-2 and Landsat 8 data, Sentinel-1 monthly composites and addtional environmental data. It is based on the methods described in Blickensdörfer et al. 2022 and can be seen as a continuation of the dataset provided under: https://zenodo.org/record/5153047#.YWFyXn1CREZ.
The maps can be explored online in a webviewer.
Due to specific user needs the class catalogue was slightly modified but a translation key (Table 1) and a translated map version (*_V1.tif) is provided. However, it has to be noted that some rather small classes in the previous maps were not differentiated anymore (e.g., onions, carrots, asparagus).Thus, the classes 34, 43, 92, 130, 140, 181 and 182 were excluded from the raster and legend files.
Table 1: Updated class catalogue and translation key to the class catalogue used in Blickensdörfer et al. 2022.
New class code (V2) |
Class name (V2) |
Class code (V1) |
Class name (V1) |
1101 |
Winter wheat |
31 |
Winter wheat |
|
|
34 |
Other winter cereals |
1102 |
Winter barley |
33 |
Winter barley |
1103 |
Winter rye |
32 |
Winter rye |
1201 |
Spring barley |
41 |
Spring barley |
43 |
Other spring cereals | ||
1202 |
Oat |
42 |
Spring oat |
1300 |
Maize |
91 |
Maize (silage) |
92 |
Maize (grain) | ||
1401 |
Potatoe |
100 |
Potatoe |
1402 |
Sugar beet |
80 |
Sugar beet |
1501 |
Rapeseed |
50 |
Winter rapeseed |
1502 |
Sunflower |
70 |
Sunflower |
1611 |
Peas |
60 |
Legume |
1612 |
Broad beans | ||
1613 |
Lupine | ||
1614 |
Soy | ||
1603 |
Vegetables |
120 |
Strawberry |
130 |
Asparagus | ||
140 |
Onion | ||
181 |
Carrot | ||
182 |
Other leafy vegetables | ||
1602 |
Cultivated grassland |
10 |
Grassland |
200 |
Permanent grassland | ||
3003 |
Fallow land | ||
3001 |
Small woody features |
555 |
Small woody features |
3002 |
Other areas |
999 |
Other agricultural areas |
4001 |
Grapevine |
110 |
Grapevine |
4002 |
Hops |
150 |
Hops |
4003 |
Orchard |
160 |
Orchards |
All optical satellite data were downloaded, pre-processed and structured in an analysis-ready data (ARD) cube using the open-source software FORCE - Framework for Operational Radiometric Correction for Environmental monitoring (Frantz, D., 2019; https://force-eo.readthedocs.io/en/latest/ last accessed: 12. April 2022), before environmental and SAR data were included in the ARD cube.
The models were trained in FORCE and applied to all areas in Germany that were defined as agricultural land, small woody features, heathland or peatland in ATKIS DLM 2020 (Geobasisdaten: © GeoBasis-DE / BKG (2020)). Post-processing of the final maps included applying a sieve filter, the exclusion of classes other than grasslands and small woody features above 900 m (based on the Digital Elevation Model for Germany BKG (2015)) and the exclusion of grapevine and hops areas that were not labelled as the respective permanent crop in ATKIS DLM (BKG (2020); labelled as other agricultural areas in the final map).
The maps are provided as GeoTiff files together with QGIS legend files for visualization.
References:
Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., & Hostert, P. (2022). Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment, 269, 112831
BKG, Bundesamt für Kartographie und Geodäsie (2015). Digitales Geländemodell Gitterweite 10 m. DGM10. https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/dgm10.pdf (last accessed: 28. April 2022).
BKG, Bundesamt für Kartographie und Geodäsie (2018). Digitales Basis-Landschaftsmodell.
https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/basis-dlm.pdf (last accessed: 28. April 2022).
Frantz, D. (2019). FORCE—Landsat + Sentinel-2 Analysis Ready Data and Beyond. Remote Sensing, 11, 1124.
National-scale crop type maps for Germany © 2022 by Schwieder, Marcel; Erasmi, Stefan; Nendel, Claas; Hostert, Patrick is licensed under CC BY 4.0.
This topographic map is designed to be used as a basemap and a reference map. The map has been compiled by Esri and the ArcGIS user community from a variety of best available sources. The map is intended to support the ArcGIS Online basemap gallery. For more details on the map, please visit the World Topographic Map service description.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This map provides a guide to the data confidence of DPIE's soil related thematic map products in NSW. Examples of products this map supports includes Land and Soil Capability mapping, Inherent fertility of soils in NSW and Great Soil Group soil types in NSW.
Confidence classes are determined based on the data scale, type of mapping and information collected, accuracy of the attributes and quality assurance on the product.
Soil data confidence is described using a 4 class system between high and very low as outlined below.:
Good (1) - All necessary soil and landscape data is available at a catchment scale (1:100,000 & 1:250,000) to undertake the assessment of LSC and other soil thematic maps.
Moderate (2) - Most soil and landscape data is available at a catchment scale (1:100,000 - 1:250,000) to undertake the assessment of LSC and other soil thematic maps.
Low (3) - Limited soil and landscape data is available at a reconnaissance catchment scale (1:100,000 & 1:250,000) which limits the quality of the assessment of LSC and other soil thematic maps.
Very low (4) - Very limited soil and landscape data is available at a broad catchment scale (1:250,000 - 1:500,000) and the LSC and other soil thematic maps should be used as a guide only.
Online Maps: This dataset can be viewed using eSPADE (NSW’s soil spatial viewer), which contains a suite of soil and landscape information including soil profile data. Many of these datasets have hot-linked soil reports. An alternative viewer is the SEED Map; an ideal way to see what other natural resources datasets (e.g. vegetation) are available for this map area.
Reference: Department of Planning, Industry and Environment, 2020, Soil Data Confidence map for NSW, Version 4, NSW Department of Planning, Industry and Environment, Parramatta.
Erosion, the loss of soil due to the effects of water and wind, can lead to serious degradation of lands and the loss of agricultural productivity.This layer classifies the amount of soil loss in the top soil layers in 5 classes:None: Area of soil deposition.Class 1: In this map unit,1 to 25 percent of the original topsoil has been lost to erosion. Class 2: In this map unit, 1 to 25 percent of the original topsoil has been lost to erosion.Class 3: In this map unit, 75 to 99 percent of the original topsoil has been lost to erosion.Class 4: In this map unit, all of the original topsoil has been lost to erosionDataset SummaryPhenomenon Mapped: Top soil loss due to erosionUnits: ClassesCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa)Mosaic Projection: Web Mercator Auxiliary SphereExtent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaSource: Natural Resources Conservation ServicePublication Date: December 2021ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/Data from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). The value for runoff is derived from the gSSURGO component table field Erosion Class (erocl). The value in this layer is the dominant condition found within the map unit.What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "erosion class" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "erosion class" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This land cover data set is derived from the original raster based Globcover regional (Africa) archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (46 classes). This database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.
The data set is intended for free public access.
The shape file's attributes contain the following fields: -Area (sqm) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)
You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend tables (.xls)
Supplemental Information:
This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp
Contact points:
Metadata Contact: FAO-Data
Resource Contact: Antonio Martucci
Data lineage:
This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based Globcover database (regional version). Globcover has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (46 classes); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).
Online resources:
PLEASE NOTE: This data product is not available in Shapefile format or KML at https://naturalengland-defra.opendata.arcgis.com/datasets/Defra::living-england-habitat-map-phase-4/about, as the data exceeds the limits of these formats. Please select an alternative download format.This data product is also available for download in multiple formats via the Defra Data Services Platform at https://environment.data.gov.uk/explore/4aa716ce-f6af-454c-8ba2-833ebc1bde96?download=true.The Living England project, led by Natural England, is a multi-year programme delivering a satellite-derived national habitat layer in support of the Environmental Land Management (ELM) System and the Natural Capital and Ecosystem Assessment (NCEA) Pilot. The project uses a machine learning approach to image classification, developed under the Defra Living Maps project (SD1705 – Kilcoyne et al., 2017). The method first clusters homogeneous areas of habitat into segments, then assigns each segment to a defined list of habitat classes using Random Forest (a machine learning algorithm). The habitat probability map displays modelled likely broad habitat classifications, trained on field surveys and earth observation data from 2021 as well as historic data layers. This map is an output from Phase IV of the Living England project, with future work in Phase V (2022-23) intending to standardise the methodology and Phase VI (2023-24) to implement the agreed standardised methods.The Living England habitat probability map will provide high-accuracy, spatially consistent data for a range of Defra policy delivery needs (e.g. 25YEP indicators and Environment Bill target reporting Natural capital accounting, Nature Strategy, ELM) as well as external users. As a probability map, it allows the extrapolation of data to areas that we do not have data. These data will also support better local and national decision making, policy development and evaluation, especially in areas where other forms of evidence are unavailable. Process Description: A number of data layers are used to inform the model to provide a habitat probability map of England. The main sources layers are Sentinel-2 and Sentinel-1 satellite data from the ESA Copericus programme. Additional datasets were incorporated into the model (as detailed below) to aid the segmentation and classification of specific habitat classes. Datasets used:Agri-Environment Higher Level Stewardship (HLS) Monitoring, British Geological Survey Bedrock Mapping 1:50k, Coastal Dune Geomatics Mapping Ground Truthing, Crop Map of England (RPA), Dark Peak Bog State Survey, Desktop Validation and Manual Points, EA Integrated Height Model 10m, EA Saltmarsh Zonation and Extent, Field Unit NEFU, Living England Collector App NEFU/EES, Long Term Monitoring Network (LTMN), Lowland Heathland Survey, National Forest Inventory (NFI), National Grassland Survey, National Plant Monitoring Scheme, NEFU Surveys, Northumberland Border Mires, OS Vector Map District , Priority Habitats Inventory (PHI) B Button, European Space Agency (ESA) Sentinel-1 and Sentinel-2 , Space2 Eye Lens: Ainsdale NNR, Space2 Eye Lens: State of the Bog Bowland Survey, Space2 Eye Lens: State of the Bog Dark Peak Condition Survey, Space2 Eye Lens: State of the Bog (MMU) Mountain Hare Habitat Survey Dark Peak, Uplands Inventory, West Pennines Designation NVC Survey, Wetland Inventories, WorldClim - Global Climate DataFull metadata can be viewed on data.gov.uk.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Participants in this course will learn about remote sensing of wildfires from instructors at the University of Alaska Fairbanks, located in one of the world’s most active wildfire zones. Students will learn about wildfire behavior, and get hands-on experience with tools and resources used by professionals to create geospatial maps that support firefighters on the ground. Upon completion, students will be able to: Access web resources that provide near real-time updates on active wildfires, Navigate databases of remote sensing imagery and data, Analyze geospatial data to detect fire hot spots, map burn areas, and assess severity, Process image and GIS data in open source tools like QGIS and Google Earth Engine.