https://www.usa.gov/government-workshttps://www.usa.gov/government-works
This public use dataset has 11 data elements reflecting COVID-19 community levels for all available counties. This dataset contains the same values used to display information available at https://www.cdc.gov/coronavirus/2019-ncov/science/community-levels-county-map.html.
CDC looks at the combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days — to determine the COVID-19 community level. The COVID-19 community level is determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.
Using these data, the COVID-19 community level is classified as low, medium , or high.
COVID-19 Community Levels can help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals. See https://www.cdc.gov/coronavirus/2019-ncov/science/community-levels.html for more information.
Visit CDC’s COVID Data Tracker County View* to learn more about the individual metrics used for CDC’s COVID-19 community level in your county. Please note that county-level data are not available for territories. Go to https://covid.cdc.gov/covid-data-tracker/#county-view.
For the most accurate and up-to-date data for any county or state, visit the relevant health department website. *COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.
The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.
Using these data, the COVID-19 community level was classified as low, medium, or high.
COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.
For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.
Archived Data Notes:
This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.
March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.
March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.
March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.
March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.
March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).
March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.
April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.
April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.
May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.
May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.
May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.
June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.
June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.
June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.
July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.
July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.
July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.
July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.
July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.
August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.
August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.
August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.
August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.
August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.
August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.
August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.
September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.
September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,
On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source
Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
On October 20, 2022, CDC began retrieving aggregate case and death data from jurisdictional and state partners weekly instead of daily. This dataset contains archived community transmission and related data elements by county as originally displayed on the COVID Data Tracker. Although these data will continue to be publicly available, this dataset has not been updated since October 20, 2022. An archived dataset containing weekly community transmission data by county as originally posted can also be found here: Weekly COVID-19 County Level of Community Transmission as Originally Posted | Data | Centers for Disease Control and Prevention (cdc.gov).
Related data CDC has been providing the public with two versions of COVID-19 county-level community transmission level data: this dataset with the daily values as originally posted on the COVID Data Tracker, and an historical dataset with daily data as well as the updates and corrections from state and local health departments. Similar to this dataset, the original historical dataset is archived on 10/20/2022. It will continue to be publicly available but will no longer be updated. A new dataset containing historical community transmission data by county is now published weekly and can be found at: Weekly COVID-19 County Level of Community Transmission Historical Changes | Data | Centers for Disease Control and Prevention (cdc.gov).
This public use dataset has 7 data elements reflecting community transmission levels for all available counties and jurisdictions. It contains reported daily transmission levels at the county level with the same values used to display transmission maps on the COVID Data Tracker. Each day, the dataset is appended to contain the most recent day's data. Transmission level is set to low, moderate, substantial, or high using the calculation rules below.
Methods for calculating county level of community transmission indicator The County Level of Community Transmission indicator uses two metrics: (1) total new COVID-19 cases per 100,000 persons in the last 7 days and (2) percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests (NAAT) in the last 7 days. For each of these metrics, CDC classifies transmission values as low, moderate, substantial, or high (below and here). If the values for each of these two metrics differ (e.g., one indicates moderate and the other low), then the higher of the two should be used for decision-making.
CDC core metrics of and thresholds for community transmission levels of SARS-CoV-2
Total New Case Rate Metric: "New cases per 100,000 persons in the past 7 days" is calculated by adding the number of new cases in the county (or other administrative level) in the last 7 days divided by the population in the county (or other administrative level) and multiplying by 100,000. "New cases per 100,000 persons in the past 7 days" is considered to have a transmission level of Low (0-9.99); Moderate (10.00-49.99); Substantial (50.00-99.99); and High (greater than or equal to 100.00).
Test Percent Positivity Metric: "Percentage of positive NAAT in the past 7 days" is calculated by dividing the number of positive tests in the county (or other administrative level) during the last 7 days by the total number of tests conducted over the last 7 days. "Percentage of positive NAAT in the past 7 days" is considered to have a transmission level of Low (less than 5.00); Moderate (5.00-7.99); Substantial (8.00-9.99); and High (greater than or equal to 10.00).
If
The AP has requested a timeseries dataset reporting daily counts for distributed and administered vaccines in the U.S. from the CDC. In the absence of that dataset, we are storing daily snapshots of the cumulative counts provided by the CDC COVID Data Tracker and compiling a timeseries dataset here. This process has captured cumulative counts going back to January 4th and daily counts of new doses administered and distributed going back to January 5th. The timeseries dataset also includes seven-day rolling average calculations for the daily metrics.
We have identified a few instances of decreasing cumulative counts in this timeseries, which result in single-day negative counts. We are treating these instances as corrections, and include the negative counts in the rolling averages.
We are investigating the cumulative count decreases and will update the timeseries dataset if necessary with additional information from the CDC. When the CDC provides its own timeseries dataset we will make that available here.
The AP is using data provided by the Centers for Disease Control and Prevention to report vaccine doses distributed and administered in the United States.
This data is from the CDC's COVID Data Tracker, which is updated daily. However, keep in mind that healthcare providers can report doses to federal, state, territorial, and local agencies up to 72 hours after doses are administered.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
The AP has designed an interactive map to track COVID-19 vaccine counts reported by The CDC. @(https://interactives.ap.org/embeds/TUVpf/14/)
<iframe title="Tracking US COVID vaccinations" aria-label="Map" id="datawrapper-chart-TUVpf" src="https://interactives.ap.org/embeds/TUVpf/14/" scrolling="no" width="100%" style="border:none" height="548"></iframe><script type="text/javascript">!function(){"use strict";window.addEventListener("message",(function(a){if(void 0!==a.data["datawrapper-height"])for(var e in a.data["datawrapper-height"]){var t=document.getElementById("datawrapper-chart-"+e)||document.querySelector("iframe[src*='"+e+"']");t&&(t.style.height=a.data["datawrapper-height"][e]+"px")}}))}();</script>
From The CDC: - Numbers reported on CDC’s website are validated through a submission process with each jurisdiction and may differ from numbers posted on other websites. - Differences between reporting jurisdictions and CDC’s website may occur due to the timing of reporting and website updates. - The process used for reporting doses distributed or people vaccinated displayed by other websites may differ.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
COVID-19 confirmed cases and deaths by state as of July 28, 2020 from https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html and https://usafacts.org/visualizations/coronavirus-covid-19-spread-map The state numbers listed by the CDC are aggregated from the USAFact county data.The CDC reports healthcare personnel cases and infections (120,467 and 587 as of August 1, 2020; accessed August 2, 2020) but does not disaggregate the numbers by state.Healthcare worker deaths by state as of July 28, 2020 pulled from https://www.medscape.com/viewarticle/927976#vp_1
More than 450 public health and clinical laboratories located throughout the United States participate in surveillance for severe acute respiratory virus coronavirus type 2 (SARS-CoV-2), the virus that causes COVID-19, through CDC's National Respiratory and Enteric Virus Surveillance System (NREVSS). The dataset contains a weekly summary of aggregate counts of the total SARS-CoV-2 tests and SARS-CoV-2 detections reported to NREVSS since March 14, 2020. These data are reported weekly on a voluntary basis. Clinical laboratories do not report demographic data through NREVSS. Testing practices may vary regionally, and the number of participating laboratories may change from year to year. Results can be changed for up to 2 years after the initial reporting week. However, discrepancies may be noted and updated at the discretion of the data stewards and key stakeholders.
While NREVSS strives to present the most precise estimates of respiratory viral trends with reporting burden minimized for participating laboratories, there are several inherent limitations to this surveillance system.
NREVSS does not collect patient-specific data or demographic information. Multiple samples may be collected from a single patient, so NREVSS results do not necessarily reflect the number of patients tested, nor do they directly reflect hospitalizations or deaths related to COVID-19.
Participating laboratories vary in size, testing capabilities, and areas served. Some institutions may receive and test samples from sites across a given state or even from multiple states. Without direct knowledge of the population base, NREVSS cannot be used to determine the prevalence or incidence of infection.
For more information on NREVSS and COVID-19 surveillance please visit: https://www.cdc.gov/surveillance/nrevss. These data appear starting May 25, 2023 on the CDC COVID Data Tracker at the following URLs: https://covid.cdc.gov/covid-data-tracker/#trends ; https://covid.cdc.gov/covid-data-tracker/#cases.
NREVSS data are reported at the national and HHS regional levels. The ten (10) U.S. Department of HHS regions are defined here: https://www.hhs.gov/about/agencies/iea/regional-offices/index.html.
The data represent SARS-CoV-2 Nucleic Acid Amplification Test (NAAT) results, which include reverse transcriptase-polymerase chain reaction (RT-PCR) tests from a voluntary, sentinel network of participating laboratories in the United States, including clinical, public health and commercial laboratories (https://www.cdc.gov/surveillance/nrevss/labs/index.html).
These data exclude antigen, antibody, and at-home test results.
All data are provisional and subject to change. Reporting is less complete for the past 1 week, and more complete (>90%) for the period 2 weeks earlier.
There are data from all states across the 10 HHS regions. Because the data are from a sentinel network of laboratories, however, results may vary geographically. The data do not include all test results within a jurisdiction and therefore do not reflect all SARS-CoV-2 NAATs administered in the United States.
Percent positivity is one of the surveillance metrics used to monitor COVID-19 transmission over time and by area. Percent positivity is calculated by dividing the number of positive NAATs by the total number of NAATs administered, then multiplying by 100 [(# of positive NAAT tests / total NAAT tests) x 100].
The data represent laboratory tests performed, not individual (deduplicated) results in people. In the table and upon hovering on the map, the total test counts in the data reflect the latest data reported from NREVSS laboratories and may not match the data presented by various jurisdictions.
On May 11, 2023, CDC discontinued utilizing the COVID electronic laboratory reporting (CELR) platform as the primary laboratory source of COVID-19 results. These data are archived at health.data.gov.
For more information about NREVSS, please see: https://www.cdc.gov/surveillance/nrevss/index.html.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
At the US Centers for Disease Control and Prevention (CDC), a new effort is under way to assist states in creating or enhancing localized COVID-19 dashboards and maps for the public. This effort with states has an external focus, aiming to help the them deliver data to residents, civic leaders, and public health administrators. Armed with this information, states and localities will be better equipped to monitor the impacts and mitigate risks, and federal resources can go where they are needed most, because everyone will be working from the same data._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit the following sources:Global: World Health Organization (WHO)U.S.: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This web map contains the most up-to-date information on confirmed cases of the coronavirus COVID-19 in the US. Data is pulled from the Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, the Red Cross, the Census American Community Survey, and the Bureau of Labor and Statistics, and aggregated at the US county level. This web map created and maintained by the Centers for Civic Impact at the Johns Hopkins University, and is supported by the Esri Living Atlas team and JHU Data Services. It is used in the COVID-19 United States Cases by County dashboard. For more information on Johns Hopkins University’s response to COVID-19, visit the Johns Hopkins Coronavirus Resource Center where our experts help to advance understanding of the virus, inform the public, and brief policymakers in order to guide a response, improve care, and save lives.
sde_grasp_svi_2018.sde.SVI2018_US_tract
On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.Trends represent the day-to-day rate of new cases with a focus on the most recent 10 to 14 days. Includes Puerto Rico, Guam, Northern Marianas, and U.S. Virgin Islands. Daily new case counts are volatile for many reasons and sometimes the trends reflect that volatility. Thus, we decided to include longer-term summaries here. County Trends as of 9 Mar 20230 (-0) in Emergent1135 (+51) in Spreading1664 (-63) in Epidemic230 (+10) in Controlled110 (+2) in End StageNotes: Many states now only report once per week, and FL only once every two weeks. On 3/7/2022 we adjusted the formula for active cases to reflect the Omicron Variant which is documented to cause lower rates of serious and severe illness. To produce these trends we analyze daily updates from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.For more information about COVID-19 trends, see our country level trends story map and the full methodology.Data Source: Johns Hopkins University CSSE US Cases by County dashboard and USAFacts for Utah County level Data.Feature layer generated from running the Join Features solution that is the basis for daily updates for the U.S. County COVID-19 Tends Story Map.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.
So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.
Johns Hopkins University has made an excellent dashboard using the affected cases data. This data is extracted from the same link and made available in csv format.
2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC
This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus.
The data is available from 22 Jan 2020.
Johns Hopkins university has made the data available in google sheets format here. Sincere thanks to them.
Thanks to WHO, CDC, NHC and DXY for making the data available in first place.
Picture courtesy : Johns Hopkins University dashboard
Some insights could be
With the federal COVID-19 Public Health Emergency ending on May 11th, the Montana Department of Health & Human Services will discontinue weekly updates to the COVID-19 case tracking and vaccine map dashboards and feature services. The last weekly update to the dashboards will take place on May 5th, 2023. After this final data update, the dashboards will remain available to viewers until July 14th, 2023. However, it should be noted that data will not be current after May 5th, 2023.To access up-to-date COVID-19 data for Montana after 5/11/2023, visit the CDC’s COVID Data Tracker website: https://covid.cdc.gov/covid-data-trackerThe Montana COVID-19 Vaccination Data web service hosts COVID-19 vaccination statistics for the state of Montana. The Department of Health and Human Service tabulates vaccination data and then gives the data to the Montana State Library to update the number of vaccine doses administered (daily) and Montana county vaccination data (weekly). Montana public health agencies and the Governor's Coronavirus task Force are actively working to limit the spread of novel coronavirus in Montana. The Montana State Library is aiding this effort by geo-enabling public health information and emergency response data to help decision-makers, State Emergency Coordination Center and the Governor's Coronavirus Task Force understand the spread of the disease.
On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit the following sources:Global: World Health Organization (WHO)U.S.: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This feature layer contains the most up-to-date COVID-19 cases for the US. Data is pulled from the Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, the Red Cross, the Census American Community Survey, and the Bureau of Labor and Statistics, and aggregated at the US county level. This web map created and maintained by the Centers for Civic Impact at the Johns Hopkins University, and is supported by the Esri Living Atlas team and JHU Data Services. It is used in the COVID-19 United States Cases by County dashboard. For more information on Johns Hopkins University’s response to COVID-19, visit the Johns Hopkins Coronavirus Resource Center where our experts help to advance understanding of the virus, inform the public, and brief policymakers in order to guide a response, improve care, and save lives.
This feature layer visualizes the 2018 overall SVI for U.S. counties and tractsSocial Vulnerability Index (SVI) indicates the relative vulnerability of every U.S. county and tract15 social factors grouped into four major themesIndex value calculated for each county for the 15 social factors, four major themes, and the overall rankWhat is CDC Social Vulnerability Index?ATSDR’s Geospatial Research, Analysis & Services Program (GRASP) has created a tool to help emergency response planners and public health officials identify and map the communities that will most likely need support before, during, and after a hazardous event.The Social Vulnerability Index (SVI) uses U.S. Census data to determine the social vulnerability of every county and tract. CDC SVI ranks each county and tract on 15 social factors, including poverty, lack of vehicle access, and crowded housing, and groups them into four related themes:SocioeconomicHousing Composition and DisabilityMinority Status and LanguageHousing and Transportation VariablesFor a detailed description of variable uses, please refer to the full SVI 2018 documentation.RankingsWe ranked counties and tracts for the entire United States against one another. This feature layer can be used for mapping and analysis of relative vulnerability of counties in multiple states, or across the U.S. as a whole. Rankings are based on percentiles. Percentile ranking values range from 0 to 1, with higher values indicating greater vulnerability. For each county and tract, we generated its percentile rank among all counties and tracts for 1) the fifteen individual variables, 2) the four themes, and 3) its overall position. Overall Rankings:We totaled the sums for each theme, ordered the counties, and then calculated overall percentile rankings. Please note: taking the sum of the sums for each theme is the same as summing individual variable rankings.The overall tract summary ranking variable is RPL_THEMES. Theme rankings:For each of the four themes, we summed the percentiles for the variables comprising each theme. We ordered the summed percentiles for each theme to determine theme-specific percentile rankings. The four summary theme ranking variables are: Socioeconomic theme - RPL_THEME1Housing Composition and Disability - RPL_THEME2Minority Status & Language - RPL_THEME3Housing & Transportation - RPL_THEME4FlagsCounties in the top 10%, i.e., at the 90th percentile of values, are given a value of 1 to indicate high vulnerability. Counties below the 90th percentile are given a value of 0. For a theme, the flag value is the number of flags for variables comprising the theme. We calculated the overall flag value for each county as the total number of all variable flags. SVI Informational VideosIntroduction to CDC Social Vulnerability Index (SVI)Methods for CDC Social Vulnerability Index (SVI)More Questions?CDC SVI 2018 Full DocumentationSVI Home PageContact the SVI Coordinator
On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit the following sources:Global: World Health Organization (WHO)U.S.: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This feature layer contains the most up-to-date COVID-19 cases for the US and Canada. Data sources: WHO, CDC, ECDC, NHC, DXY, 1point3acres, Worldometers.info, BNO, state and national government health departments, and local media reports. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by the Esri Living Atlas team and JHU Data Services. This layer is opened to the public and free to share. Contact Johns Hopkins.IMPORTANT NOTICE: 1. Fields for Active Cases and Recovered Cases are set to 0 in all locations. John Hopkins has not found a reliable source for this information at the county level but will continue to look and carry the fields.2. Fields for Incident Rate and People Tested are placeholders for when this becomes available at the county level.3. In some instances, cases have not been assigned a location at the county scale. those are still assigned a state but are listed as unassigned and given a Lat Long of 0,0.Data Field Descriptions by Alias Name:Province/State: (Text) Country Province or State Name (Level 2 Key)Country/Region: (Text) Country or Region Name (Level 1 Key)Last Update: (Datetime) Last data update Date/Time in UTCLatitude: (Float) Geographic Latitude in Decimal Degrees (WGS1984)Longitude: (Float) Geographic Longitude in Decimal Degrees (WGS1984)Confirmed: (Long) Best collected count of Confirmed Cases reported by geographyRecovered: (Long) Not Currently in Use, JHU is looking for a sourceDeaths: (Long) Best collected count for Case Deaths reported by geographyActive: (Long) Confirmed - Recovered - Deaths (computed) Not Currently in Use due to lack of Recovered dataCounty: (Text) US County Name (Level 3 Key)FIPS: (Text) US State/County CodesCombined Key: (Text) Comma separated concatenation of Key Field values (L3, L2, L1)Incident Rate: (Long) People Tested: (Long) Not Currently in Use Placeholder for additional dataPeople Hospitalized: (Long) Not Currently in Use Placeholder for additional data
As of March 10, 2023, the death rate from COVID-19 in the state of New York was 397 per 100,000 people. New York is one of the states with the highest number of COVID-19 cases.
On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This map is updated weekly and currently shows data through Mar 5, 2023. Notes: as of 5/25/2021, Nebraska stopped sharing COVID-19 testing and on 9/26/21 began, but with a lump sum for the previous four months. Nebraska's reporting became unconsumable by JHU on July 1, 2022. Maryland stopped reporting results for several weeks on 12/4/2021 due to a website hack.It shows COVID-19 Trend for the most recent Monday with a colored dot for each county. The larger the dot, the longer the county has had this trend.Includes Puerto Rico, Guam, Northern Marianas, U.S. Virgin Islands.The intent of this map is to give more context than just the current day of new data because daily data for COVID-19 cases is volatile and can be unreliable on the day it is first reported. Weekly summaries in the counts of new cases smooth out this volatility.Click or tap on a county to see a history of trend changes and a weekly graph of new cases going back to February 1, 2020.For more information about COVID-19 trends, see the full methodology.Data Source: Johns Hopkins University CSSE US Cases by County dashboard and USAFacts for Utah County level Data.
Infectious disease experts have predicted a pandemic, saying it was not a question of if but when. Drawing on experiences with severe acute respiratory syndrome (SARS), avian influenza (H5N1), and novel influenza A (H1N1), the World Health Organization (WHO) and other health authorities, such as the Centers for Disease Control and Prevention (CDC), urged nations and local governments to prepare pandemic response plans. Many ministries of health and subnational departments of health around the world have activated those plans in response to coronavirus and are sharing data as required by the updated International Health Regulations.Esri's work with health organizations and government leaders has proven location intelligence from geographic information system (GIS) technology and data to be critical for the following:Assessing risk and evaluating threatsMonitoring and tracking outbreaksMaintaining situational awarenessEnsuring resource allocationNotifying agencies and communitiesThe current coronavirus disease pandemic presents an opportunity to build on the experience and readiness of Esri's existing global user community in health and human services. Through real-time maps, apps, and dashboards, GIS will also facilitate a seamless flow of relevant data as a component of the response from local to global levels. A compelling case exists for building on top of the public health GIS foundation that is already in place both in the United States and around the world.After reading this paper, leadership and senior staff should understand the following:The necessity to apply location intelligence to public health processes in coronavirus responseHow GIS can support immediate and long-term actionWhat resources Esri provides its customers
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
This public use dataset has 11 data elements reflecting COVID-19 community levels for all available counties. This dataset contains the same values used to display information available at https://www.cdc.gov/coronavirus/2019-ncov/science/community-levels-county-map.html.
CDC looks at the combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days — to determine the COVID-19 community level. The COVID-19 community level is determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.
Using these data, the COVID-19 community level is classified as low, medium , or high.
COVID-19 Community Levels can help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals. See https://www.cdc.gov/coronavirus/2019-ncov/science/community-levels.html for more information.
Visit CDC’s COVID Data Tracker County View* to learn more about the individual metrics used for CDC’s COVID-19 community level in your county. Please note that county-level data are not available for territories. Go to https://covid.cdc.gov/covid-data-tracker/#county-view.
For the most accurate and up-to-date data for any county or state, visit the relevant health department website. *COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.