Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Participants in this course will learn about remote sensing of wildfires from instructors at the University of Alaska Fairbanks, located in one of the world’s most active wildfire zones. Students will learn about wildfire behavior, and get hands-on experience with tools and resources used by professionals to create geospatial maps that support firefighters on the ground. Upon completion, students will be able to: Access web resources that provide near real-time updates on active wildfires, Navigate databases of remote sensing imagery and data, Analyze geospatial data to detect fire hot spots, map burn areas, and assess severity, Process image and GIS data in open source tools like QGIS and Google Earth Engine.
Facebook
TwitterBucknell's summer 2015 "New Orleans in 12 Movements" course aims to help students view New Orleans' natural environment, built infrastructure, and human experience in an integrated way. The course is co-taught by faculty from 3 departments and includes a week of field work in New Orleans. In this course, students will develop an integrated, holistic understanding of how the city of New Orleans has evolved over time. To support this learning, students have been provided an ArcGIS Online web-based map containing key cultural and historic information about New Orleans selected by their instructors. This interactive tool will enable them to explore New Orleans’ natural environment, built infrastructure and human experience through a variety of lenses. Faculty will use the map to deliver presentations and course materials to students. Students will use their own copy of the map to take notes, complete and deliver course assignments, and add their own materials to the course collection. Link to ArcGIS Online resource guide for class: click hereLink to data dictionary for NOLA class map layers: click hereLink to class website/blog: click here
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
Facebook
TwitterAll the maps in the 'Black Saturday' - The Beginning of the Blitz StoryMap have been created using the same dataset. This dataset is accessed through a Google Sheet on bombsight.org and includes fields that provide information on the order in which the bombs fell, the time they fell on September 7th, 1940, the closest address to where the bomb fell, the type of bomb, and details about the damage caused by each bomb.In these exercises, we will teach you how to create these maps and then use Story Maps to narrate the events of the first night of the Blitz using this data.An quick overview of the steps we will take today are:
Facebook
TwitterTo Digitise in ArcGIS Online you will need to Add Map Notes. Follow the following steps to digitise the area of an agricultural field:
Facebook
TwitterThe National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterYou will need an ArcGIS Online account for this lesson plan. If you do not have one, or have forgotten your details contact your institution's IT administrator. Alternatively, email highered@esriuk.com to get in touch for further assistance.
Facebook
TwitterMajor emergency efforts are being mounted for each vector-borne disease epidemiological crisis anew, while knowledge about the biology of arthropods vectors is dwindling slowly but continuously, as is the number of field entomologists. The discrepancy between the rates of production of knowledge and its use and need for solving crises is widening, in particular due to the highly differing time spans of the two concurrent processes. A worldwide web based search using multiple key words and search engines of onsite and online courses in English, Spanish, Portuguese, French, Italian and German concerned with the biology of vectors identified over 140 courses. They are geographically and thematically scattered, the vast majority of them are on-site, with very few courses using the latest massive open online course (MOOC) powerfulness. Over two third of them is given in English and Western Africa is particularity poorly represented. The taxonomic groups covered are highly unbalanced towards mosquitoes. A worldwide unique portal to guide students of all grades and levels of expertise, in particular those in remote locations, is badly needed. This is the objective a new activity supported by the Special Programme for Research and Training in Tropical Diseases (TDR).
Facebook
TwitterThis layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years since 1992. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2019Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: AnnualWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies
Facebook
TwitterWebLogis, Loudoun County's Online Mapping System. Provides access to the County’s Enterprise Geographic Information System data layers.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
View Map in ArcGIS Important: Due to the size of this dataset, this item may be slower to display. Vector tile services have been shared to the Digital Atlas of Australia to support faster national scale visualisation of larger sublayers, including Mapped Streams, Canal Lines, Water Bodies and Dams. A file geodatabase of this product is also available to download at the following link Download: Geofabric Surface Hydrology CartographyAbstractThis dataset is part of the Australian Hydrological Geospatial Fabric (AHGF) also known as the Geofabric. The Geofabric Surface Hydrology Cartography version 3.3 product provides a set of related feature classes used to create consistent hydrological maps. It includes a geometric representation of major surface water features across Australia, excluding external territories. Most features are natural, such as rivers and lakes, but the product also includes some man-made elements like reservoirs, canals and other hydrographic structures.The dataset is fully topologically correct, meaning all stream segments flow in the correct direction. It includes fifteen feature types: Waterbody, Mapped Stream, Mapped Node, Mapped Connectivity (Upstream), Mapped Connectivity (Downstream), Sea, Estuary, Dam, Structure, Canal Line, Water Pipeline, Terrain Break Line, Hydro Point, Hydro Line and Hydro Area.Product Guide: ahgf_productguide_V3_0_release.pdfProduct Schema: Visio-AHGF_GDB_SHCartography_Schema_V2_1_release.vsdData Dictionary: ahgf_data_dictionary_surface_cartography_V2_1_release.pdfData Product Specifications: ahgf_dps_surface_cartography_V2_1_release.pdfCurrencyDate modified: 2022Modification frequency: As neededData extentSpatial extentNorth: -8.9°South: -44.0°East: 154.1°West: 112.8°Source informationDownloaded from the geofabric download page on the 17th of April 2025: Downloads: Geofabric: Water Information: Bureau of MeteorologyLineage statementGeofabric Surface Cartography is part of a suite of products developed by the Australian Bureau of Meteorology. The source data for this product comes mainly from AusHydro V2, which includes Geoscience Australia's national surface hydrology database. This database is based on selected features from regional surface hydrology datasets, mapped at a scale of 1:250,000. Additional regional features have been added to ensure important elements, such as flow paths, are included. Monitoring points from the Bureau’s Australian Water Resources Information System (AWRIS) are also part of the dataset.The product includes lines, points and polygons that represent both natural and man-made features, such as rivers, canals, lakes, dams, water pipelines and monitoring points. The natural watercourse layer forms a linear network with consistent topology, meaning stream segments are connected and flow in the correct direction. This network, along with key waterbodies, supports the creation of other Geofabric products, including Geofabric V3 SH_Network and SH_Catchment, as well as associated V3 1-second DEM-H and D8 grids.Each feature in the AusHydro V2 dataset has a unique identifier called AusHydro-ID. This identifier helps maintain the dataset and allows future integration of higher-resolution data. It also links to ANUDEM Derived Streams through a shared segment ID and ultimately connects to the National Catchments Boundaries (NCBs).To create this dataset, the AusHydro Surface Hydrology data is first loaded into the Geofabric development GIS environment. Feature classes are then restructured into composite hydrography datasets within the Geofabric Maintenance Geodatabase. These are assigned unique Hydro-IDs using Esri ArcHydro for Surface Water (version 1.4.0.180 and ApFramework 3.1.0.84). Finally, the updated feature classes are transferred to the Geofabric Surface Cartography Feature Dataset within its dedicated geodatabase.The Digital Atlas of Australia team at Geoscience Australia has made minor geometry repairs to support online publication. They also updated cartographic elements such as visibility, labels and symbology to improve accessibility and performance.ContactBureau of Meteorology, Community Services Group, ahgf@bom.gov.au
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
AbstractThis downloadable dataset is part of the Australian Hydrological Geospatial Fabric (AHGF) also known as the Geofabric. The Geofabric Surface Hydrology Cartography product provides a set of related feature classes used to create consistent hydrological maps. It includes a geometric representation of major surface water features across Australia, excluding external territories. Most features are natural, such as rivers and lakes, but the product also includes some man-made elements like reservoirs, canals and other hydrographic structures.The dataset is fully topologically correct, meaning all stream segments flow in the correct direction. It includes fifteen feature types: Waterbody, Mapped Stream, Mapped Node, Mapped Connectivity (Upstream), Mapped Connectivity (Downstream), Sea, Estuary, Dam, Structure, Canal Line, Water Pipeline, Terrain Break Line, Hydro Point, Hydro Line and Hydro Area.Product Schema: Visio-AHGF_GDB_SHCartography_Schema_V2_1_release.vsdData Dictionary: ahgf_data_dictionary_surface_cartography_V2_1_release.pdfData Product Specifications: ahgf_dps_surface_cartography_V2_1_release.pdfCurrencyDate modified: 2022Modification frequency: As neededData extentSpatial extentNorth: -8.9°South: -44.0°East: 154.1°West: 112.8°Source informationDownloaded from the geofabric download page on the 17th of April 2025: Downloads: Geofabric: Water Information: Bureau of MeteorologyLineage statementGeofabric Surface Cartography is part of a suite of products developed by the Australian Bureau of Meteorology. The source data for this product comes mainly from AusHydro V2, which includes Geoscience Australia"s national surface hydrology database. This database is based on selected features from regional surface hydrology datasets, mapped at a scale of 1:250,000. Additional regional features have been added to ensure important elements, such as flow paths, are included. Monitoring points from the Bureau’s Australian Water Resources Information System (AWRIS) are also part of the dataset.The product includes lines, points and polygons that represent both natural and man-made features, such as rivers, canals, lakes, dams, water pipelines and monitoring points. The natural watercourse layer forms a linear network with consistent topology, meaning stream segments are connected and flow in the correct direction. This network, along with key waterbodies, supports the creation of other Geofabric products, including Geofabric V3 SH_Network and SH_Catchment, as well as associated V3 1-second DEM-H and D8 grids.Each feature in the AusHydro V2 dataset has a unique identifier called AusHydro-ID. This identifier helps maintain the dataset and allows future integration of higher-resolution data. It also links to ANUDEM Derived Streams through a shared segment ID and ultimately connects to the National Catchments Boundaries (NCBs).To create this dataset, the AusHydro Surface Hydrology data is first loaded into the Geofabric development GIS environment. Feature classes are then restructured into composite hydrography datasets within the Geofabric Maintenance Geodatabase. These are assigned unique Hydro-IDs using ESRI ArcHydro for Surface Water (version 1.4.0.180 and ApFramework 3.1.0.84). Finally, the updated feature classes are transferred to the Geofabric Surface Cartography Feature Dataset within its dedicated geodatabase.The Digital Atlas of Australia team at Geoscience Australia has made minor geometry repairs to support online publication. They also updated cartographic elements such as visibility, labels and symbology to improve accessibility and performance.ContactBureau of Meteorology, Community Services Group, ahgf@bom.gov.au
Facebook
Twitter1) Use the search tool to find where you go to school or work2) Measure the distance you travel to school or work
Facebook
TwitterThis web map references the live tiled map service from the OpenStreetMap project. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information such as free satellite imagery, and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap server: http://www.OpenStreetMap.org. See that website for additional information about OpenStreetMap. It is made available as a basemap for GIS work in Esri products under a Creative Commons Attribution-ShareAlike license.Tip: This service is one of the basemaps used in the ArcGIS.com map viewer and ArcGIS Explorer Online. Simply click one of those links to launch the interactive application of your choice, and then choose Open Street Map from the Basemap control to start using this service. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10.
Facebook
TwitterThis mapping is a non-opposable knowledge tool that can be updated. The entire department is covered by a progressive mapping with a first determination of rivers. Unmapped or “undetermined” flows must be the subject of a request for prior DDT expertise. MAPPING VALIDATED BY THE MONITORING COMMITTEE ON: 27/11/2015 You can trace any observations or requests for expertise to DDT using the online forms. Please note: inconsistencies may exist at the border of the departments. Consistency work is being carried out. C_SC25_TOPO_0990_6740 C_TRHYD_90_R43_081215_sans_inex_Values_Type_ecoul C_SC25_TOPO_0980_6750 C_N_N2000_ZSC_ZINF_S_090 C_SC25_TOPO_0980_6740 C_SC25_TOPO_0980_6760 C_N_COMMUNE_BDP_090 C_SC25_TOPO_1000_6740 c_SC25_TOPO_1010_6730 C_SC25_TOPO_1010_6720 C_SC25_TOPO_0980_6730 C_ZVulnerables_90_R43_cadastre C_SC25_TOPO_1000_6750 C_N_PARCELLE_BDP_090_ Tags C_SC25_TOPO_0990_6750 C_SC25_TOPO_1000_6720 C_N_PARCELLE_BDP_090 C_SC25_TOPO_1000_6730 C_SC25_TOPO_0990_6730 C_N_BATIMENT_BDP_090 C_N_COURBES_090_ Tags C_N_COURBES_090 C_SC25_TOPO_0990_6720
Facebook
TwitterClick here to open the ArcGIS Online Map Viewer and work through the examples shown belowBefore adding data to ArcGIS Online we reccomend that you log in. For full functionality use a free schools subscription, or if this is not possible you can use a free public account which will have reduced functionality.
Facebook
TwitterThis layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meter Source Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary Sphere Extent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer? This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro. In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend. To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth. Different Classifications Available to Map Five processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display. Using Time By default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year. In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change. Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009. This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover. Land Cover Processing To provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015. Source data The datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.php CitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%) 50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies
Facebook
TwitterThe Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThe District of Columbia offers several custom online mapping applications. Some of these are built for DC agency specific goals and business processes while others are focused on serving DC residents and the public in general.
Facebook
TwitterThe files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. To map the vegetation and land cover of GRSM, 52 map classes were developed. Of these 52 map classes, 46 represent natural (including ruderal) vegetation types, most of which types are recognized in the USNVC. For the remaining 6 of the 52 map classes, 4 represent USNVC cultural types for agricultural and developed areas, and 2 represent non-USNVC types for nonvegetated open water and nonvegetated rock. Features were interpreted from viewing four-band digital aerial imagery using digital onscreen three-dimensional stereoscopic workflow systems in geographic information systems; digital aerial imagery was collected during September 23–October 30, 2015. The interpreted data were digitally and spatially referenced, thus making the spatial-database layers usable in a geographic information system. Polygon units were mapped to either a 0.5- or 0.25- hectare (ha) minimum mapping unit, depending on vegetation type. A geodatabase containing several feature-class layers and tables provides the locations and data of USNVC vegetation types (vegetation map layer), vegetation plots, verification sites, AA sites, project boundary extent, and aerial image centers and flight lines. Covering 210,875 ha, the feature-class layer and related tables for the vegetation map layer provide 34,084 polygons of detailed attribute data when special modifiers are not considered (average polygon size of 6.2 ha) and 36,589 polygons of detailed attribute data when special modifiers are considered (average polygon size of 5.8 ha). Each map polygon is assigned a map-class code and name and, when applicable, are linked to USNVC classification tables within the geodatabase. The vegetation map extent includes the administrative boundary for GRSM and the Foothills Parkway.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Participants in this course will learn about remote sensing of wildfires from instructors at the University of Alaska Fairbanks, located in one of the world’s most active wildfire zones. Students will learn about wildfire behavior, and get hands-on experience with tools and resources used by professionals to create geospatial maps that support firefighters on the ground. Upon completion, students will be able to: Access web resources that provide near real-time updates on active wildfires, Navigate databases of remote sensing imagery and data, Analyze geospatial data to detect fire hot spots, map burn areas, and assess severity, Process image and GIS data in open source tools like QGIS and Google Earth Engine.