Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Metropolitan and Micropolitan Statistical Areas are together termed Core Based Statistical Areas (CBSAs) and are defined by the Office of Management and Budget (OMB) and consist of the county or counties or equivalent entities associated with at least one urban core (urbanized area or urban cluster) of at least 10,000 population, plus adjacent counties having a high degree of social and economic integration with the core as measured through commuting ties with the counties containing the core. Categories of CBSAs are: Metropolitan Statistical Areas, based on urbanized areas of 50,000 or more population; and Micropolitan Statistical Areas, based on urban clusters of at least 10,000 population but less than 50,000 population. The CBSA boundaries are those defined by OMB based on the 2010 Census, published in 2013, and updated in 2018.
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Metropolitan and Micropolitan Statistical Areas are together termed Core Based Statistical Areas (CBSAs) and are defined by the Office of Management and Budget (OMB) and consist of the county or counties or equivalent entities associated with at least one urban core (urbanized area or urban cluster) of at least 10,000 population, plus adjacent counties having a high degree of social and economic integration with the core as measured through commuting ties with the counties containing the core. Categories of CBSAs are: Metropolitan Statistical Areas, based on urbanized areas of 50,000 or more population; and Micropolitan Statistical Areas, based on urban clusters of at least 10,000 population but less than 50,000 population. The CBSA boundaries are those defined by OMB based on the 2010 Census, published in 2013, and updated in 2018.
Facebook
TwitterThis system provides the user with a facility to select a state and county combination to determine if the selected county is part of an Office of Management and Budget (OMB) defined Core Based Statistical Area (CBSA). The system has been updated with OMB area definitions published for FY 2009.
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Metropolitan and Micropolitan Statistical Areas are together termed Core Based Statistical Areas (CBSAs) and are defined by the Office of Management and Budget (OMB) and consist of the county or counties or equivalent entities associated with at least one urban core (urbanized area or urban cluster) of at least 10,000 population, plus adjacent counties having a high degree of social and economic integration with the core as measured through commuting ties with the counties containing the core. Categories of CBSAs are: Metropolitan Statistical Areas, based on urbanized areas of 50,000 or more population; and Micropolitan Statistical Areas, based on urban clusters of at least 10,000 population but less than 50,000 population. The CBSAs boundaries are those defined by OMB based on the 2010 Census and published in February 2013.
Facebook
Twitterhttps://borealisdata.ca/api/datasets/:persistentId/versions/1.2/customlicense?persistentId=doi:10.5683/SP3/KKP7TPhttps://borealisdata.ca/api/datasets/:persistentId/versions/1.2/customlicense?persistentId=doi:10.5683/SP3/KKP7TP
The database includes ZIP code, city name, alias city name, state code, phone area code, city type, county name, country FIPS, time zone, day light saving flag, latitude, longitude, county elevation, Metropolitan Statistical Area (MSA), Primary Metropolitan Statistical Area (PMSA), Core Based Statistical Area (CBSA) and census 2000 data on population by race, average household income, and average house value.
Facebook
Twitterhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/MKTZI7https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/MKTZI7
MSA-year panel dataset derived from the VRscores 2024 release. Each record corresponds to a metropolitan statistical area (CBSA/MSA) and calendar year from 2012–2024 with at least five matched workers across any year. Variables include the combined MSA identifier, worker counts, raw and imputed L2 voter registration counts by party, average match quality, raw and imputed partisan shares, two-party and overall margins, partisan diversity indices, effective number of parties, and the latest position end-date contributing to the MSA-year. The dataset contains 4,758 MSA-year rows covering 366 metropolitan areas per year. It is built from a matching of employment records from Revelio Labs (April 2025) with voter registration data from the L2 voter file (November 2024) using ensemble linkage techniques. Small MSAs (<5 matched workers) are excluded, one-to-one matches are enforced, and the VRscores methodology and working paper document the data processing and definitions. These files are provided in CSV format; they mirror the MSA parquet release but are stored as comma-separated values for convenience.
Facebook
TwitterKnowing who your consumers are is essential for businesses, marketers, and researchers. This detailed demographic file offers an in-depth look at American consumers, packed with insights about personal details, household information, financial status, and lifestyle choices. Let's take a closer look at the data:
Personal Identifiers and Basic Demographics At the heart of this dataset are the key details that make up a consumer profile:
Unique IDs (PID, HHID) for individuals and households Full names (First, Middle, Last) and suffixes Gender and age Date of birth Complete location details (address, city, state, ZIP) These identifiers are critical for accurate marketing and form the base for deeper analysis.
Geospatial Intelligence This file goes beyond just listing addresses by including rich geospatial data like:
Latitude and longitude Census tract and block details Codes for Metropolitan Statistical Areas (MSA) and Core-Based Statistical Areas (CBSA) County size codes Geocoding accuracy This allows for precise geographic segmentation and localized marketing.
Housing and Property Data The dataset covers a lot of ground when it comes to housing, providing valuable insights for real estate professionals, lenders, and home service providers:
Homeownership status Dwelling type (single-family, multi-family, etc.) Property values (market, assessed, and appraised) Year built and square footage Room count, amenities like fireplaces or pools, and building quality This data is crucial for targeting homeowners with products and services like refinancing or home improvement offers.
Wealth and Financial Data For a deeper dive into consumer wealth, the file includes:
Estimated household income Wealth scores Credit card usage Mortgage info (loan amounts, rates, terms) Home equity estimates and investment property ownership These indicators are invaluable for financial services, luxury brands, and fundraising organizations looking to reach affluent individuals.
Lifestyle and Interests One of the most useful features of the dataset is its extensive lifestyle segmentation:
Hobbies and interests (e.g., gardening, travel, sports) Book preferences, magazine subscriptions Outdoor activities (camping, fishing, hunting) Pet ownership, tech usage, political views, and religious affiliations This data is perfect for crafting personalized marketing campaigns and developing products that align with specific consumer preferences.
Consumer Behavior and Purchase Habits The file also sheds light on how consumers behave and shop:
Online and catalog shopping preferences Gift-giving tendencies, presence of children, vehicle ownership Media consumption (TV, radio, internet) Retailers and e-commerce businesses will find this behavioral data especially useful for tailoring their outreach.
Demographic Clusters and Segmentation Pre-built segments like:
Household, neighborhood, family, and digital clusters Generational and lifestage groups make it easier to quickly target specific demographics, streamlining the process for market analysis and campaign planning.
Ethnicity and Language Preferences In today's multicultural market, knowing your audience's cultural background is key. The file includes:
Ethnicity codes and language preferences Flags for Hispanic/Spanish-speaking households This helps ensure culturally relevant and sensitive communication.
Education and Occupation Data The dataset also tracks education and career info:
Education level and occupation codes Home-based business indicators This data is essential for B2B marketers, recruitment agencies, and education-focused campaigns.
Digital and Social Media Habits With everyone online, digital behavior insights are a must:
Internet, TV, radio, and magazine usage Social media platform engagement (Facebook, Instagram, LinkedIn) Streaming subscriptions (Netflix, Hulu) This data helps marketers, app developers, and social media managers connect with their audience in the digital space.
Political and Charitable Tendencies For political campaigns or non-profits, this dataset offers:
Political affiliations and outlook Charitable donation history Volunteer activities These insights are perfect for cause-related marketing and targeted political outreach.
Neighborhood Characteristics By incorporating census data, the file provides a bigger picture of the consumer's environment:
Population density, racial composition, and age distribution Housing occupancy and ownership rates This offers important context for understanding the demographic landscape.
Predictive Consumer Indexes The dataset includes forward-looking indicators in categories like:
Fashion, automotive, and beauty products Health, home decor, pet products, sports, and travel These predictive insights help businesses anticipate consumer trends and needs.
Contact Information Finally, the file includes key communication details:
Multiple phone numbers (landline, mobile) and email addresses Do Not Call (DNC) flags...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
CityPropStats provides aggregated property statistics for 795 cities and towns (i.e., Metropolitan and Micropolitan statistical areas) in the conterminous United States. These statistics include sum, mean, median, Gini index and entropy of residential floor space, cadastral parcel size, floor-area ratio, and property value, approximately for the reference year 2020, aggregated by building construction year in decadal steps (cumulative and incremental) from 1910 to 2020.Cumulative statistics: CBSA_Property_Statistics_1910-2020_cumulative.csvDecadal time slices statistics: CBSA_Property_Statistics_1910-2020_decadal_slices.csvData source: Zillow Transaction and Assessment Dataset (ZTRAX), provided to University of Colorado Boulder via a data share agreement (2016-2023).CityPropStats is a supplementary dataset to:Ortman, Scott G., Amy Bogaard, Jessica Munson, Dan Lawrence, Adam S. Green, Gary M. Feinman, Shadreck Chirikure, Johannes H. Uhl, and Stefan Leyk. "Changes in agglomeration and productivity are poor predictors of inequality across the archaeological record." Proceedings of the National Academy of Sciences 122, no. 16 (2025): e2400693122. https://doi.org/10.1073/pnas.2400693122Column description:cbsa_idCBSA GEOIDcbsa_nameFull namecbsa_typeCBSA type (metro vs micropolitan statistical area)year_fromEarliest year for selection interval of properties based on their construction yearyear_toLatest year for selection interval of properties based on their construction yearcbsa_popCBSA population or population change (US Census)tot_res_propsTotal residential propertiestot_res_area_sqkmTotal indoor area of residential properties in sqkmavg_res_area_sqmAverage indoor area of residential properties in sqmmedian_res_area_sqmMedian indoor area of residential properties in sqmq25_res_area_sqm25th percentile of indoor area of residential properties in sqmq75_res_area_sqm75th percentile of indoor area of residential properties in sqmgini_res_areaGini index of residential property indoor areatot_prop_value_usdTotal residential property value in USDmedian_prop_value_usdMedian residential property value in USDq25_prop_value_usd25th percentile of residential property values in USDq75_prop_value_usd75th percentile of residential property values in USDgini_prop_valueGini index of residential property valuestot_lot_area_sqkmTotal lot (cadastral parcel) area in sqkmavg_lot_area_sqmMean lot area in sqmmedian_lot_area_sqmMedian lot area in sqmq25_lot_area_sqm25th percentile of lot area in sqmq75_lot_area_sqm75th percentile of lot area in sqmgini_lot_areaGini index of lot areaavg_farMean floor-area-ratio (FAR), with FAR being the ratio of building indoor area and lot area, based on residential propertiesmedian_farMedian floor-area-ratio (FAR), with FAR being the ratio of building indoor area and lot area, based on residential propertiesq25_far25th percentile of floor-area-ratio (FAR), with FAR being the ratio of building indoor area and lot area, based on residential propertiesq75_far75th percentile of floor-area-ratio (FAR), with FAR being the ratio of building indoor area and lot area, based on residential propertiesentropy_res_areaShannon entropy of the indoor area of residential properties, based on propertiesentropy_prop_valueShannon entropy of the property value of residential properties, based on propertiesentropy_lot_areaShannon entropy of the lot size of residential properties, based on propertiesarea_completenessRatio of properties with a valid indoor area attribute [0,1]value_completenessRatio of properties with a valid property value attribute [0,1]lotsize_completenessRatio of properties with a valid indoor area, property value, and lot size attribute [0,1]area_value_completenessRatio of properties with a valid lot size attribute [0,1]area_value_lotsize_completenessRatio of properties with both a valid indoor area and property value attribute [0,1]
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
As the renewable energy transition accelerates, housing, due to its high energy demand, can play a critical role in the clean energy shift. Specifically, multifamily housing provides a unique opportunity for solar photovoltaic (PV) system adoption, given the existing competing interests between landlords and tenants which has historically slowed this transition. To address this transition gap, this project identified and ranked Metropolitan Statistical Areas (MSAs) in the United States for ZNE Capital (the client) to acquire multifamily housing to install solar PV systems. The group identified seven criteria to determine favorable markets for rooftop solar PV on multifamily housing: landlord policy favorability, real estate market potential, CO2 abatement potential, electricity generation potential, solar installation internal rate of return, climate risk avoidance, and health costs associated with primary air pollutants. A total investment favorability score is calculated based on criteria importance assigned by the user. Investment favorability scores were investigated for different preferences to demonstrate the robustness and generalizability of the framework. The data analysis and criteria calculations were conducted using RStudio, ultimately to provide reproducible code to be used for future projects. The results are presented in a ranked list from best to worst metro areas to invest in. Future studies can utilize the reproducible code to inform decisions on where to invest in solar PV on multifamily housing anywhere in the United States by changing weights within the model depending on preferences. Methods
Collecting real estate and landlord data for metropolitan statistical areas (MSAs) from federal agency databases.
Real estate metrics: Six indicator metrics were selected to represent areas with growing housing demands. The metrics included were population growth, employment growth, average annual occupancy, annual rent change, the ratios of median annual rent to median income, and median income to median home price. The population estimates and median income data was downloaded from the Census Bureau. Median rent data was downloaded from HUDuser. Median home price data was downloaded from National Association of REALTORS®. Students were provided temporary memberships to Yardi Systems Matrix to obtain multifamily occupancy rates, and this data will not be redistributed. All the real estate metrics were combined into a single dataset using CBSA codes, which each MSA has a unique 5-digit identifier. Income-to-home price and rent-to-income ratios were calculated in R Studio.
Landlord data: the minimum security deposit and eviction notice data was collected for each state and manually compiled into an Excel. Security deposit information was provided as the number of months of rent. States with no maximum deposit limit received a score of 1.0, meaning it was the most favorable. Two month's rent was scored as 0.5, and one month's rent was given a score of 0.
Using NREL's REopt web tool to 1) model solar PV system on multifamily buildings in various cities and 2) obtain data to represent energy generation, CO2 abatement potential, avoided health costs from emissions, and solar project financial criteria.
An anchor city was identified within each MSA as the city with the highest population to input into the REopt tool. Default inputs were changed based on information provided by industry experts and changes in federal funding programs. Detailed instructions of inputs were created to ensure consistency when running the model for each city. The four outputs collected from the tool include: annual energy generation from renewables (%), lifecycle total CO2 emissions, health costs associated with primary air pollutants, and internal rate of return(%). The group divided up a list of cities, input the respective data for each one, obtained the outputs, then compiled it into a Google sheet. Outputs were checked by other members to ensure accuracy.
Collecting climate risk data from FEMA's National Risk Index Map.
Climate risk data was downloaded as a CSV file. The risk score was used to represent impacts of climate variability on long-term real estate investments. Risk scores were provided at the county level. The group identified the county each city resided in, to associate the correct score to each city in R Studio
Normalizing the data
Metrics were normalized by subtracting the minimum value for the metric from each value and dividing by the difference between the maximum and minimum values. This resulted in scores between 0 and 1 that were relative to the MSAs included in the analysis.
Weighing the data
Real Estate and Landlord Criteria metrics: these two criteria contained more than one metric, so the metrics within these criteria were weighted to produce real estate and landlord scores. Weights for each criterion sum to 1, in which higher weights indicate greater importance for multifamily real estate investments. Each weight was multiplied by the respective metric, then all weighted metrics within each criterion were summed to produce the criteria score. Investment Favorability Score: seven criteria were multiplied by respective weights based on the stakeholder's preferences. Weights sum to 1 to ensure consistency throughout the project. The sum of the seven weighted criteria is the investment favorability score.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Consumer Price Index for All Urban Consumers: All Items in Dallas-Fort Worth-Arlington, TX (CBSA) (CUURA316SA0) from Nov 1963 to Sep 2025 about Dallas, all items, urban, TX, consumer, CPI, inflation, price index, indexes, price, and USA.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Metropolitan and Micropolitan Statistical Areas are together termed Core Based Statistical Areas (CBSAs) and are defined by the Office of Management and Budget (OMB) and consist of the county or counties or equivalent entities associated with at least one urban core (urbanized area or urban cluster) of at least 10,000 population, plus adjacent counties having a high degree of social and economic integration with the core as measured through commuting ties with the counties containing the core. Categories of CBSAs are: Metropolitan Statistical Areas, based on urbanized areas of 50,000 or more population; and Micropolitan Statistical Areas, based on urban clusters of at least 10,000 population but less than 50,000 population. The CBSA boundaries are those defined by OMB based on the 2010 Census, published in 2013, and updated in 2018.