https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for CBOE Volatility Index: VIX (VIXCLS) from 1990-01-02 to 2025-03-24 about VIX, volatility, stock market, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States - CBOE DJIA Volatility was 15.38000 Index in March of 2025, according to the United States Federal Reserve. Historically, United States - CBOE DJIA Volatility reached a record high of 74.60000 in November of 2008 and a record low of 2.71000 in July of 2021. Trading Economics provides the current actual value, an historical data chart and related indicators for United States - CBOE DJIA Volatility - last updated from the United States Federal Reserve on March of 2025.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for CBOE S&P 500 3-Month Volatility Index (VXVCLS) from 2007-12-04 to 2025-03-24 about VIX, volatility, 3-month, stock market, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States - CBOE S&P 500 3-Month Volatility was 20.35000 Index in March of 2025, according to the United States Federal Reserve. Historically, United States - CBOE S&P 500 3-Month Volatility reached a record high of 72.98000 in March of 2020 and a record low of 11.85000 in October of 2017. Trading Economics provides the current actual value, an historical data chart and related indicators for United States - CBOE S&P 500 3-Month Volatility - last updated from the United States Federal Reserve on March of 2025.
As of April 2024, the combined average monthly turnover of the three main U.S. equities market operators - the New York Stock Exchange (NYSE), the Nasdaq, and Chicago Board Options Exchange (CBOE) Global Markets - amounted to around 6.6 trillion U.S. dollars. However, the largest share of total equity trades in the United States was held by off-exchange transactions.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for CBOE Crude Oil ETF Volatility Index (OVXCLS) from 2007-05-10 to 2025-03-25 about ETF, VIX, volatility, crude, oil, stock market, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States - CBOE Volatility : VIX was 17.48000 Index in March of 2025, according to the United States Federal Reserve. Historically, United States - CBOE Volatility : VIX reached a record high of 82.69000 in March of 2020 and a record low of 9.14000 in November of 2017. Trading Economics provides the current actual value, an historical data chart and related indicators for United States - CBOE Volatility : VIX - last updated from the United States Federal Reserve on March of 2025.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for CBOE Gold ETF Volatility Index (GVZCLS) from 2008-06-03 to 2025-03-25 about ETF, VIX, gold, volatility, stock market, and USA.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data