Facebook
TwitterDeaths counts for influenza, pneumonia, and COVID-19 reported to NCHS by week ending date, by state and HHS region, and age group.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov.Deaths involving COVID-19, pneumonia, and influenza reported to NCHS by sex, age group, and jurisdiction of occurrence.
Facebook
TwitterEffective June 28, 2023, this dataset will no longer be updated. Data deaths by place of death are available in this dataset https://data.cdc.gov/NCHS/d/4va6-ph5s. Deaths involving COVID-19, pneumonia and influenza reported to NCHS by place of death and state, United States.
Facebook
TwitterEffective September 27, 2023, this dataset will be updated weekly on Thursdays. Deaths involving COVID-19, pneumonia, and influenza reported to NCHS by week ending date and by state
Facebook
Twitterhttps://www.usa.gov/government-works/https://www.usa.gov/government-works/
Corona virus cases in the US is stacking up higher and higher. Understanding this virus is crucial to stopping it's spread.
The dataset shows, deaths involving coronavirus disease 2019 (COVID-19), pneumonia, and influenza reported to NCHS by sex and age group and state.
Credits to this data set comes from : https://data.cdc.gov/NCHS/Provisional-COVID-19-Death-Counts-by-Sex-Age-and-S/9bhg-hcku
Facebook
TwitterStatistical information on deaths of confirmed cases of Severe special infectious pneumonia(COVID-19) from 2020, sub-statistical tables stratified by region, age group, and gender. This data set is updated once a day according to the fixed schedule of the system. At present, there are more cases of severe special contagious pneumonia imported from abroad than those diagnosed at the airport or centralized quarantine center, and they are immediately isolated and treated, so the county and city information is not indicated.
Facebook
TwitterEffective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov.
Deaths involving COVID-19, pneumonia, and influenza reported to NCHS by race, age, and jurisdiction of occurrence.
Facebook
TwitterProvisional COVID-19 Deaths by Sex and Age
Description
Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov. Deaths involving COVID-19, pneumonia, and influenza reported to NCHS by sex, age group, and jurisdiction of occurrence.
Dataset Details
Publisher: Centers for Disease Control and Prevention Temporal Coverage: 2020-01-01/2023-07-29 Geographic Coverage: United States, Puerto Rico Last… See the full description on the dataset page: https://huggingface.co/datasets/HHS-Official/provisional-covid-19-deaths-by-sex-and-age.
Facebook
TwitterThis dataset is a per-state amalgamation of demographic, public health and other relevant predictors for COVID-19.
Used positive, death and totalTestResults from the API for, respectively, Infected, Deaths and Tested in this dataset.
Please read the documentation of the API for more context on those columns
Density is people per meter squared https://worldpopulationreview.com/states/
https://worldpopulationreview.com/states/gdp-by-state/
https://worldpopulationreview.com/states/per-capita-income-by-state/
https://en.wikipedia.org/wiki/List_of_U.S._states_by_Gini_coefficient
Rates from Feb 2020 and are percentage of labor force
https://www.bls.gov/web/laus/laumstrk.htm
Ratio is Male / Female
https://www.kff.org/other/state-indicator/distribution-by-gender/
https://worldpopulationreview.com/states/smoking-rates-by-state/
Death rate per 100,000 people
https://www.cdc.gov/nchs/pressroom/sosmap/flu_pneumonia_mortality/flu_pneumonia.htm
Death rate per 100,000 people
https://www.cdc.gov/nchs/pressroom/sosmap/lung_disease_mortality/lung_disease.htm
https://www.kff.org/other/state-indicator/total-active-physicians/
https://www.kff.org/other/state-indicator/total-hospitals
Includes spending for all health care services and products by state of residence. Hospital spending is included and reflects the total net revenue. Costs such as insurance, administration, research, and construction expenses are not included.
https://www.kff.org/other/state-indicator/avg-annual-growth-per-capita/
Pollution: Average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)
https://www.americashealthrankings.org/explore/annual/measure/air/state/ALL
For each state, number of medium and large airports https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States
Note that FL was incorrect in the table, but is corrected in the Hottest States paragraph
https://worldpopulationreview.com/states/average-temperatures-by-state/
District of Columbia temperature computed as the average of Maryland and Virginia
Urbanization as a percentage of the population https://www.icip.iastate.edu/tables/population/urban-pct-states
https://www.kff.org/other/state-indicator/distribution-by-age/
Schools that haven't closed are marked NaN https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html
Note that some datasets above did not contain data for District of Columbia, this missing data was found via Google searches manually entered.
Facebook
TwitterOver 12 million people in the United States died from all causes between the beginning of January 2020 and August 21, 2023. Over 1.1 million of those deaths were with confirmed or presumed COVID-19.
Vaccine rollout in the United States Finding a safe and effective COVID-19 vaccine was an urgent health priority since the very start of the pandemic. In the United States, the first two vaccines were authorized and recommended for use in December 2020. One has been developed by Massachusetts-based biotech company Moderna, and the number of Moderna COVID-19 vaccines administered in the U.S. was over 250 million. Moderna has also said that its vaccine is effective against the coronavirus variants first identified in the UK and South Africa.
Facebook
TwitterDeaths involving coronavirus disease 2019 (COVID-19) and pneumonia reported to NCHS by jurisdiction of occurrence, place of death, and age group.
Facebook
TwitterDataset aims to facilitate a state by state comparison of potential risk factors that may heighten Covid 19 transmission rates or deaths. It includes state by state estimates of: covid 19 positives/deaths, flu/pneumonia deaths, major city population densities, available hospital resources, high risk health condition prevalance, population over 60, means of work transportation rates, housing characteristics (ie number of large apartment complexes/seniors living alone), and industry information.
The Data Includes:
1) Covid 19 Outcome Stats:
Covid_Death : Covid Deaths by State
Covid_Positive : Covid Positive Tests by State
2) US Major City Population Density by State: CBSA_Major_City_max_weighted_density
3) KFF Estimates of Total Hospital Beds by State:
Kaiser_Total_Hospital_Beds
4) 2018 Season Flu and Pneumonia Death Stats:
FLUVIEW_TOTAL_PNEUMONIA_DEATHS_Season_2018
FLUVIEW_TOTAL_INFLUENZA_DEATHS_Season_2018
5)US Total Rates of Flu Hospitalization by Underlying Condition:
Fluview_US_FLU_Hospitalization_Rate_....
6) State by State BRFSS Prevalance Rates of Conditions Associated with Higher Flu Hospitalization Rates
BRFSS_Diabetes_Prevalance
BRFSS_Asthma_Prevalance
BRFSS_COPD_Prevalance
BRFSS_Obesity BMI Prevalance
BRFSS_Other_Cancer_Prevalance
BRFSS_Kidney_Disease_Prevalance
BRFSS_Obesity BMI Prevalance
BRFSS_2017_High_Cholestoral_Prevalance
BRFSS_2017_High_Blood_Pressure_Prevalance
Census_Population_Over_60
7)State by state breakdown of Means of Work Transpotation:
COMMUTE_Census_Worker_Public_Transportation_Rate
8) State by state breakdown of Housing Characteristics
9) State by State breakdown of Industry Information
Links to data sources:
https://worldpopulationreview.com/states/
https://covidtracking.com/data/
https://gis.cdc.gov/GRASP/Fluview/FluHospRates.html https://www.kff.org/health-costs/issue-brief/state-data-and-policy-actions-to-address-coronavirus/#stateleveldata
Census Tables: ACSST1Y2018.S1811 ACSST1Y2018.S0102 ACSST1Y2018.S2403 ACSST1Y2018.S2501 ACSST1Y2018.S2504
https://www.census.gov/library/visualizations/2012/dec/c2010sr-01-density.html
https://gis.cdc.gov/grasp/fluview/mortality.html
I hope to show the existence of correlations that warrant a deeper county by county analysis to identify areas of increased risk requiring increased resource allocation or increased attention to preventative measures.
Facebook
Twitterhttps://creativecommons.org/share-your-work/public-domain/pdmhttps://creativecommons.org/share-your-work/public-domain/pdm
Variety of data files supporting CDC vaccination dashboards, downloaded 2.4.25. Includes weekly vaccination data for children, adults;COVID vaccination coverage overall and for pregnant women, nursing home residents, adults;Laboratory-confirmed RSV, COVID-19, and flu hospitalizations (source: RESPNet);Deaths from COVID-19, influenza, and RSV overall, by state, by race and ethnicity;ED visits with COVID-19, influenza, RSV, by demographics;NIS-ACM data on COVID-19 for adults (source:RespVaxView);Cumulative COVID-19 vaccination by age, jurisdictionCDC wastewater surviellance data tablesFluView Phase 2 Data***For CDC Covid-19 Nursing Home Data:Microdata: YesLevel of Analysis: Nursing HomesVariables Present: YesFile Layout: .csvCodebook: Yes Methods: YesWeights (with appropriate documentation): NoPublications: NoAggregate Data: No***For CDC NHSN Report State HCP Influenza Vaccination:Microdata: NoLevel of Analysis: StateVariables Present: YesFile Layout: N/ACodebook: NoMethods: YesWeights (with appropriate documentation): NoPublications: NoAggregate Data: No***For CDC Adult Covid NIS-ACM RespVax Data: Microdata: YesLevel of Analysis: Local - county, cityVariables Present: YesFile Layout: .csvCodebook: YesMethods: YesWeights (with appropriate documentation): YesPublications: NoAggregate Data: No***For NSSP Emergency Department Visits - COVID-19, Flu, etc. Microdata: YesLevel of Analysis: AilmentsVariables Present: YesFile Layout: .csvCodebook: NoMethods: Yes (https://docs.google.com/spreadsheets/d/19Po9Ir57Q-81Q5DfE1yKnW9NDLHXqPXc2307QY1hq24/edit?gid=1803019...) Weights (with appropriate documentation): NoPublications: NoAggregate Data: Yes***For CDC Percentage of Emergency Department Visits with Diagnosed COVID-19 in US:Microdata: YesLevel of Analysis: Demographic GroupsVariables Present: YesFile Layout: .csvCodebook: NoMethods: Yes (https://archive.cdc.gov/www_cdc_gov/ncird/surveillance/respiratory-illnesses/index.html)Weights (with appropriate documentation): NoPublications: NoAggregate Data: Yes***CDC Provisional COVID-19, Flu, and Pneumonia Death Counts:Microdata: YesLevel of Analysis: State, Demographic GroupsVariables Present: YesFile Layout: .csvCodebook: Yes (https://www.cdc.gov/nchs/nvss/vsrr/covid19/index.htm)Methods: YesWeights (with appropriate documentation): NoPublications: NoAggregate Data: No***For CDC Rates of Laboratory Confirmed RSV, Covid Hospitalizations:Microdata: YesLevel of Analysis: Weekly Rates by StateVariables Present: YesFile Layout: .csvCodebook: YesMethods: YesWeights (with appropriate documentation): NoPublications: NoAggregate Data: No***For CDC Vaccination Rates Among Adults 18 Years and Older :Microdata: YesLevel of Analysis: Yearly State Rate by Demographic Variables Present: YesFile Layout: .csvCodebook: YesMethods: Yes https://www.cdc.gov/adultvaxview/publications-resources/vaccination-coverage-adults-2021.html Weights (with appropriate documentation): NoPublications: NoAggregate Data: No***For CDC Vaccination Rates Among Pregnant Women:Microdata: YesLevel of Analysis: Percent Vaccinated Per Year by Demographic Type and Vaccination StatusVariables Present: YesFile Layout: .csvCodebook: YesMethods: Yes https://www.cdc.gov/fluvaxview/coverage-by-season/pregnant-april-2024.htmlWeights (with appropriate documentation): NoPublications: NoAggregate Data: Yes***For CDC Weekly Cum. COVID-19 Vaccination Coverage by Season, Race and Ethnicity, Medicare FFS aged 65+:Microdata: YesLevel of Analysis: Demographic Groups Variables Present: YesFile Layout: .csvCodebook: Yes https://data.cdc.gov/Vaccinations/Weekly-Cumulative-COVID-19-Vaccination-Coverage-an/ksfb-ug5d/about...Methods: Yes (above link)Weights (with appropriate documentation): NoPublications: NoAggregate Data: Yes***CDC Weekly Cum. Est No COVID-19 Vax Admin in Pharmacy...:Microdata: YesLevel of Analysis: National (delineated by Age Group)Variables Present: Yes - separate document https://data.cdc.gov/Vaccinations/Weekly-Cumulative-Estimated-Number-of-COVID-19-Vac/ewpg-rz7g/about...File Layout: .csvCodebook: Yes (see above link)Methods: Yes (see above link)Weights (with appropriate documentation): NoPublications: NoAggregate Data: No***CDC Weekly Cum. Doses (in millions) of Influenza Vaccinations...:Microdata: YesLevel of Analysis: National Variables Present: Yes Fi
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset on deaths involving COVID-19, pneumonia, and influenza reported to NCHS by race, age, and jurisdiction of occurrence.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Amidst the COVID-19 outbreak, the world is facing great crisis in every way. The value and things we built as a human race are going through tremendous challenges. It is a very small effort to bring curated data set on Novel Corona Virus to accelerate the forecasting and analytical experiments to cope up with this critical situation. It will help to visualize the country level out break and to keep track on regularly added new incidents.
This Dataset contains country wise public domain time series information on COVID-19 outbreak. The Data is sorted alphabetically on Country name and Date of Observation.
The data set contains the following columns:
ObservationDate: The date on which the incidents are observed
country: Country of the Outbreak
Confirmed: Number of confirmed cases till observation date
Deaths: Number of death cases till observation date
Recovered: Number of recovered cases till observation date
New Confirmed: Number of new confirmed cases on observation date
New Deaths: Number of New death cases on observation date
New Recovered: Number of New recovered cases on observation date
latitude: Latitude of the affected country
longitude: Longitude of the affected country
This data set is a cleaner version of the https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset data set with added geo location information and regularly added incident counts. I would like to thank this great effort by SRK.
Johns Hopkins University MoBS lab - https://www.mobs-lab.org/2019ncov.html World Health Organization (WHO): https://www.who.int/ DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia. BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/ National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html Macau Government: https://www.ssm.gov.mo/portal/ Taiwan CDC: https://sites.google.com/cdc.gov.tw/2019ncov/taiwan?authuser=0 US CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html Government of Canada: https://www.canada.ca/en/public-health/services/diseases/coronavirus.html Australia Government Department of Health: https://www.health.gov.au/news/coronavirus-update-at-a-glance European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases Ministry of Health Singapore (MOH): https://www.moh.gov.sg/covid-19 Italy Ministry of Health: http://www.salute.gov.it/nuovocoronavirus
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Dataset includes the weekly provisional count of deaths in the United States due to COVID-19, deaths from all causes and percent of expected deaths (i.e., number of deaths received over number of deaths expected based on data from previous years), pneumonia deaths (excluding pneumonia deaths involving influenza), and pneumonia deaths involving COVID-19; (a) by week ending date, (b) by age at death, and (c) by specific jurisdictions.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.
So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.
Johns Hopkins University has made an excellent dashboard using the affected cases data. Data is extracted from the google sheets associated and made available here.
Now data is available as csv files in the Johns Hopkins Github repository. Please refer to the github repository for the Terms of Use details. Uploading it here for using it in Kaggle kernels and getting insights from the broader DS community.
2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC
This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number.
The data is available from 22 Jan, 2020.
Here’s a polished version suitable for a professional Kaggle dataset description:
This dataset contains time-series and case-level records of the COVID-19 pandemic. The primary file is covid_19_data.csv, with supporting files for earlier records and individual-level line list data.
This is the primary dataset and contains aggregated COVID-19 statistics by location and date.
This file contains earlier COVID-19 records. It is no longer updated and is provided only for historical reference. For current analysis, please use covid_19_data.csv.
This file provides individual-level case information, obtained from an open data source. It includes patient demographics, travel history, and case outcomes.
Another individual-level case dataset, also obtained from public sources, with detailed patient-level information useful for micro-level epidemiological analysis.
✅ Use covid_19_data.csv for up-to-date aggregated global trends.
✅ Use the line list datasets for detailed, individual-level case analysis.
If you are interested in knowing country level data, please refer to the following Kaggle datasets:
India - https://www.kaggle.com/sudalairajkumar/covid19-in-india
South Korea - https://www.kaggle.com/kimjihoo/coronavirusdataset
Italy - https://www.kaggle.com/sudalairajkumar/covid19-in-italy
Brazil - https://www.kaggle.com/unanimad/corona-virus-brazil
USA - https://www.kaggle.com/sudalairajkumar/covid19-in-usa
Switzerland - https://www.kaggle.com/daenuprobst/covid19-cases-switzerland
Indonesia - https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases
Johns Hopkins University for making the data available for educational and academic research purposes
MoBS lab - https://www.mobs-lab.org/2019ncov.html
World Health Organization (WHO): https://www.who.int/
DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia.
BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/
National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml
China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm
Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html
Macau Government: https://www.ssm.gov.mo/portal/
Taiwan CDC: https://sites.google....
Facebook
TwitterI continue to work on improving this Dataset and will upload as soon as I have an improved version of it. I don't own this dataset, I have merely tried to enrich the data that is gathered from multiple sources by John Hopkins CSSE.
COVID-19 is perhaps the biggest historical event of our lifetime with the kind of destruction and disruption it has already caused to the people around the world. I wanted to build a dashboard summarizing the events from beginning to date and that's the reason I worked on combining all the daily reports into one file.
This file consists of incidents reported from across the world Jan 22 onwards. Incidents are categorized into Confirmed, Deaths and Recovered. Country/Region and/or Province/State information is available. Geo-coordinates are available but these are missing for countries like China
This data belongs to John Hopkins CSSE which they gathered from multiple sources. Below is from JHU Github account, please read before using the dataset.
This is the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). Also, Supported by ESRI Living Atlas Team and the Johns Hopkins University Applied Physics Lab (JHU APL).
Visual Dashboard (desktop): https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
Visual Dashboard (mobile): http://www.arcgis.com/apps/opsdashboard/index.html#/85320e2ea5424dfaaa75ae62e5c06e61
Lancet Article: An interactive web-based dashboard to track COVID-19 in real time
Provided by Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE): https://systems.jhu.edu/
Data Sources:
World Health Organization (WHO): https://www.who.int/ DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia. BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/ National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html Macau Government: https://www.ssm.gov.mo/portal/ Taiwan CDC: https://sites.google.com/cdc.gov.tw/2019ncov/taiwan?authuser=0 US CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html Government of Canada: https://www.canada.ca/en/public-health/services/diseases/coronavirus.html Australia Government Department of Health: https://www.health.gov.au/news/coronavirus-update-at-a-glance European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases Ministry of Health Singapore (MOH): https://www.moh.gov.sg/covid-19 Italy Ministry of Health: http://www.salute.gov.it/nuovocoronavirus 1Point3Arces: https://coronavirus.1point3acres.com/en WorldoMeters: https://www.worldometers.info/coronavirus/
Additional Information about the Visual Dashboard: https://systems.jhu.edu/research/public-health/ncov/
Contact Us:
Email: jhusystems@gmail.com
Terms of Use:
This GitHub repo and its contents herein, including all data, mapping, and analysis, copyright 2020 Johns Hopkins University, all rights reserved, is provided to the public strictly for educational and academic research purposes. The Website relies upon publicly available data from multiple sources, that do not always agree. The Johns Hopkins University hereby disclaims any and all representations and warranties with respect to the Website, including accuracy, fitness for use, and merchantability. Reliance on the Website for medical guidance or use of the Website in commerce is strictly prohibited.
COVID-19 is perhaps the biggest historical event of our lifetime with the kind of destruction and disruption it has already caused to the people around the world. I wanted to build a dashboard summarizing the events from beginning to date and that's the reason I worked on combining all the daily reports into one file.
Facebook
TwitterFrom World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.
So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.
Johns Hopkins University has made an excellent dashboard using the affected cases data. Data is extracted from the google sheets associated and made available here.
Edited: Now data is available as csv files in the Johns Hopkins Github repository. Please refer to the github repository for the Terms of Use details. Uploading it here for using it in Kaggle kernels and getting insights from the broader DS community.
2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC
This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number.
The data is available from 22 Jan, 2020.
Main file in this dataset is covid_19_data.csv and the detailed descriptions are below.
covid_19_data.csv
Apart from that these two files have individual level information
COVID_open_line_list_data.csv This file is originally obtained from this link
COVID19_line_list_data.csv This files is originally obtained from this link
Country level datasets
If you are interested in knowing country level data, please refer to the following Kaggle datasets:
South Korea - https://www.kaggle.com/kimjihoo/coronavirusdataset
Italy -
https://www.kaggle.com/sudalairajkumar/covid19-in-italy
Some useful insi...
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Coronavirus disease 2019 (COVID-19) time series listing confirmed cases, reported deaths and reported recoveries. Data is disaggregated by country (and sometimes subregion). Coronavirus disease (COVID-19) is caused by the Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) and has had a worldwide effect. On March 11 2020, the World Health Organization (WHO) declared it a pandemic, pointing to the over 118,000 cases of the coronavirus illness in over 110 countries and territories around the world at the time.
Facebook
TwitterDeaths counts for influenza, pneumonia, and COVID-19 reported to NCHS by week ending date, by state and HHS region, and age group.