98 datasets found
  1. h

    CCES Common Content, 2018

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Nov 17, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brian Schaffner; Stephen Ansolabehere; Sam Luks (2019). CCES Common Content, 2018 [Dataset]. http://doi.org/10.7910/DVN/ZSBZ7K
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 17, 2019
    Dataset provided by
    Harvard Dataverse
    Authors
    Brian Schaffner; Stephen Ansolabehere; Sam Luks
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Dataset funded by
    National Science Foundation
    Description

    This is the main release of the 2018 CCES Common Content Dataset. The data includes a nationally representative sample of 60,000 American adults. This release includes the data from the survey, vote validation for the respondents, and a full guide and codebook. See the guide for a more detailed explanation of the data.

  2. H

    Cumulative CES Common Content

    • dataverse.harvard.edu
    • search.dataone.org
    Updated May 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shiro Kuriwaki (2025). Cumulative CES Common Content [Dataset]. http://doi.org/10.7910/DVN/II2DB6
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 22, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Shiro Kuriwaki
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    Oct 6, 2006 - Nov 8, 2024
    Area covered
    United States
    Description

    The Cooperative Congressional Election Study (CCES), now called the Cooperative Election Study (CES), is one of the largest political surveys in the United States. This dataset contains the respondents from the Common Content of the CCES (n = 701,955), combining all available Common Content datasets from 2006 - 2024. It includes select standardized variables including demographics, geography, vote choice, validated vote, representative approval, the economy, etc.. See the attached guide for a full list of variables, methodology, and ways to load the data.

  3. d

    CCES 2016, Team Module of Harvard University-A (HU)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ansolabehere, Stephen (2023). CCES 2016, Team Module of Harvard University-A (HU) [Dataset]. http://doi.org/10.7910/DVN/OODIMK
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Ansolabehere, Stephen
    Description

    This dataverse contains the data and supporting documents for the CCES 2016 Harvard University. This project was supported by the National Science Foundation, Grant Number SES-1559125.

  4. d

    CCES 2020 Supplemental Data

    • search.dataone.org
    Updated Nov 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deshpande, Pia (2023). CCES 2020 Supplemental Data [Dataset]. http://doi.org/10.7910/DVN/6NV9G3
    Explore at:
    Dataset updated
    Nov 12, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Deshpande, Pia
    Description

    Supplemental data files for the 2020 Cooperative Congressional Election Study. Datasets include the race and ethnicity of congressional candidates.

  5. H

    CCES 2018, MIT

    • dataverse.harvard.edu
    Updated Jan 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charles Stewart (2022). CCES 2018, MIT [Dataset]. http://doi.org/10.7910/DVN/BULEHV
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 29, 2022
    Dataset provided by
    Harvard Dataverse
    Authors
    Charles Stewart
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataverse contains the data and supporting documents for the CCES 2018 MIT team module. This project was supported by the National Science Foundation, Grant Number SES-1756447.

  6. d

    2013 CCES Common Content

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ansolabehere, Stephen; Schaffner, Brian (2023). 2013 CCES Common Content [Dataset]. http://doi.org/10.7910/DVN/KPP85M
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Ansolabehere, Stephen; Schaffner, Brian
    Description

    2013 Cooperative Congressional Election Study Common Content data and questionnaire.

  7. d

    CCES 2018, Team Module of University of Delaware

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jones, Philip (2023). CCES 2018, Team Module of University of Delaware [Dataset]. http://doi.org/10.7910/DVN/TUZZYX
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Jones, Philip
    Description

    This dataverse contains the data and supporting documents for the CCES 2018 University of Delaware team module. This project was supported by the National Science Foundation, Grant Number SES-1756447.

  8. d

    CCES 2014 Supplemental Data

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cuevas-Molina, Ivelisse; Schaffner, Brian (2023). CCES 2014 Supplemental Data [Dataset]. http://doi.org/10.7910/DVN/D1N0GO
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Cuevas-Molina, Ivelisse; Schaffner, Brian
    Description

    Supplemental datasets for the 2014 Cooperative Congressional Election Study.

  9. d

    CCES 2016, Team Module of Texas A and M University (TAM)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Goidel, Kirby (2023). CCES 2016, Team Module of Texas A and M University (TAM) [Dataset]. http://doi.org/10.7910/DVN/IKAILT
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Goidel, Kirby
    Description

    This dataverse contains the data and supporting documents for the CCES 2016 Texas A&M University. This project was supported by the National Science Foundation, Grant Number SES-1559125.

  10. d

    Replication Data for: Congressional Representation: Accountability from the...

    • dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ansolabehere, Stephen; Kuriwaki, Shiro (2023). Replication Data for: Congressional Representation: Accountability from the Constituent’s Perspective [Dataset]. http://doi.org/10.7910/DVN/QOVWMM
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Ansolabehere, Stephen; Kuriwaki, Shiro
    Description

    The premise that constituents hold representatives accountable for their legislative decisions undergirds political theories of democracy and legal theories of statutory interpretation. But studies of this at the individual level are rare, examine only a handful of issues, and arrive at mixed results. We provide an extensive assessment of issue accountability at the individual level. We trace the congressional rollcall votes on 44 bills across seven Congresses (2006--2018), and link them to constituent's perceptions of their representative's votes and their evaluation of their representative. Correlational, instrumental variables, and experimental approaches all show that constituents hold representatives accountable. A one-standard deviation increase in a constituent's perceived issue agreement with their representative can improve net approval by 35 percentage points. Congressional districts, however, are heterogeneous. Consequently, the effect of issue agreement on vote is much smaller at the district-level, resolving an apparent discrepancy between micro and macro studies.

  11. H

    CCES 2018, Team Module of University of Missouri

    • dataverse.harvard.edu
    Updated Jun 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeff Milyo (2020). CCES 2018, Team Module of University of Missouri [Dataset]. http://doi.org/10.7910/DVN/X1Y3ZJ
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 8, 2020
    Dataset provided by
    Harvard Dataverse
    Authors
    Jeff Milyo
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Missouri
    Description

    This dataverse contains the data and supporting documents for the CCES 2018 University of Missouri team module. This project was supported by the National Science Foundation, Grant Number SES-1756447.

  12. d

    CCES 2018, Team Module of Fordham University

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cuevas-Molina, Ivelisse (2023). CCES 2018, Team Module of Fordham University [Dataset]. http://doi.org/10.7910/DVN/TU4AUW
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Cuevas-Molina, Ivelisse
    Description

    This dataverse contains the data and supporting documents for the CCES 2018 Fordham University team module. This project was supported by the National Science Foundation, Grant Number SES-1756447.

  13. d

    CCES 2016 Subsample Weights

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Barney, David J. (2023). CCES 2016 Subsample Weights [Dataset]. http://doi.org/10.7910/DVN/V5ZCUM
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Barney, David J.
    Description

    Weights for a non-random subsample in the 2016 Cooperative Congressional Election Study. This subsample consists of early respondents to the survey invitation who answered a number of questions that were later cut due to time constraints. Dataset includes post-stratification weights and case identifiers for respondents in the subsample for merging.

  14. d

    CCES 2018, Team Module of University of Virginia

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Winter, Nicholas (2023). CCES 2018, Team Module of University of Virginia [Dataset]. http://doi.org/10.7910/DVN/JWPRQ5
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Winter, Nicholas
    Description

    This dataverse contains the data and supporting documents for the CCES 2018 University of Virginia team module. This project was supported by the National Science Foundation, Grant Number SES-1756447.

  15. d

    CCES 2018, Team Module of UCLA (1)

    • search.dataone.org
    Updated Nov 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Segura, Gary (2023). CCES 2018, Team Module of UCLA (1) [Dataset]. http://doi.org/10.7910/DVN/UFUF1V
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Segura, Gary
    Description

    This dataverse contains the data and supporting documents for the CCES 2018 UCLA (1) team module. This project was supported by the National Science Foundation, Grant Number SES-1756447.

  16. d

    CCES 2018, Team Module of University of Notre Dame

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harden, Jeff (2023). CCES 2018, Team Module of University of Notre Dame [Dataset]. http://doi.org/10.7910/DVN/SCBJTO
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Harden, Jeff
    Description

    This dataverse contains the data and supporting documents for the CCES 2018 University of Notre Dame team module. This project was supported by the National Science Foundation, Grant Number SES-1756447.

  17. d

    CCES 2018, Team Module of University of Massachusetts Amherst

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nteta, Tatishe (2023). CCES 2018, Team Module of University of Massachusetts Amherst [Dataset]. http://doi.org/10.7910/DVN/HWGUH4
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Nteta, Tatishe
    Area covered
    Amherst
    Description

    This dataverse contains the data and supporting documents for the CCES 2018 University of Massachusetts Amherst team module. This project was supported by the National Science Foundation, Grant Number SES-1756447.

  18. H

    Cooperative Election Study Common Content, 2020

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Feb 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brian Schaffner; Stephen Ansolabehere; Sam Luks (2022). Cooperative Election Study Common Content, 2020 [Dataset]. http://doi.org/10.7910/DVN/E9N6PH
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 14, 2022
    Dataset provided by
    Harvard Dataverse
    Authors
    Brian Schaffner; Stephen Ansolabehere; Sam Luks
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This is the final release of the 2020 CES Common Content Dataset. The data includes a nationally representative sample of 61,000 American adults. This release includes the data from the survey, a full guide to the data, and the questionnaires. The dataset includes vote validation performed by Catalist. Please consult the guide and the study website (https://cces.gov.harvard.edu/frequently-asked-questions) if you have questions about the study. Special thanks to Marissa Shih and Rebecca Phillips for their work in preparing this data for release.

  19. d

    Replication Data for: A General Approach to Measuring Electoral...

    • dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cronert, Axel; Nyman, Pär (2023). Replication Data for: A General Approach to Measuring Electoral Competitiveness for Parties and Governments [Dataset]. http://doi.org/10.7910/DVN/YMQFYB
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Cronert, Axel; Nyman, Pär
    Description

    This capsule contains the code and data needed to replicate all results reported in "A General Approach to Measuring Electoral Competitiveness for Parties and Governments" by Axel Cronert and Pär Nyman.

  20. U

    Replication data for: New Measures of Partisanship, Ideology, and Policy...

    • dataverse-staging.rdmc.unc.edu
    • datamed.org
    pdf +3
    Updated Dec 16, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thomas Carsey; Jeffrey Harden; Thomas Carsey; Jeffrey Harden (2013). Replication data for: New Measures of Partisanship, Ideology, and Policy Mood in the American States [Dataset]. https://dataverse-staging.rdmc.unc.edu/dataset.xhtml?persistentId=hdl:1902.29/11598
    Explore at:
    tsv(842681), tsv(2286601), tsv(97387), tsv(533913), tsv(116378), text/x-stata-syntax; charset=us-ascii(25094), tsv(14488), text/plain; charset=us-ascii(715), pdf(61541), tsv(956371)Available download formats
    Dataset updated
    Dec 16, 2013
    Dataset provided by
    UNC Dataverse
    Authors
    Thomas Carsey; Jeffrey Harden; Thomas Carsey; Jeffrey Harden
    License

    https://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/3.0/customlicense?persistentId=hdl:1902.29/11598https://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/3.0/customlicense?persistentId=hdl:1902.29/11598

    Area covered
    United States
    Description

    We construct measures of U.S. state partisan identification, self-reported ideology, and policy mood using data from the 2000 and 2004 National Annenberg Election Surveys (NAES) and the 2006 Cooperative Congressional Election Study (CCES). These measures improve on existing methods for estimating state-level preferences because the surveys provide larger state samples without pooling across years. After detailing our methods for constructing the measures, we assess their validity through comparisons with measures already in use by scholars of state politics. We find that our measures correlate strongly with those created by Erikson, Wright, and McIver (1993) and Berry et al. (1998) and with measures from state-level polls. We conclude that our measures can be useful to research in state politics.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Brian Schaffner; Stephen Ansolabehere; Sam Luks (2019). CCES Common Content, 2018 [Dataset]. http://doi.org/10.7910/DVN/ZSBZ7K

CCES Common Content, 2018

Explore at:
56 scholarly articles cite this dataset (View in Google Scholar)
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Nov 17, 2019
Dataset provided by
Harvard Dataverse
Authors
Brian Schaffner; Stephen Ansolabehere; Sam Luks
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Dataset funded by
National Science Foundation
Description

This is the main release of the 2018 CCES Common Content Dataset. The data includes a nationally representative sample of 60,000 American adults. This release includes the data from the survey, vote validation for the respondents, and a full guide and codebook. See the guide for a more detailed explanation of the data.

Search
Clear search
Close search
Google apps
Main menu