84 datasets found
  1. Graph of Recommended Funding Levels by Program Components (CDC Best...

    • data.wu.ac.at
    csv, json, xml
    Updated Nov 21, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health (2017). Graph of Recommended Funding Levels by Program Components (CDC Best Practices for Comprehensive Tobacco Control Programs 2014) [Dataset]. https://data.wu.ac.at/schema/data_cdc_gov/NGptZS1qbnln
    Explore at:
    xml, csv, jsonAvailable download formats
    Dataset updated
    Nov 21, 2017
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description
    1. Centers for Disease Control and Prevention (CDC). Best Practices for Comprehensive Tobacco Control Programs. Funding. CDC's Best Practices for Comprehensive Tobacco Control Programs is an evidence-based guide to help states plan and establish effective tobacco control programs to prevent and reduce tobacco use. These data update Best Practices for Comprehensive Tobacco Control Programs—2007. Data are reported at total and per capita funding levels. Data include recommended and minimum total funding levels for state programs, in addition to funding breakdowns by intervention areas such as: State and Community Interventions, Mass-Reach Health Communication Interventions, Cessation Interventions, Surveillance and Evaluation, and Infrastructure, Administration, and Management.
  2. H

    CDC's PRAMS Online Data for Epidemiological Research (CPONDER)

    • data.niaid.nih.gov
    Updated Nov 30, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2010). CDC's PRAMS Online Data for Epidemiological Research (CPONDER) [Dataset]. http://doi.org/10.7910/DVN/1JPCH8
    Explore at:
    Dataset updated
    Nov 30, 2010
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This interactive tool allows users to generate tables and graphs on information relating to pregnancy and childbirth. All data comes from the CDC's PRAMS. Topics include: breastfeeding, prenatal care, insurance coverage and alcohol use during pregnancy. Background CPONDER is the interaction online data tool for the Center's for Disease Control and Prevention (CDC)'s Pregnancy Risk Assessment Monitoring System (PRAMS). PRAMS gathers state and national level data on a variety of topics related to pregnancy and childbirth. Examples of information include: breastfeeding, alcohol use, multivitamin use, prenatal care, and contraception. User Functionality Users select choices from three drop down menus to search for d ata. The menus are state, year and topic. Users can then select the specific question from PRAMS they are interested in, and the data table or graph will appear. Users can then compare that question to another state or to another year to generate a new data table or graph. Data Notes The data source for CPONDER is PRAMS. The data is from every year between 2000 and 2008, and data is available at the state and national level. However, states must have participated in PRAMS to be part of CPONDER. Not every state, and not every year for every state, is available.

  3. H

    CDC Wonder

    • dataverse.harvard.edu
    Updated Nov 30, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harvard Dataverse (2010). CDC Wonder [Dataset]. http://doi.org/10.7910/DVN/UA0YGE
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 30, 2010
    Dataset provided by
    Harvard Dataverse
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Users can use WONDER to access data on a variety of topics from many of the CDC's data systems. Background CDC Wonder (Wide-ranging Online Data for Epidemiological Research) is part of the Centers for Disease Control and provides access to a wide variety of public health information. Wonder uses data systems, which include AIDS Public Use Data, Births, Cancer Statistics, Infant Deaths, Mortality, Population Data, Sexually Transmitted Disease Morbidity and Vaccine Adverse Effects Reporting databases. User Functionality From Wonder, users can get to other databases and data sources organized by topic category (which include chronic conditions, health practice and prevention, communicable diseases, environmental health, occupational health, and injury prevention), or by alphabetical index. From this site, users gain access to all of the CDC data centers. Users can find reports and other publications on their specific top ic of interest or generate their own. After filling out a simple request form that allows users to determine how the data is grouped and the unit of analysis, users can customize if the view in either chart or map form. Data can be grouped by a variety of demographic characteristics, including: race, age group, ethnicity, region, state or county or by characteristics and conditions related to the specific data system. Information can be viewed online or exported into a variety of forms including word processing, spreadsheets or other data analysis packages such as Epi-Info. Data Notes Summaries of all the data sets are available from the homepage, and data sources are listed under each table, chart, map or report.

  4. w

    Column chart of monthly page views to CDC.gov

    • data.wu.ac.at
    csv, json, xml
    Updated Jun 27, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of the Associate Director for Communication, Division of News and Electronic Media (2013). Column chart of monthly page views to CDC.gov [Dataset]. https://data.wu.ac.at/schema/data_cdc_gov/N2piNC1iOTM3
    Explore at:
    xml, json, csvAvailable download formats
    Dataset updated
    Jun 27, 2013
    Dataset provided by
    Office of the Associate Director for Communication, Division of News and Electronic Media
    Description

    For more information on CDC.gov metrics please see http://www.cdc.gov/metrics/

  5. BRFSS: Graph of Current Adult Obesity Prevalence - By Single State

    • chronicdata.cdc.gov
    • data.wu.ac.at
    application/rdfxml +5
    Updated Feb 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for disease control and prevention (2025). BRFSS: Graph of Current Adult Obesity Prevalence - By Single State [Dataset]. https://chronicdata.cdc.gov/widgets/xtew-z72g?mobile_redirect=true
    Explore at:
    json, xml, application/rdfxml, csv, application/rssxml, tsvAvailable download formats
    Dataset updated
    Feb 13, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    Centers for disease control and prevention
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    2011 to present. BRFSS combined land line and cell phone prevalence data. BRFSS is a continuous, state-based surveillance system that collects information about modifiable risk factors for chronic diseases and other leading causes of death. Data will be updated annually as it becomes available. Detailed information on sampling methodology and quality assurance can be found on the BRFSS website (http://www.cdc.gov/brfss). Methodology: http://www.cdc.gov/brfss/factsheets/pdf/DBS_BRFSS_survey.pdf Glossary: https://chronicdata.cdc.gov/Behavioral-Risk-Factors/Behavioral-Risk-Factor-Surveillance-System-BRFSS-H/iuq5-y9ct/data

  6. Graph of Excise Taxes on Cigarettes (CDC STATE System Tobacco Legislation -...

    • data.wu.ac.at
    csv, json, xml
    Updated Oct 7, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health (2014). Graph of Excise Taxes on Cigarettes (CDC STATE System Tobacco Legislation - Tax) [Dataset]. https://data.wu.ac.at/schema/data_cdc_gov/dzZhNC10ODlu
    Explore at:
    json, csv, xmlAvailable download formats
    Dataset updated
    Oct 7, 2014
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    1995-2018. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation-Tax. The STATE System houses current and historical state-level legislative data on tobacco use prevention and control policies. Data are reported on a quarterly basis. Data include state excise taxes on cigarettes.

    U.S. Virgin Islands: tax is 45% of the Cost Price.

  7. Healthy People 2020 Final Progress by Population Group Chart and Table

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Healthy People 2020 Final Progress by Population Group Chart and Table [Dataset]. https://catalog.data.gov/dataset/healthy-people-2020-final-progress-by-population-group-chart-and-table-617d0
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    [1] The Progress by Population Group analysis is a component of the Healthy People 2020 (HP2020) Final Review. The analysis included subsets of the 1,111 measurable HP2020 objectives that have data available for any of six broad population characteristics: sex, race and ethnicity, educational attainment, family income, disability status, and geographic location. Progress toward meeting HP2020 targets is presented for up to 24 population groups within these characteristics, based on objective data aggregated across HP2020 topic areas. The Progress by Population Group data are also available at the individual objective level in the downloadable data set. [2] The final value was generally based on data available on the HP2020 website as of January 2020. For objectives that are continuing into HP2030, more recent data will be included on the HP2030 website as it becomes available: https://health.gov/healthypeople. [3] For more information on the HP2020 methodology for measuring progress toward target attainment and the elimination of health disparities, see: Healthy People Statistical Notes, no 27; available from: https://www.cdc.gov/nchs/data/statnt/statnt27.pdf. [4] Status for objectives included in the HP2020 Progress by Population Group analysis was determined using the baseline, final, and target value. The progress status categories used in HP2020 were: a. Target met or exceeded—One of the following applies: (i) At baseline, the target was not met or exceeded, and the most recent value was equal to or exceeded the target (the percentage of targeted change achieved was equal to or greater than 100%); (ii) The baseline and most recent values were equal to or exceeded the target (the percentage of targeted change achieved was not assessed). b. Improved—One of the following applies: (i) Movement was toward the target, standard errors were available, and the percentage of targeted change achieved was statistically significant; (ii) Movement was toward the target, standard errors were not available, and the objective had achieved 10% or more of the targeted change. c. Little or no detectable change—One of the following applies: (i) Movement was toward the target, standard errors were available, and the percentage of targeted change achieved was not statistically significant; (ii) Movement was toward the target, standard errors were not available, and the objective had achieved less than 10% of the targeted change; (iii) Movement was away from the baseline and target, standard errors were available, and the percent change relative to the baseline was not statistically significant; (iv) Movement was away from the baseline and target, standard errors were not available, and the objective had moved less than 10% relative to the baseline; (v) No change was observed between the baseline and the final data point. d. Got worse—One of the following applies: (i) Movement was away from the baseline and target, standard errors were available, and the percent change relative to the baseline was statistically significant; (ii) Movement was away from the baseline and target, standard errors were not available, and the objective had moved 10% or more relative to the baseline. NOTE: Measurable objectives had baseline data. SOURCE: National Center for Health Statistics, Healthy People 2020 Progress by Population Group database.

  8. d

    CDC COVID-19 Vaccine Tracker

    • data.world
    csv, zip
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). CDC COVID-19 Vaccine Tracker [Dataset]. https://data.world/associatedpress/cdc-covid-19-vaccine-tracker
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Apr 8, 2025
    Authors
    The Associated Press
    Time period covered
    Dec 13, 2020 - Feb 15, 2023
    Description

    February 2nd Update

    The AP has requested a timeseries dataset reporting daily counts for distributed and administered vaccines in the U.S. from the CDC. In the absence of that dataset, we are storing daily snapshots of the cumulative counts provided by the CDC COVID Data Tracker and compiling a timeseries dataset here. This process has captured cumulative counts going back to January 4th and daily counts of new doses administered and distributed going back to January 5th. The timeseries dataset also includes seven-day rolling average calculations for the daily metrics.

    We have identified a few instances of decreasing cumulative counts in this timeseries, which result in single-day negative counts. We are treating these instances as corrections, and include the negative counts in the rolling averages.

    We are investigating the cumulative count decreases and will update the timeseries dataset if necessary with additional information from the CDC. When the CDC provides its own timeseries dataset we will make that available here.

    Overview

    The AP is using data provided by the Centers for Disease Control and Prevention to report vaccine doses distributed and administered in the United States.

    This data is from the CDC's COVID Data Tracker, which is updated daily. However, keep in mind that healthcare providers can report doses to federal, state, territorial, and local agencies up to 72 hours after doses are administered.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Interactive

    The AP has designed an interactive map to track COVID-19 vaccine counts reported by The CDC. @(https://interactives.ap.org/embeds/TUVpf/14/)

    Interactive Embed Code

    <iframe title="Tracking US COVID vaccinations" aria-label="Map" id="datawrapper-chart-TUVpf" src="https://interactives.ap.org/embeds/TUVpf/14/" scrolling="no" width="100%" style="border:none" height="548"></iframe><script type="text/javascript">!function(){"use strict";window.addEventListener("message",(function(a){if(void 0!==a.data["datawrapper-height"])for(var e in a.data["datawrapper-height"]){var t=document.getElementById("datawrapper-chart-"+e)||document.querySelector("iframe[src*='"+e+"']");t&&(t.style.height=a.data["datawrapper-height"][e]+"px")}}))}();</script>
    

    Caveats

    From The CDC: - Numbers reported on CDC’s website are validated through a submission process with each jurisdiction and may differ from numbers posted on other websites. - Differences between reporting jurisdictions and CDC’s website may occur due to the timing of reporting and website updates. - The process used for reporting doses distributed or people vaccinated displayed by other websites may differ.

  9. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Feb 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response, Epidemiology Task Force (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a
    Explore at:
    tsv, application/rssxml, csv, application/rdfxml, xml, jsonAvailable download formats
    Dataset updated
    Feb 22, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response, Epidemiology Task Force
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138. Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152. Johnson AG, Linde L, Payne AB, et al. Notes from the Field: Comparison of COVID-19 Mortality Rates Among Adults Aged ≥65 Years Who Were Unvaccinated and Those Who Received a Bivalent Booster Dose Within the Preceding 6 Months — 20 U.S. Jurisdictions, September 18, 2022–April 1, 2023. MMWR Morb Mortal Wkly Rep 2023;72:667–669.

  10. a

    COVID-19 Trends in Each Country

    • coronavirus-disasterresponse.hub.arcgis.com
    • coronavirus-resources.esri.com
    • +2more
    Updated Mar 28, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://coronavirus-disasterresponse.hub.arcgis.com/maps/a16bb8b137ba4d8bbe645301b80e5740
    Explore at:
    Dataset updated
    Mar 28, 2020
    Dataset authored and provided by
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  11. 500 Cities: Bar graph of the prevalence of men and women aged 65 and older...

    • data.wu.ac.at
    csv, json, xml
    Updated Dec 4, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Division of Population Health (2017). 500 Cities: Bar graph of the prevalence of men and women aged 65 and older who are up-to-date with the recommended core set of clinical preventive services [Dataset]. https://data.wu.ac.at/schema/data_cdc_gov/c3Z3Yy1pamE1
    Explore at:
    xml, csv, jsonAvailable download formats
    Dataset updated
    Dec 4, 2017
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This is a bar graph showing the prevalence of men and women aged 65 years and older who are up-to-date with the recommended core set of clinical preventive services. This project provides model-based small area estimates for 27 measures of chronic disease related to unhealthy behaviors (5), health outcomes (13), and use of preventive services (9). Data were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. The project was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. It represents a first-of-its kind effort to release information on a large scale for cities and for small areas within those cities. It includes estimates for the 500 largest US cities and approximately 28,000 census tracts within these cities. These estimates can be used to identify emerging health problems and to inform development and implementation of effective, targeted public health prevention activities. Because the small area model cannot detect effects due to local interventions, users are cautioned against using these estimates for program or policy evaluations. Data sources used to generate these measures include Behavioral Risk Factor Surveillance System (BRFSS) data 2014, Census Bureau 2010 census population data, and American Community Survey (ACS) 2010-2014 estimates. More information about the methodology can be found at www.cdc.gov/500cities.

  12. a

    COVID Cases vs. Deaths - Map for Health Council Dashboards

    • chi-phi-nmcdc.opendata.arcgis.com
    • vaccine-equity-nmcdc.hub.arcgis.com
    Updated Aug 6, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2021). COVID Cases vs. Deaths - Map for Health Council Dashboards [Dataset]. https://chi-phi-nmcdc.opendata.arcgis.com/maps/e64ba2d0a8bd4de0b9b730cf72977dbc
    Explore at:
    Dataset updated
    Aug 6, 2021
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Description

    Coronavirus-19 Cases vs. Deaths (Hourly Update)See Detailed graphs and tables describing the COVID-19 crisis in New Mexico, updated daily (includes some county level data not found elsewhere) - https://sites.google.com/view/new-mexico-covid19-tracking/homeCDC's Description of the Social Vulnerability Index (takes into account 15 different selected indicators):https://svi.cdc.gov/

  13. Line Chart of Loose Tobacco Product Consumption, 2000-Present

    • chronicdata.cdc.gov
    • data.wu.ac.at
    application/rdfxml +5
    Updated Apr 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health (2024). Line Chart of Loose Tobacco Product Consumption, 2000-Present [Dataset]. https://chronicdata.cdc.gov/w/shbi-wfy7/tdwk-ruhb?cur=Me0rJzKd0mY&from=hiEnTkKR050
    Explore at:
    csv, tsv, application/rdfxml, xml, application/rssxml, jsonAvailable download formats
    Dataset updated
    Apr 30, 2024
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health
    License

    Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
    License information was derived automatically

    Description

    2000 to Present. Adult Tobacco Consumption in the U.S. This dataset highlights critical trends in adult total and per capita consumption of both combustible (cigarettes, little cigars, small cigars, pipe tobacco, roll-your-own tobacco) tobacco products and smokeless (chewing tobacco and snuff) tobacco from 2000 to present. To view the CDC MMWR report, please visit https://www.cdc.gov/mmwr/volumes/65/wr/mm6548a1.htm.

  14. BRFSS: Graph of Current Healthcare Coverage

    • data.wu.ac.at
    csv, json, xml
    Updated Jun 10, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2015). BRFSS: Graph of Current Healthcare Coverage [Dataset]. https://data.wu.ac.at/schema/data_cdc_gov/OW55cy1nY3ky
    Explore at:
    xml, json, csvAvailable download formats
    Dataset updated
    Jun 10, 2015
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    2011 to present. BRFSS combined land line and cell phone prevalence data. BRFSS is a continuous, state-based surveillance system that collects information about modifiable risk factors for chronic diseases and other leading causes of death. Data will be updated annually as it becomes available. Detailed information on sampling methodology and quality assurance can be found on the BRFSS website (http://www.cdc.gov/brfss). Methodology: http://www.cdc.gov/brfss/factsheets/pdf/DBS_BRFSS_survey.pdf Glossary: https://chronicdata.cdc.gov/Behavioral-Risk-Factors/Behavioral-Risk-Factor-Surveillance-System-BRFSS-H/iuq5-y9ct

  15. 500 Cities: Bar graph comparing prevalence of adults with high cholesterol...

    • data.wu.ac.at
    csv, json, xml
    Updated Nov 4, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Division of Population Health (2016). 500 Cities: Bar graph comparing prevalence of adults with high cholesterol to the prevalence of adults who have been screened for cholesterol in the past five years [Dataset]. https://data.wu.ac.at/schema/data_cdc_gov/ZzVici1jN3Zx
    Explore at:
    xml, json, csvAvailable download formats
    Dataset updated
    Nov 4, 2016
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This is a bar graph comparing the prevalence of adults with high cholesterol to the prevalence of adults who have been screened for cholesterol in the past five years. This project provides model-based small area estimates for 27 measures of chronic disease related to unhealthy behaviors (5), health outcomes (13), and use of preventive services (9). Data were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. The project was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. It represents a first-of-its kind effort to release information on a large scale for cities and for small areas within those cities. It includes estimates for the 500 largest US cities and approximately 28,000 census tracts within these cities. These estimates can be used to identify emerging health problems and to inform development and implementation of effective, targeted public health prevention activities. Because the small area model cannot detect effects due to local interventions, users are cautioned against using these estimates for program or policy evaluations. Data sources used to generate these measures include Behavioral Risk Factor Surveillance System (BRFSS) data 2015, Census Bureau 2010 census population data, and American Community Survey (ACS) 2011-2015 estimates. More information about the methodology can be found at www.cdc.gov/500cities.

  16. a

    COVID Cases, Deaths, and Social Determinants of Health in New Mexico

    • chi-phi-nmcdc.opendata.arcgis.com
    • hub.arcgis.com
    Updated Mar 18, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2021). COVID Cases, Deaths, and Social Determinants of Health in New Mexico [Dataset]. https://chi-phi-nmcdc.opendata.arcgis.com/datasets/covid-cases-deaths-and-social-determinants-of-health-in-new-mexico
    Explore at:
    Dataset updated
    Mar 18, 2021
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Description

    Coronavirus-19 Cases vs. Deaths (Hourly Update)See Detailed graphs and tables describing the COVID-19 crisis in New Mexico, updated daily (includes some county level data not found elsewhere) - https://sites.google.com/view/new-mexico-covid19-tracking/homeCDC's Description of the Social Vulnerability Index (takes into account 15 different selected indicators):https://svi.cdc.gov/

  17. a

    Public Health Corps Gap Analysis - SVI, COVID-19 Cases, and Healthcare...

    • chi-phi-nmcdc.opendata.arcgis.com
    Updated Mar 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2021). Public Health Corps Gap Analysis - SVI, COVID-19 Cases, and Healthcare Facilities [Dataset]. https://chi-phi-nmcdc.opendata.arcgis.com/datasets/public-health-corps-gap-analysis-svi-covid-19-cases-and-healthcare-facilities
    Explore at:
    Dataset updated
    Mar 17, 2021
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Description

    See Detailed graphs and tables describing the COVID-19 crisis in New Mexico, updated daily (includes some county level data not found elsewhere) - https://sites.google.com/view/new-mexico-covid19-tracking/homeCDC's Description of the Social Vulnerability Index (takes into account 15 different selected indicators):https://svi.cdc.gov/

  18. BRFSS: Graph of Current Prevalence of Cardiovascular Disease

    • data.wu.ac.at
    csv, json, xml
    Updated Jun 10, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2015). BRFSS: Graph of Current Prevalence of Cardiovascular Disease [Dataset]. https://data.wu.ac.at/schema/data_cdc_gov/Z2ZoZC0yZjV5
    Explore at:
    json, csv, xmlAvailable download formats
    Dataset updated
    Jun 10, 2015
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    2011 to present. BRFSS combined land line and cell phone prevalence data. BRFSS is a continuous, state-based surveillance system that collects information about modifiable risk factors for chronic diseases and other leading causes of death. Data will be updated annually as it becomes available. Detailed information on sampling methodology and quality assurance can be found on the BRFSS website (http://www.cdc.gov/brfss). Methodology: http://www.cdc.gov/brfss/factsheets/pdf/DBS_BRFSS_survey.pdf Glossary: https://chronicdata.cdc.gov/Behavioral-Risk-Factors/Behavioral-Risk-Factor-Surveillance-System-BRFSS-H/iuq5-y9ct

  19. BRFSS: Graph of Current Prevalence of Arthritis

    • data.wu.ac.at
    csv, json, xml
    Updated Jun 10, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2015). BRFSS: Graph of Current Prevalence of Arthritis [Dataset]. https://data.wu.ac.at/schema/data_cdc_gov/eDd6NS15dGR1
    Explore at:
    csv, xml, jsonAvailable download formats
    Dataset updated
    Jun 10, 2015
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    2011 to present. BRFSS combined land line and cell phone prevalence data. BRFSS is a continuous, state-based surveillance system that collects information about modifiable risk factors for chronic diseases and other leading causes of death. Data will be updated annually as it becomes available. Detailed information on sampling methodology and quality assurance can be found on the BRFSS website (http://www.cdc.gov/brfss). Methodology: http://www.cdc.gov/brfss/factsheets/pdf/DBS_BRFSS_survey.pdf Glossary: https://chronicdata.cdc.gov/Behavioral-Risk-Factors/Behavioral-Risk-Factor-Surveillance-System-BRFSS-H/iuq5-y9ct

  20. BRFSS: Graph of Current Prevalence of High Blood Pressure

    • data.wu.ac.at
    csv, json, xml
    Updated Jun 10, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2015). BRFSS: Graph of Current Prevalence of High Blood Pressure [Dataset]. https://data.wu.ac.at/schema/data_cdc_gov/d3FtZy1hOWhq
    Explore at:
    json, xml, csvAvailable download formats
    Dataset updated
    Jun 10, 2015
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    2011 to present. BRFSS combined land line and cell phone prevalence data. BRFSS is a continuous, state-based surveillance system that collects information about modifiable risk factors for chronic diseases and other leading causes of death. Data will be updated annually as it becomes available. Detailed information on sampling methodology and quality assurance can be found on the BRFSS website (http://www.cdc.gov/brfss). Methodology: http://www.cdc.gov/brfss/factsheets/pdf/DBS_BRFSS_survey.pdf Glossary: https://chronicdata.cdc.gov/Behavioral-Risk-Factors/Behavioral-Risk-Factor-Surveillance-System-BRFSS-H/iuq5-y9ct

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health (2017). Graph of Recommended Funding Levels by Program Components (CDC Best Practices for Comprehensive Tobacco Control Programs 2014) [Dataset]. https://data.wu.ac.at/schema/data_cdc_gov/NGptZS1qbnln
Organization logo

Graph of Recommended Funding Levels by Program Components (CDC Best Practices for Comprehensive Tobacco Control Programs 2014)

Explore at:
xml, csv, jsonAvailable download formats
Dataset updated
Nov 21, 2017
Dataset provided by
Centers for Disease Control and Preventionhttp://www.cdc.gov/
License

U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically

Description
  1. Centers for Disease Control and Prevention (CDC). Best Practices for Comprehensive Tobacco Control Programs. Funding. CDC's Best Practices for Comprehensive Tobacco Control Programs is an evidence-based guide to help states plan and establish effective tobacco control programs to prevent and reduce tobacco use. These data update Best Practices for Comprehensive Tobacco Control Programs—2007. Data are reported at total and per capita funding levels. Data include recommended and minimum total funding levels for state programs, in addition to funding breakdowns by intervention areas such as: State and Community Interventions, Mass-Reach Health Communication Interventions, Cessation Interventions, Surveillance and Evaluation, and Infrastructure, Administration, and Management.
Search
Clear search
Close search
Google apps
Main menu