100+ datasets found
  1. Global population 1800-2100, by continent

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Global population 1800-2100, by continent [Dataset]. https://www.statista.com/statistics/997040/world-population-by-continent-1950-2020/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world's population first reached one billion people in 1805, and reached eight billion in 2022, and will peak at almost 10.2 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two-thirds of the world's population lives in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a few years later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.

  2. Countries with the highest population growth rate 2024

    • statista.com
    Updated Apr 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the highest population growth rate 2024 [Dataset]. https://www.statista.com/statistics/264687/countries-with-the-highest-population-growth-rate/
    Explore at:
    Dataset updated
    Apr 16, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    This statistic shows the 20 countries with the highest population growth rate in 2024. In SouthSudan, the population grew by about 4.65 percent compared to the previous year, making it the country with the highest population growth rate in 2024. The global population Today, the global population amounts to around 7 billion people, i.e. the total number of living humans on Earth. More than half of the global population is living in Asia, while one quarter of the global population resides in Africa. High fertility rates in Africa and Asia, a decline in the mortality rates and an increase in the median age of the world population all contribute to the global population growth. Statistics show that the global population is subject to increase by almost 4 billion people by 2100. The global population growth is a direct result of people living longer because of better living conditions and a healthier nutrition. Three out of five of the most populous countries in the world are located in Asia. Ultimately the highest population growth rate is also found there, the country with the highest population growth rate is Syria. This could be due to a low infant mortality rate in Syria or the ever -expanding tourism sector.

  3. z

    Population dynamics and Population Migration

    • zenodo.org
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rutuja Sonar Riya Patil; Rutuja Sonar Riya Patil (2025). Population dynamics and Population Migration [Dataset]. http://doi.org/10.5281/zenodo.15175736
    Explore at:
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    Zenodo
    Authors
    Rutuja Sonar Riya Patil; Rutuja Sonar Riya Patil
    Description

    Population dynamics, its types. Population migration (external, internal), factors determining it, main trends. Impact of migration on population health.

    Under the guidance of Moldoev M.I. Sir By Riya Patil and Rutuja Sonar

    Abstract

    Population dynamics influence development and vice versa, at various scale levels: global, continental/world-regional, national, regional, and local. Debates on how population growth affects development and how development affects population growth have already been subject of intensive debate and controversy since the late 18th century, and this debate is still ongoing. While these two debates initially focused mainly on natural population growth, the impact of migration on both population dynamics and development is also increasingly recognized. While world population will continue growing throughout the 21st century, there are substantial and growing contrasts between and within world-regions in the pace and nature of that growth, including some countries where population is stagnating or even shrinking. Because of these growing contrasts, population dynamics and their interrelationships with development have quite different governance implications in different parts of the world.

    1. Population Dynamics

    Population dynamics refers to the changes in population size, structure, and distribution over time. These changes are influenced by four main processes:

    Birth rate (natality)

    Death rate (mortality)

    Immigration (inflow of people)

    Emigration (outflow of people)

    Types of Population Dynamics

    Natural population change: Based on birth and death rates.

    Migration-based change: Caused by people moving in or out of a region.

    Demographic transition: A model that explains changes in population growth as societies industrialize.

    Population distribution: Changes in where people live (urban vs rural).

    2. Population Migration

    Migration refers to the movement of people from one location to another, often across political or geographical boundaries.

    Types of Migration

    External migration (international):

    Movement between countries.

    Examples: Refugee relocation, labor migration, education.

    Internal migration:

    Movement within the same country or region.

    Examples: Rural-to-urban migration, inter-state migration.

    3. Factors Determining Migration

    Migration is influenced by push and pull factors:

    Push factors (reasons to leave a place):

    Unemployment

    Conflict or war

    Natural disasters

    Poverty

    Lack of services or opportunities

    Pull factors (reasons to move to a place):

    Better job prospects

    Safety and security

    Higher standard of living

    Education and healthcare access

    Family reunification

    4. Main Trends in Migration

    Urbanization: Mass movement to cities for work and better services.

    Global labor migration: Movement from developing to developed countries.

    Refugee and asylum seeker flows: Due to conflict or persecution.

    Circular migration: Repeated movement between two or more locations.

    Brain drain/gain: Movement of skilled labor away from (or toward) a country.

    5. Impact of Migration on Population Health

    Positive Impacts:

    Access to better healthcare (for migrants moving to better systems).

    Skills and knowledge exchange among health professionals.

    Remittances improving healthcare affordability in home countries.

    Negative Impacts:

    Migrants’ health risks: Increased exposure to stress, poor living conditions, and occupational hazards.

    Spread of infectious diseases: Especially when health screening is lacking.

    Strain on health services: In receiving areas, especially with sudden or large influxes.

    Mental health challenges: Due to cultural dislocation, discrimination, or trauma.

    Population dynamics is one of the fundamental areas of ecology, forming both the basis for the study of more complex communities and of many applied questions. Understanding population dynamics is the key to understanding the relative importance of competition for resources and predation in structuring ecological communities, which is a central question in ecology.

    Population dynamics plays a central role in many approaches to preserving biodiversity, which until now have been primarily focused on a single species approach. The calculation of the intrinsic growth rate of a species from a life table is often the central piece of conservation plans. Similarly, management of natural resources, such as fisheries, depends on population dynamics as a way to determine appropriate management actions.

    Population dynamics can be characterized by a nonlinear system of difference or differential equations between the birth sizes of consecutive periods. In such a nonlinear system, when the feedback elasticity of previous events on current birth size is larger, the more likely the dynamics will be volatile. Depending on the classification criteria of the population, the revealed cyclical behavior has various interpretations. Under different contextual scenarios, Malthusian cycles, Easterlin cycles, predator–prey cycles, dynastic cycles, and capitalist–laborer cycles have been introduced and analyzed

    Generally, population dynamics is a nonlinear stochastic process. Nonlinearities tend to be complicated to deal with, both when we want to do analytic stochastic modelling and when analysing data. The way around the problem is to approximate the nonlinear model with a linear one, for which the mathematical and statistical theories are more developed and tractable. Let us assume that the population process is described as:

    (1)Nt=f(Nt−1,εt)

    where Nt is population density at time t and εt is a series of random variables with identical distributions (mean and variance). Function f specifies how the population density one time step back, plus the stochastic environment εt, is mapped into the current time step. Let us assume that the (deterministic) stationary (equilibrium) value of the population is N* and that ε has mean ε*. The linear approximation of Eq. (1) close to N* is then:

    (2)xt=axt−1+bϕt

    where xt=Nt−N*, a=f

    f(N*,ε*)/f

    N, b=ff(N*,ε*)/fε, and ϕt=εt−ε*

    The term population refers to the members of a single species that can interact with each other. Thus, the fish in a lake, or the moose on an island, are clear examples of a population. In other cases, such as trees in a forest, it may not be nearly so clear what a population is, but the concept of population is still very useful.

    Population dynamics is essentially the study of the changes in the numbers through time of a single species. This is clearly a case where a quantitative description is essential, since the numbers of individuals in the population will be counted. One could begin by looking at a series of measurements of the numbers of particular species through time. However, it would still be necessary to decide which changes in numbers through time are significant, and how to determine what causes the changes in numbers. Thus, it is more sensible to begin with models that relate changes in population numbers through time to underlying assumptions. The models will provide indications of what features of changes in numbers are important and what measurements are critical to make, and they will help determine what the cause of changes in population levels might be.

    To understand the dynamics of biological populations, the study starts with the simplest possibility and determines what the dynamics of the population would be in that case. Then, deviations in observed populations from the predictions of that simplest case would provide information about the kinds of forces shaping the dynamics of populations. Therefore, in describing the dynamics in this simplest case it is essential to be explicit and clear about the assumptions made. It would not be argued that the idealized population described here would ever be found, but that focusing on the idealized population would provide insight into real populations, just as the study of Newtonian mechanics provides understanding of more realistic situations in physics.

    Population migration

    The vast majority of people continue to live in the countries where they were born —only one in 30 are migrants.

    In most discussions on migration, the starting point is usually numbers. Understanding changes in scale, emerging trends, and shifting demographics related to global social and economic transformations, such as migration, help us make sense of the changing world we live in and plan for the future. The current global estimate is that there were around 281 million international migrants in the world in 2020, which equates to 3.6 percent of the global population.

    Overall, the estimated number of international migrants has increased over the past five decades. The total estimated 281 million people living in a country other than their countries of birth in 2020 was 128 million more than in 1990 and over three times the estimated number in 1970.

    There is currently a larger number of male than female international migrants worldwide and the growing gender gap has increased over the past 20 years. In 2000, the male to female split was 50.6 to 49.4 per cent (or 88 million male migrants and 86 million female migrants). In 2020 the split was 51.9 to 48.1 per cent, with 146 million male migrants and 135 million female migrants. The share of

  4. N

    Nampa, ID Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Nampa, ID Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Nampa from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/nampa-id-population-by-year/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Nampa, Idaho
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Nampa population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Nampa across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Nampa was 114,268, a 3.08% increase year-by-year from 2022. Previously, in 2022, Nampa population was 110,858, an increase of 4.10% compared to a population of 106,496 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Nampa increased by 59,448. In this period, the peak population was 114,268 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Nampa is shown in this column.
    • Year on Year Change: This column displays the change in Nampa population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Nampa Population by Year. You can refer the same here

  5. N

    Tennessee Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Tennessee Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Tennessee from 2000 to 2024 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/tennessee-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tennessee
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2024, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2024. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2024. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Tennessee population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Tennessee across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2024, the population of Tennessee was 7.23 million, a 1.11% increase year-by-year from 2023. Previously, in 2023, Tennessee population was 7.15 million, an increase of 1.22% compared to a population of 7.06 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of Tennessee increased by 1.52 million. In this period, the peak population was 7.23 million in the year 2024. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2024

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2024)
    • Population: The population for the specific year for the Tennessee is shown in this column.
    • Year on Year Change: This column displays the change in Tennessee population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Tennessee Population by Year. You can refer the same here

  6. United States US: Population: Growth

    • ceicdata.com
    Updated Dec 15, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2010). United States US: Population: Growth [Dataset]. https://www.ceicdata.com/en/united-states/population-and-urbanization-statistics/us-population-growth
    Explore at:
    Dataset updated
    Dec 15, 2010
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    United States
    Variables measured
    Population
    Description

    United States US: Population: Growth data was reported at 0.713 % in 2017. This records a decrease from the previous number of 0.734 % for 2016. United States US: Population: Growth data is updated yearly, averaging 0.979 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 1.702 % in 1960 and a record low of 0.711 % in 2013. United States US: Population: Growth data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Population and Urbanization Statistics. Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage . Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.; ; Derived from total population. Population source: (1) United Nations Population Division. World Population Prospects: 2017 Revision, (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;

  7. f

    The effect of bigger human bodies on the future global calorie requirements

    • plos.figshare.com
    pdf
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lutz Depenbusch; Stephan Klasen (2023). The effect of bigger human bodies on the future global calorie requirements [Dataset]. http://doi.org/10.1371/journal.pone.0223188
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Lutz Depenbusch; Stephan Klasen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Existing studies show how population growth and rising incomes will cause a massive increase in the future global demand for food. We add to the literature by estimating the potential effect of increases in human weight, caused by rising BMI and height, on future calorie requirements. Instead of using a market based approach, the estimations are solely based on human energy requirements for maintenance of weight. We develop four different scenarios to show the effect of increases in human height and BMI. In a world where the weight per age-sex group would stay stable, we project calorie requirements to increases by 61.05 percent between 2010 and 2100. Increases in BMI and height could add another 18.73 percentage points to this. This additional increase amounts to more than the combined calorie requirements of India and Nigeria in 2010. These increases would particularly affect Sub-Saharan African countries, which will already face massively rising calorie requirements due to the high population growth. The stark regional differences call for policies that increase food access in currently economically weak regions. Such policies should shift consumption away from energy dense foods that promote overweight and obesity, to avoid the direct burden associated with these conditions and reduce the increases in required calories. Supplying insufficient calories would not solve the problem but cause malnutrition in populations with weak access to food. As malnutrition is not reducing but promoting rises in BMI levels, this might even aggravate the situation.

  8. Population of the United States 1500-2100

    • statista.com
    Updated Aug 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Population of the United States 1500-2100 [Dataset]. https://www.statista.com/statistics/1067138/population-united-states-historical/
    Explore at:
    Dataset updated
    Aug 1, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the past four centuries, the population of the Thirteen Colonies and United States of America has grown from a recorded 350 people around the Jamestown colony in Virginia in 1610, to an estimated 346 million in 2025. While the fertility rate has now dropped well below replacement level, and the population is on track to go into a natural decline in the 2040s, projected high net immigration rates mean the population will continue growing well into the next century, crossing the 400 million mark in the 2070s. Indigenous population Early population figures for the Thirteen Colonies and United States come with certain caveats. Official records excluded the indigenous population, and they generally remained excluded until the late 1800s. In 1500, in the first decade of European colonization of the Americas, the native population living within the modern U.S. borders was believed to be around 1.9 million people. The spread of Old World diseases, such as smallpox, measles, and influenza, to biologically defenseless populations in the New World then wreaked havoc across the continent, often wiping out large portions of the population in areas that had not yet made contact with Europeans. By the time of Jamestown's founding in 1607, it is believed the native population within current U.S. borders had dropped by almost 60 percent. As the U.S. expanded, indigenous populations were largely still excluded from population figures as they were driven westward, however taxpaying Natives were included in the census from 1870 to 1890, before all were included thereafter. It should be noted that estimates for indigenous populations in the Americas vary significantly by source and time period. Migration and expansion fuels population growth The arrival of European settlers and African slaves was the key driver of population growth in North America in the 17th century. Settlers from Britain were the dominant group in the Thirteen Colonies, before settlers from elsewhere in Europe, particularly Germany and Ireland, made a large impact in the mid-19th century. By the end of the 19th century, improvements in transport technology and increasing economic opportunities saw migration to the United States increase further, particularly from southern and Eastern Europe, and in the first decade of the 1900s the number of migrants to the U.S. exceeded one million people in some years. It is also estimated that almost 400,000 African slaves were transported directly across the Atlantic to mainland North America between 1500 and 1866 (although the importation of slaves was abolished in 1808). Blacks made up a much larger share of the population before slavery's abolition. Twentieth and twenty-first century The U.S. population has grown steadily since 1900, reaching one hundred million in the 1910s, two hundred million in the 1960s, and three hundred million in 2007. Since WWII, the U.S. has established itself as the world's foremost superpower, with the world's largest economy, and most powerful military. This growth in prosperity has been accompanied by increases in living standards, particularly through medical advances, infrastructure improvements, clean water accessibility. These have all contributed to higher infant and child survival rates, as well as an increase in life expectancy (doubling from roughly 40 to 80 years in the past 150 years), which have also played a large part in population growth. As fertility rates decline and increases in life expectancy slows, migration remains the largest factor in population growth. Since the 1960s, Latin America has now become the most common origin for migrants in the U.S., while immigration rates from Asia have also increased significantly. It remains to be seen how immigration restrictions of the current administration affect long-term population projections for the United States.

  9. n

    Modeling effects of nonbreeders on population growth estimates

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Sep 6, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aline M. Lee; Jane M. Reid; Steven R. Beissinger (2017). Modeling effects of nonbreeders on population growth estimates [Dataset]. http://doi.org/10.5061/dryad.t56cn
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 6, 2017
    Dataset provided by
    University of California, Berkeley
    University of Aberdeen
    Authors
    Aline M. Lee; Jane M. Reid; Steven R. Beissinger
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Adult individuals that do not breed in a given year occur in a wide range of natural populations. However, such nonbreeders are often ignored in theoretical and empirical population studies, limiting our knowledge of how nonbreeders affect realized and estimated population dynamics and potentially impeding projection of deterministic and stochastic population growth rates. We present and analyse a general modelling framework for systems where breeders and nonbreeders differ in key demographic rates, incorporating different forms of nonbreeding, different life histories and frequency-dependent effects of nonbreeders on demographic rates of breeders. Comparisons of estimates of deterministic population growth rate, λ, and demographic variance, math formula, from models with and without distinct nonbreeder classes show that models that do not explicitly incorporate nonbreeders give upwardly biased estimates of math formula, particularly when the equilibrium ratio of nonbreeders to breeders, math formula, is high. Estimates of λ from empirical observations of breeders only are substantially inflated when individuals frequently re-enter the breeding population after periods of nonbreeding. Sensitivity analyses of diverse parameterizations of our model framework, with and without negative frequency-dependent effects of nonbreeders on breeder demographic rates, show how changes in demographic rates of breeders vs. nonbreeders differentially affect λ. In particular, λ is most sensitive to nonbreeder parameters in long-lived species, when math formula, and when individuals are unlikely to breed at several consecutive time steps. Our results demonstrate that failing to account for nonbreeders in population studies can obscure low population growth rates that should cause management concern. Quantifying the size and demography of the nonbreeding section of populations and modelling appropriate demographic structuring is therefore essential to evaluate nonbreeders' influence on deterministic and stochastic population dynamics.

  10. Years taken for the world population to grow by one billion 1803-2088

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Years taken for the world population to grow by one billion 1803-2088 [Dataset]. https://www.statista.com/statistics/1291648/time-taken-for-global-pop-grow-billion/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1803 - 2015
    Area covered
    World
    Description

    Throughout most of human history, global population growth was very low; between 10,000BCE and 1700CE, the average annual increase was just 0.04 percent. Therefore, it took several thousand years for the global population to reach one billion people, doing so in 1803. However, this period marked the beginning of a global phenomenon known as the demographic transition, from which point population growth skyrocketed. With the introduction of modern medicines (especially vaccination), as well as improvements in water sanitation, food supply, and infrastructure, child mortality fell drastically and life expectancy increased, causing the population to grow. This process is linked to economic and technological development, and did not take place concurrently across the globe; it mostly began in Europe and other industrialized regions in the 19thcentury, before spreading across Asia and Latin America in the 20th century. As the most populous societies in the world are found in Asia, the demographic transition in this region coincided with the fastest period of global population growth. Today, Sub-Saharan Africa is the region at the earliest stage of this transition. As population growth slows across the other continents, with the populations of the Americas, Asia, and Europe expected to be in decline by the 2070s, Africa's population is expected to grow by three billion people by the end of the 21st century.

  11. N

    Colorado Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Colorado Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Colorado from 2000 to 2024 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/colorado-population-by-year/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Colorado
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2024, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2024. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2024. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Colorado population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Colorado across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2024, the population of Colorado was 5.96 million, a 0.95% increase year-by-year from 2023. Previously, in 2023, Colorado population was 5.9 million, an increase of 0.86% compared to a population of 5.85 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of Colorado increased by 1.63 million. In this period, the peak population was 5.96 million in the year 2024. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2024

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2024)
    • Population: The population for the specific year for the Colorado is shown in this column.
    • Year on Year Change: This column displays the change in Colorado population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Colorado Population by Year. You can refer the same here

  12. a

    City of Scranton - 2020 Population Change

    • scranton-open-data-scrantonplanning.hub.arcgis.com
    Updated Sep 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Scranton GIS (2022). City of Scranton - 2020 Population Change [Dataset]. https://scranton-open-data-scrantonplanning.hub.arcgis.com/datasets/city-of-scranton-2020-population-change
    Explore at:
    Dataset updated
    Sep 16, 2022
    Dataset authored and provided by
    City of Scranton GIS
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    Scranton
    Description

    There are three components of change: births, deaths, and migration. The change in the population from births and deaths is often combined and referred to as natural increase or natural change. Populations grow or shrink depending on if they gain people faster than they lose them. Looking at an area’s unique combination of natural change and migration helps us understand why its population is changing, and how quickly the change is occurring.Natural IncreaseNatural change is the difference between births and deaths in a population. Often times, natural change is positive, which means that more babies are being born than people are dying. This positive natural change is referred to as natural increase. Examples of natural increase exist across the United States, one being the Salt Lake City metro area in Utah. Between 2014 and 2015, Salt Lake City had around 19,100 births and 6,400 deaths. Since there were about 12,700 more births than deaths, Salt Lake City had a natural increase of about 12,700 people, making natural increase a key reason why its population grew over the year.The opposite of natural increase is called natural decrease, where more people are dying than babies being born, which can cause a population to shrink. Areas with aging populations often have natural decrease. Two states had natural decrease between 2014 and 2015, Maine and West Virginia. Between 2014 and 2015, Maine had 450 more deaths than births and West Virginia had 940 more deaths than births. In both cases, natural decrease was one of the reasons why their populations shrank between 2014 and 2015 in our latest estimates.MigrationMigration is the movement of people from one area to another. It is often expressed as net migration, which is the difference between how many people move into and out of an area. When net migration is positive, a population has more people moving in than out. We split migration into domestic migration and international migration.Domestic migration refers to people moving between areas within the United States, and is often one of the largest contributors to population change. Regionally, the South gains the most net domestic migrants, with roughly 440,000 more people moving into southern states than leaving them between 2014 and 2015. Sometimes net domestic migration is negative, in which case more people are moving away than are moving in. The Chicago metro area in Illinois, Indiana, and Wisconsin lost about 80,000 people through migration between 2014 and 2015, which is consistent with a long-standing pattern of negative net domestic migration for the metro area.International migration refers to people moving into and out of the United States, and consists of a diverse group of people such as foreign-born immigrants from many countries around the world, members of the U.S. Armed Forces, and U.S. citizens working abroad. Some areas, like the Miami metro area in Florida, grow (in part) due to net international migration. Miami gained about 70,000 net international migrants between 2014 and 2015, making net international migration a major factor in Miami’s population growth.

  13. N

    Minnesota Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Minnesota Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Minnesota from 2000 to 2024 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/minnesota-population-by-year/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Minnesota
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2024, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2024. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2024. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Minnesota population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Minnesota across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2024, the population of Minnesota was 5.79 million, a 0.70% increase year-by-year from 2023. Previously, in 2023, Minnesota population was 5.75 million, an increase of 0.55% compared to a population of 5.72 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of Minnesota increased by 859,412. In this period, the peak population was 5.79 million in the year 2024. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2024

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2024)
    • Population: The population for the specific year for the Minnesota is shown in this column.
    • Year on Year Change: This column displays the change in Minnesota population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Minnesota Population by Year. You can refer the same here

  14. Total population worldwide 1950-2100

    • statista.com
    Updated Jul 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
    Explore at:
    Dataset updated
    Jul 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolonged development arc in Sub-Saharan Africa.

  15. U

    United Kingdom UK: Population: Growth

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United Kingdom UK: Population: Growth [Dataset]. https://www.ceicdata.com/en/united-kingdom/population-and-urbanization-statistics/uk-population-growth
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    United Kingdom
    Variables measured
    Population
    Description

    United Kingdom UK: Population: Growth data was reported at 0.648 % in 2017. This records a decrease from the previous number of 0.714 % for 2016. United Kingdom UK: Population: Growth data is updated yearly, averaging 0.352 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 0.849 % in 1962 and a record low of -0.036 % in 1982. United Kingdom UK: Population: Growth data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United Kingdom – Table UK.World Bank.WDI: Population and Urbanization Statistics. Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage . Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.; ; Derived from total population. Population source: (1) United Nations Population Division. World Population Prospects: 2017 Revision, (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;

  16. n

    Data from: The effect of demographic correlations on the stochastic...

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Jul 26, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aldo Compagnoni; Andrew J. Bibian; Brad M. Ochocki; Haldre S. Rogers; Emily L. Schultz; Michelle E. Sneck; Bret D. Elderd; Amy M. Iler; David W. Inouye; Hans Jacquemyn; Tom E.X. Miller; Tom E. X. Miller (2016). The effect of demographic correlations on the stochastic population dynamics of perennial plants [Dataset]. http://doi.org/10.5061/dryad.mp935
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 26, 2016
    Dataset provided by
    Rice University
    KU Leuven
    University of Maryland, College Park
    Aarhus University
    Louisiana State University of Alexandria
    Authors
    Aldo Compagnoni; Andrew J. Bibian; Brad M. Ochocki; Haldre S. Rogers; Emily L. Schultz; Michelle E. Sneck; Bret D. Elderd; Amy M. Iler; David W. Inouye; Hans Jacquemyn; Tom E.X. Miller; Tom E. X. Miller
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    106° 51' 57.96" W), 106° 37' 53.2" W), Colorado, USA (38° 57' 42.92" N, USA (34° 20' 5.3" N, Sevilleta National Wildlife Refuge, Rocky Mountain Biological Laboratory, New Mexico
    Description

    Understanding the influence of environmental variability on population dynamics is a fundamental goal of ecology. Theory suggests that, for populations in variable environments, temporal correlations between demographic vital rates (e.g., growth, survival, reproduction) can increase (if positive) or decrease (if negative) the variability of year-to-year population growth. Because this variability generally decreases long-term population viability, vital rate correlations may importantly affect population dynamics in stochastic environments. Despite long-standing theoretical interest, it is unclear whether vital rate correlations are common in nature, whether their directions are predominantly negative or positive, and whether they are of sufficient magnitude to warrant broad consideration in studies of stochastic population dynamics. We used long-term demographic data for three perennial plant species, hierarchical Bayesian parameterization of population projection models, and stochastic simulations to address the following questions: (1) What are the sign, magnitude, and uncertainty of temporal correlations between vital rates? (2) How do specific pairwise correlations affect the year-to-year variability of population growth? (3) Does the net effect of all vital rate correlations increase or decrease year-to-year variability? (4) What is the net effect of vital rate correlations on the long-term stochastic population growth rate (λS)? We found only four moderate to strong correlations, both positive and negative in sign, across all species and vital rate pairs; otherwise, correlations were generally weak in magnitude and variable in sign. The net effect of vital rate correlations ranged from a slight decrease to an increase in the year-to-year variability of population growth, with average changes in variance ranging from -1% to +22%. However, vital rate correlations caused virtually no change in the estimates of λS (mean effects ranging from -0.01% to +0.17%). Therefore, the proportional changes in the variance of population growth caused by demographic correlations were too small on an absolute scale to importantly affect population growth and viability. We conclude that in our three focal populations and perhaps more generally, vital rate correlations have little effect on stochastic population dynamics. This may be good news for population ecologists, because estimating vital rate correlations and incorporating them into population models can be data-intensive and technically challenging.

  17. N

    Springfield, MO Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Springfield, MO Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Springfield from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/springfield-mo-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Missouri, Springfield
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Springfield population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Springfield across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Springfield was 170,188, a 0.09% increase year-by-year from 2022. Previously, in 2022, Springfield population was 170,028, an increase of 0.46% compared to a population of 169,253 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Springfield increased by 17,601. In this period, the peak population was 170,188 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Springfield is shown in this column.
    • Year on Year Change: This column displays the change in Springfield population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Springfield Population by Year. You can refer the same here

  18. D

    Data from: Data: The demographic causes of population change vary across...

    • lifesciences.datastations.nl
    Updated Dec 2, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    A.M. Allen; A.M. Allen; E Jongejans; de an de Pol; B.J. Ens; M Frauendorf; M van der Sluijs; de e Kroon; E Jongejans; de an de Pol; B.J. Ens; M Frauendorf; M van der Sluijs; de e Kroon (2021). Data: The demographic causes of population change vary across four decades in a long-lived shorebird [Dataset]. http://doi.org/10.17026/DANS-245-VFZD
    Explore at:
    type/x-r-syntax(71815), type/x-r-syntax(6106), type/x-r-syntax(2565), type/x-r-syntax(54077), application/x-rlang-transport(79795), type/x-r-syntax(1450), type/x-r-syntax(2870), type/x-r-syntax(16151), application/x-rlang-transport(22076739), pdf(124678), application/x-rlang-transport(3396), type/x-r-syntax(3588), type/x-r-syntax(8061), type/x-r-syntax(2572), type/x-r-syntax(1807), type/x-r-syntax(2586), type/x-r-syntax(2596), type/x-r-syntax(18553), type/x-r-syntax(14037), type/x-r-syntax(62903), zip(28445), application/x-rlang-transport(350), type/x-r-syntax(21109), type/x-r-syntax(8539), application/x-rlang-transport(5284), type/x-r-syntax(35163), application/x-rlang-transport(25906996), tsv(630)Available download formats
    Dataset updated
    Dec 2, 2021
    Dataset provided by
    DANS Data Station Life Sciences
    Authors
    A.M. Allen; A.M. Allen; E Jongejans; de an de Pol; B.J. Ens; M Frauendorf; M van der Sluijs; de e Kroon; E Jongejans; de an de Pol; B.J. Ens; M Frauendorf; M van der Sluijs; de e Kroon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data and R coding used to perform analyses and generate results in the manuscript "The demographic causes of population change vary across four decades in a long-lived shorebird" published in the journal Ecology Date Accepted: 2021-09-24 Date Submitted: 2021-11-15

  19. Population of the United Kingdom (UK) 2015 to 2025

    • statista.com
    Updated Jan 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2021). Population of the United Kingdom (UK) 2015 to 2025 [Dataset]. https://www.statista.com/statistics/263754/total-population-of-the-united-kingdom/
    Explore at:
    Dataset updated
    Jan 6, 2021
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United Kingdom
    Description

    The statistic shows the total population in the United Kingdom from 2015 to 2019, with projections up until 2025. The population grew steadily over this period.

    Population of the United Kingdom

    Despite a fertility rate just below the replacement rate, the United Kingdom’s population has been slowly but steadily growing, increasing by an average of 0.6 percent every year since 2002. The age distribution has remained roughly the same for the past ten years or so, with the share of the population over 65 years old seeing a slight increase as the baby boomer generation enters into that age bracket. That share is likely to continue growing slightly, as the United Kingdom has one of the highest life expectancies in the world.

    The population of the island nation is predominantly white Christians, but a steady net influx of immigrants, part of a legacy of the wide-reaching former British Empire, has helped diversify the population. One of the largest ethnic minorities in the United Kingdom is that of residents of an Indian background, born either in the UK, India, or in other parts of the world. India itself is experiencing problems with rapid population growth, causing some of its population to leave the country in order to find employment. The United Kingdom’s relatively lower levels of unemployment and the historical connection between the two countries (which has also resulted in family connections between individuals) are likely reasons that make it a popular destination for Indian emigrants.

  20. Vintage 2016 Population Estimates: National Monthly Population Estimates

    • catalog.data.gov
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). Vintage 2016 Population Estimates: National Monthly Population Estimates [Dataset]. https://catalog.data.gov/dataset/vintage-2016-population-estimates-national-monthly-population-estimates
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    Monthly Population Estimates by Universe, Age, Sex, Race, and Hispanic Origin for the United States: April 1, 2010 to December 1, 2016 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through June. // Note: 'In combination' means in combination with one or more other races. The sum of the five race-in-combination groups adds to more than the total population because individuals may report more than one race. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. For more information, see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/modified-race-summary-file-method/mrsf2010.pdf. // The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // Persons on active duty in the Armed Forces were not enumerated in the 2010 Census. Therefore, variables for the 2010 Census civilian, civilian noninstitutionalized, and resident population plus Armed Forces overseas populations cannot be derived and are not available on these files. // For detailed information about the methods used to create the population estimates, see https://www.census.gov/programs-surveys/popest/technical-documentation/methodology.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2015) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: https://www.census.gov/programs-surveys/popest.html.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista, Global population 1800-2100, by continent [Dataset]. https://www.statista.com/statistics/997040/world-population-by-continent-1950-2020/
Organization logo

Global population 1800-2100, by continent

Explore at:
7 scholarly articles cite this dataset (View in Google Scholar)
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
World
Description

The world's population first reached one billion people in 1805, and reached eight billion in 2022, and will peak at almost 10.2 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two-thirds of the world's population lives in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a few years later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.

Search
Clear search
Close search
Google apps
Main menu