This application provides an interactive maps for model-based chronic disease related estimates of the CDC PLACES (Population Level Analysis and Community Estimates). PLACES is an expansion of the original 500 Cities project and is funded by the Robert Wood Johnson Foundation through the CDC Foundation. PLACES includes 49 measures (12 health outcomes, 7 prevention measures, 4 health risk behaviors, 7 disabilities, 3 health status, 7 health-related social needs, and 9 social determinants of health) at county, place (incorporated and census designated places), census tract, and ZIP Code Tabulation Area (ZCTA) levels.The health outcomes measures include arthritis, current asthma, high blood pressure, cancer (non-skin) or melanoma, high cholesterol, chronic obstructive pulmonary disease (COPD), coronary heart disease, diagnosed diabetes, depression, obesity, all teeth lost, and stroke.The prevention measures include lack of health insurance, routine checkup within the past year, visited dentist or dental clinic in the past, taking medicine to control high blood pressure, cholesterol screening, mammography use for women, cervical cancer screening for women, and colorectal cancer screening.The health risk behaviors include binge drinking, current cigarette smoking, physical inactivity, and short sleep duration.The disability measures are six disability types (hearing, vision, cognitive, mobility, self-care, and independent living) and any disability.The health status measures include frequent mental distress, frequent physical distress, and poor or fair health.The health-related social needs measures include social isolation, food stamps, food insecurity, housing insecurity, utility services threat, transportation barriers, and lack of social and emotional support. The non-medical factor measures include population 65 years or older, no broadband, crowding, housing cost burden, no high school diploma, poverty, racial or ethnic minority status, single-parent households, and unemployment from U.S. Census Bureau’s American Community Health Survey.For more information, please visit https://www.cdc.gov/places or to contact places@cdc.gov.
This dataset contains model-based place (incorporated and census designated places) level estimates for the PLACES 2022 release in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2020 or 2019 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2022 release uses 2020 BRFSS data for 25 measures and 2019 BRFSS data for 4 measures (high blood pressure, taking high blood pressure medication, high cholesterol, and cholesterol screening) that the survey collects data on every other year. These data can be joined with the 2019 Census TIGER/Line place boundary file in a GIS system to produce maps for 29 measures at the place level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7
This dataset contains model-based county-level estimates for the PLACES 2021 release in GIS-friendly format. PLACES is the expansion of the original 500 Cities Project and covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area (ZCTA) levels. It represents a first-of-its kind effort to release information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. Project was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2019 or 2018 data, Census Bureau 2019 or 2018 county population estimates, and American Community Survey (ACS) 2015–2019 or 2014–2018 estimates. The 2021 release uses 2019 BRFSS data for 22 measures and 2018 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours a night). Seven measures are based on the 2018 BRFSS data because the relevant questions are only asked every other year in the BRFSS. These data can be joined with the census 2015 county boundary file in a GIS system to produce maps for 29 measures at the county level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=024cf3f6f59e49fe8c70e0e5410fe3cf
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.
The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.
Using these data, the COVID-19 community level was classified as low, medium, or high.
COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.
For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.
Archived Data Notes:
This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.
March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.
March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.
March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.
March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.
March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).
March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.
April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.
April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.
May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.
May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.
May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.
June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.
June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.
June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.
July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.
July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.
July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.
July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.
July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.
August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.
August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.
August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.
August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.
August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.
August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.
August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.
September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.
September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,
This dataset contains model-based census tract level estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. These data can be joined with the Census tract 2022 boundary file in a GIS system to produce maps for 40 measures at the census tract level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7
This map shows where obesity and diabetes are happening in the US, by county. It shows each component of the map as its own layer, and also shows the patterns overlapping. Diabetes prevalence (% of adults)Obesity prevalence (% of adults)This data can be used to assess the health factors, and answer questions such as:Are certain counties more/less at risk in regards to diabetes and obesity?Are diabetes, obesity, and physical inactivity happening within the same areas of the US?According to the CDC: "These data can help the public to better use existing resources for diabetes management and prevention efforts." The data comes from the Behavioral Risk Factor Surveillance System (BRFSS) through the Centers for Disease Control and Prevention (CDC), and the data vintage is 2013. To explore other county indicators, different vintages, or the original data, click here. To view the interactive map through the CDC website, click here. To learn more about the methodology of how county-level estimates are calculated, see this PDF.
This dataset contains model-based county-level estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. Project was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2021 or 2020 data, Census Bureau 2021 or 2020 county population estimates, and American Community Survey (ACS) 2017–2021 or 2016–2020 estimates. The 2023 release uses 2021 BRFSS data for 29 measures and 2020 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours) that the survey collects data on every other year. These data can be joined with the census 2020 county boundary file in a GIS system to produce maps for 36 measures at the county level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=2c3deb0c05a748b391ea8c9cf9903588
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Our analysis for the manuscript, "Planning for climate migration in Great Lake Legacy Cities" uses county level spatial data from the FEMA National Risk Index (USFEMA, 2021) and the CDC SVI ranking system (ATSDR, 2018) in the form of shapefiles(.shp). To create the geovisualization, we used boundaries of the Great Lakes that are published here https://www.glc.org/greatlakesgis. All analysis was conducted using R (2020), with code that can be found here: https://derekvanberkel.github.io/Planning-for-climate-migration-in-Great-Lake-Legacy-Cities/
ATSDR. (2018). Cdc/atsdr social vulnerability index. https://www.atsdr.cdc.gov/placeandhealth/svi/fact sheet/fact sheet.html.
USGCRP. (2018). Impacts, risks, and adaptation in the united states: Fourth national climate assessment. US Global Change Research Program.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The interactive maps are visual representations of the Social Vulnerability Index (SVI). Data were extracted from the US Census and the American Community Survey.
Wisconsin DNR Web map displaying the CDC Social Vulnerability Index 2018 at the census tract Level, centered on Wisconsin. The 2018 Social Vulnerability Index (SVI) layer was created by the Centers for Disease Control and Prevention (CDC) / Agency for Toxic Substances and Disease Registry (ATSDR) / Geospatial Research, Analysis, and Services Program (GRASP). Visit https://www.atsdr.cdc.gov/placeandhealth/svi/index.html for more information.
This feature layer visualizes the 2018 overall SVI for U.S. counties and tractsSocial Vulnerability Index (SVI) indicates the relative vulnerability of every U.S. county and tract15 social factors grouped into four major themesIndex value calculated for each county for the 15 social factors, four major themes, and the overall rankWhat is CDC Social Vulnerability Index?ATSDR’s Geospatial Research, Analysis & Services Program (GRASP) has created a tool to help emergency response planners and public health officials identify and map the communities that will most likely need support before, during, and after a hazardous event.The Social Vulnerability Index (SVI) uses U.S. Census data to determine the social vulnerability of every county and tract. CDC SVI ranks each county and tract on 15 social factors, including poverty, lack of vehicle access, and crowded housing, and groups them into four related themes:SocioeconomicHousing Composition and DisabilityMinority Status and LanguageHousing and Transportation VariablesFor a detailed description of variable uses, please refer to the full SVI 2018 documentation.RankingsWe ranked counties and tracts for the entire United States against one another. This feature layer can be used for mapping and analysis of relative vulnerability of counties in multiple states, or across the U.S. as a whole. Rankings are based on percentiles. Percentile ranking values range from 0 to 1, with higher values indicating greater vulnerability. For each county and tract, we generated its percentile rank among all counties and tracts for 1) the fifteen individual variables, 2) the four themes, and 3) its overall position. Overall Rankings:We totaled the sums for each theme, ordered the counties, and then calculated overall percentile rankings. Please note: taking the sum of the sums for each theme is the same as summing individual variable rankings.The overall tract summary ranking variable is RPL_THEMES. Theme rankings:For each of the four themes, we summed the percentiles for the variables comprising each theme. We ordered the summed percentiles for each theme to determine theme-specific percentile rankings. The four summary theme ranking variables are: Socioeconomic theme - RPL_THEME1Housing Composition and Disability - RPL_THEME2Minority Status & Language - RPL_THEME3Housing & Transportation - RPL_THEME4FlagsCounties in the top 10%, i.e., at the 90th percentile of values, are given a value of 1 to indicate high vulnerability. Counties below the 90th percentile are given a value of 0. For a theme, the flag value is the number of flags for variables comprising the theme. We calculated the overall flag value for each county as the total number of all variable flags. SVI Informational VideosIntroduction to CDC Social Vulnerability Index (SVI)Methods for CDC Social Vulnerability Index (SVI)More Questions?CDC SVI 2018 Full DocumentationSVI Home PageContact the SVI Coordinator
The CDC Division for Heart Disease and Stroke Prevention's Data Trends & Maps online tool allows searching for and view of health indicators related to Heart Disease and Stroke Prevention on the basis of a specific location or a health indicator.
This web map is part of the Centers for Disease Control and Prevention (CDC) PLACES. It provides model-based estimates of physical inactivity prevalence among adults aged 18 years and old at county, place, census tract and ZCTA levels in the United States. PLACES is an expansion of the original 500 Cities Project and a collaboration between the CDC, the Robert Wood Johnson Foundation, and the CDC Foundation. Data sources used to generate these estimates include the Behavioral Risk Factor Surveillance System (BRFSS), Census 2020 population counts or Census annual county-level population estimates, and the American Community Survey (ACS) estimates. For detailed methodology see www.cdc.gov/places. For questions or feedback send an email to places@cdc.gov.Measure name used for physical inactivity is LPA.
This dataset tracks the updates made on the dataset "CDC Social Vulnerability Index (SVI) Mapping Dashboard" as a repository for previous versions of the data and metadata.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
On October 20, 2022, CDC began retrieving aggregate case and death data from jurisdictional and state partners weekly instead of daily. This dataset contains archived community transmission and related data elements by county as originally displayed on the COVID Data Tracker. Although these data will continue to be publicly available, this dataset has not been updated since October 20, 2022. An archived dataset containing weekly community transmission data by county as originally posted can also be found here: Weekly COVID-19 County Level of Community Transmission as Originally Posted | Data | Centers for Disease Control and Prevention (cdc.gov).
Related data CDC has been providing the public with two versions of COVID-19 county-level community transmission level data: this dataset with the daily values as originally posted on the COVID Data Tracker, and an historical dataset with daily data as well as the updates and corrections from state and local health departments. Similar to this dataset, the original historical dataset is archived on 10/20/2022. It will continue to be publicly available but will no longer be updated. A new dataset containing historical community transmission data by county is now published weekly and can be found at: Weekly COVID-19 County Level of Community Transmission Historical Changes | Data | Centers for Disease Control and Prevention (cdc.gov).
This public use dataset has 7 data elements reflecting community transmission levels for all available counties and jurisdictions. It contains reported daily transmission levels at the county level with the same values used to display transmission maps on the COVID Data Tracker. Each day, the dataset is appended to contain the most recent day's data. Transmission level is set to low, moderate, substantial, or high using the calculation rules below.
Methods for calculating county level of community transmission indicator The County Level of Community Transmission indicator uses two metrics: (1) total new COVID-19 cases per 100,000 persons in the last 7 days and (2) percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests (NAAT) in the last 7 days. For each of these metrics, CDC classifies transmission values as low, moderate, substantial, or high (below and here). If the values for each of these two metrics differ (e.g., one indicates moderate and the other low), then the higher of the two should be used for decision-making.
CDC core metrics of and thresholds for community transmission levels of SARS-CoV-2
Total New Case Rate Metric: "New cases per 100,000 persons in the past 7 days" is calculated by adding the number of new cases in the county (or other administrative level) in the last 7 days divided by the population in the county (or other administrative level) and multiplying by 100,000. "New cases per 100,000 persons in the past 7 days" is considered to have a transmission level of Low (0-9.99); Moderate (10.00-49.99); Substantial (50.00-99.99); and High (greater than or equal to 100.00).
Test Percent Positivity Metric: "Percentage of positive NAAT in the past 7 days" is calculated by dividing the number of positive tests in the county (or other administrative level) during the last 7 days by the total number of tests conducted over the last 7 days. "Percentage of positive NAAT in the past 7 days" is considered to have a transmission level of Low (less than 5.00); Moderate (5.00-7.99); Substantial (8.00-9.99); and High (greater than or equal to 10.00).
If the two metrics suggest different transmission levels, the higher level is selected.
The reported transmission categories include:
Low Transmission Threshold: Counties with fewer than 10 total cases per 100,000 population in the past 7 days, and a NAAT percent test positivity in the past 7 days below 5%;
Moderate Transmission Threshold: Counties with 10-49 total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 5.0-7.99%;
Substantial Transmission Threshold: Counties with 50-99 total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 8.0-9.99%;
High Transmission Threshold: Counties with 100 or more total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 10.0% or greater.
Blank: total new cases in the past 7 days are not reported (county data known to be unavailable) and the percentage of positive NAATs tests during the past 7 days (blank) are not reported.
Data Suppression To prevent the release of data that could be used to identify people, data cells are suppressed for low frequency. When the case counts used to calculate the total new case rate metric ("cases_per_100K_7_day_count_change") is greater than zero and less than 10, this metric is set to "suppressed" to protect individual privacy. If the case count is 0, the total new case rate metric is still displayed.
The data in this dataset are considered provisional by CDC and are subject to change until the data are reconciled and verified with the state and territorial data providers. This dataset is created using CDC’s Policy on Public Health Research and Nonresearch Data Management and Access.
The AP has requested a timeseries dataset reporting daily counts for distributed and administered vaccines in the U.S. from the CDC. In the absence of that dataset, we are storing daily snapshots of the cumulative counts provided by the CDC COVID Data Tracker and compiling a timeseries dataset here. This process has captured cumulative counts going back to January 4th and daily counts of new doses administered and distributed going back to January 5th. The timeseries dataset also includes seven-day rolling average calculations for the daily metrics.
We have identified a few instances of decreasing cumulative counts in this timeseries, which result in single-day negative counts. We are treating these instances as corrections, and include the negative counts in the rolling averages.
We are investigating the cumulative count decreases and will update the timeseries dataset if necessary with additional information from the CDC. When the CDC provides its own timeseries dataset we will make that available here.
The AP is using data provided by the Centers for Disease Control and Prevention to report vaccine doses distributed and administered in the United States.
This data is from the CDC's COVID Data Tracker, which is updated daily. However, keep in mind that healthcare providers can report doses to federal, state, territorial, and local agencies up to 72 hours after doses are administered.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
The AP has designed an interactive map to track COVID-19 vaccine counts reported by The CDC. @(https://interactives.ap.org/embeds/TUVpf/14/)
<iframe title="Tracking US COVID vaccinations" aria-label="Map" id="datawrapper-chart-TUVpf" src="https://interactives.ap.org/embeds/TUVpf/14/" scrolling="no" width="100%" style="border:none" height="548"></iframe><script type="text/javascript">!function(){"use strict";window.addEventListener("message",(function(a){if(void 0!==a.data["datawrapper-height"])for(var e in a.data["datawrapper-height"]){var t=document.getElementById("datawrapper-chart-"+e)||document.querySelector("iframe[src*='"+e+"']");t&&(t.style.height=a.data["datawrapper-height"][e]+"px")}}))}();</script>
From The CDC: - Numbers reported on CDC’s website are validated through a submission process with each jurisdiction and may differ from numbers posted on other websites. - Differences between reporting jurisdictions and CDC’s website may occur due to the timing of reporting and website updates. - The process used for reporting doses distributed or people vaccinated displayed by other websites may differ.
This file contains death counts and death rates for drug overdose, suicide, homicide and firearm injuries by state of residence (additional datasets exist for other levels of geography). The data is grouped by 2 different time periods including yearly and trailing twelve months. Please see data dictionary for intents and mechanisms included in each measure.
OverviewThis feature layer visualizes the 2022 overall SVI for U.S. counties and tractsSocial Vulnerability Index (SVI) indicates the relative vulnerability of every U.S. county and tract16 social factors grouped into four major themesIndex value calculated for each county for the 16 social factors, four major themes, and the overall rankWhat is CDC/ATSDR Social Vulnerability Index?ATSDR’s Geospatial Research, Analysis & Services Program (GRASP) has created the Social Vulnerability Index (SVI) to help emergency response planners and public health officials identify and map the communities that will most likely need support before, during, and after a hazardous event.SVI uses U.S. Census data to determine the social vulnerability of every county and tract. CDC SVI ranks each county and tract on 16 social factors, including poverty, lack of vehicle access, and crowded housing, and groups them into four related themes:Socioeconomic StatusHousehold CharacteristicsRacial & Ethnic Minority StatusHousing Type & TransportationVariablesFor a detailed description of variable uses, please refer to the full SVI 2022 documentation.RankingsWe ranked counties and tracts for the entire United States against one another. This feature layer can be used for mapping and analysis of relative vulnerability of counties in multiple states, or across the U.S. as a whole. Rankings are based on percentiles. Percentile ranking values range from 0 to 1, with higher values indicating greater vulnerability. For each county and tract, we generated its percentile rank among all counties and tracts for 1) the sixteen individual variables, 2) the four themes, and 3) its overall position.Overall Rankings:We totaled the sums for each theme, ordered the counties, and then calculated overall percentile rankings. Please note: taking the sum of the sums for each theme is the same as summing individual variable rankings.The overall tract summary ranking variable is RPL_THEMES.Theme rankings:For each of the four themes, we summed the percentiles for the variables comprising each theme. We ordered the summed percentiles for each theme to determine theme-specific percentile rankings. The four summary theme ranking variables are:Socioeconomic Status - RPL_THEME1Household Characteristics - RPL_THEME2Racial & Ethnic Minority Status - RPL_THEME3Housing Type & Transportation - RPL_THEME4FlagsCounties and tracts in the top 10%, i.e., at the 90th percentile of values, are given a value of 1 to indicate high vulnerability. Counties and tracts below the 90th percentile are given a value of 0. For a theme, the flag value is the number of flags for variables comprising the theme. We calculated the overall flag value for each county as the total number of all variable flags.SVI Informational VideosIntroduction to CDC Social Vulnerability Index (SVI)More Questions?CDC SVI 2022 Full DocumentationSVI Home PageContact the SVI Coordinator
From the CDC/ATSDR: "Social vulnerability refers to the potential negative effects on communities caused by external stresses on human health. Such stresses include natural or human-caused disasters, or disease outbreaks. Reducing social vulnerability can decrease both human suffering and economic loss. The CDC/ATSDR SVI uses 16 U.S. census variables to help local officials identify communities that may need support before, during or after disasters."For more information, visit the ATSDR website on social vulnerability.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This submission includes publicly available data extracted in its original form. Please reference the Related Publication listed here for source and citation information "Eastern equine encephalitis virus is transmitted to humans through the bite of an infected mosquito. Human eastern equine encephalitis cases occur relatively infrequently, largely because the primary transmission cycle takes place in and around swampy areas where people are less likely to go. Eastern equine encephalitis virus transmission is most common in and around freshwater hardwood swamps in the Atlantic and Gulf Coast states and the Great Lakes region. All residents of and visitors to areas where eastern equine encephalitis virus activity has been identified are at risk of infection. People who work and participate in recreational activities outdoors in endemic areas are at increased risk of infection. Persons over 50 years of age and under 15 years of age seem to be at greatest risk for developing severe disease when infected with eastern equine encephalitis virus. Overall, only about 4–5% of human eastern equine encephalitis virus infections result in eastern equine encephalitis. Eastern equine encephalitis virus infection is thought to provide life-long immunity against reinfection. However, the immunity does not protect against other alphaviruses (e.g., western equine encephalitis virus), flaviviruses (e.g., West Nile virus), or bunyaviruses (e.g., La Crosse virus). In the United States, an average of 11 human cases of eastern equine encephalitis are reported annually. To ensure standardization of reporting across the country, CDC recommends that the national surveillance case definition be consistently applied by all state health departments." [Quote from https://www.cdc.gov/eastern-equine-encephalitis/datamaps/index.html] This extracted dataset includes Current Year Data (for 2024) and Historical Data (for 2003 to 2023) from the CDC Eastern Equine Encephalitis Data and Maps page (https://www.cdc.gov/eastern-equine-encephalitis/data-maps/historic-data.html) "ArboNET is a national arboviral surveillance system managed by CDC and state health departments. The visuals on this dashboard display eastern equine encephalitis data from 2003–2023." [Quote from https://www.cdc.gov/eastern-equine-encephalitis/data-maps/historicdata.html]
This application provides an interactive maps for model-based chronic disease related estimates of the CDC PLACES (Population Level Analysis and Community Estimates). PLACES is an expansion of the original 500 Cities project and is funded by the Robert Wood Johnson Foundation through the CDC Foundation. PLACES includes 49 measures (12 health outcomes, 7 prevention measures, 4 health risk behaviors, 7 disabilities, 3 health status, 7 health-related social needs, and 9 social determinants of health) at county, place (incorporated and census designated places), census tract, and ZIP Code Tabulation Area (ZCTA) levels.The health outcomes measures include arthritis, current asthma, high blood pressure, cancer (non-skin) or melanoma, high cholesterol, chronic obstructive pulmonary disease (COPD), coronary heart disease, diagnosed diabetes, depression, obesity, all teeth lost, and stroke.The prevention measures include lack of health insurance, routine checkup within the past year, visited dentist or dental clinic in the past, taking medicine to control high blood pressure, cholesterol screening, mammography use for women, cervical cancer screening for women, and colorectal cancer screening.The health risk behaviors include binge drinking, current cigarette smoking, physical inactivity, and short sleep duration.The disability measures are six disability types (hearing, vision, cognitive, mobility, self-care, and independent living) and any disability.The health status measures include frequent mental distress, frequent physical distress, and poor or fair health.The health-related social needs measures include social isolation, food stamps, food insecurity, housing insecurity, utility services threat, transportation barriers, and lack of social and emotional support. The non-medical factor measures include population 65 years or older, no broadband, crowding, housing cost burden, no high school diploma, poverty, racial or ethnic minority status, single-parent households, and unemployment from U.S. Census Bureau’s American Community Health Survey.For more information, please visit https://www.cdc.gov/places or to contact places@cdc.gov.