82 datasets found
  1. D

    CDC Epidemic Trends and Rt

    • data.cdc.gov
    • data.virginia.gov
    application/rdfxml +5
    Updated Mar 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). CDC Epidemic Trends and Rt [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/CDC-Epidemic-Trends-and-Rt/5dqz-y4ea
    Explore at:
    tsv, csv, application/rssxml, xml, application/rdfxml, jsonAvailable download formats
    Dataset updated
    Mar 21, 2025
    Description

    An archive of estimated trend categories, probabilities of epidemic growth, and Rt, updated weekly for COVID-19 and flu. Estimates are based on emergency department visits reported to the National Syndromic Surveillance Program (NSSP), and generated using a model that includes nowcasting to adjust for incomplete reports on the most recent dates. See the visuals supported by these data, and more information about the data, models and methods at https://www.cdc.gov/cfa-modeling-and-forecasting/rt-estimates/index.html, and https://www.cdc.gov/respiratory-viruses/data/activity-levels.html.

    For a semi-technical overview of the modeling methods used to generate these estimates see https://www.cdc.gov/cfa-behind-the-model/php/data-research/rt-estimates/index.html.

    For the code used to run the models, see https://github.com/CDCgov/cfa-epinow2-pipeline.

  2. COVID-19 Trends in Each Country

    • coronavirus-resources.esri.com
    • coronavirus-response-israel-systematics.hub.arcgis.com
    • +2more
    Updated Mar 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://coronavirus-resources.esri.com/maps/a16bb8b137ba4d8bbe645301b80e5740
    Explore at:
    Dataset updated
    Mar 27, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  3. NCHS - Death rates and life expectancy at birth

    • catalog.data.gov
    • data.virginia.gov
    • +6more
    Updated Apr 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2022). NCHS - Death rates and life expectancy at birth [Dataset]. https://catalog.data.gov/dataset/nchs-death-rates-and-life-expectancy-at-birth
    Explore at:
    Dataset updated
    Apr 21, 2022
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset of U.S. mortality trends since 1900 highlights the differences in age-adjusted death rates and life expectancy at birth by race and sex. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Life expectancy data are available up to 2017. Due to changes in categories of race used in publications, data are not available for the black population consistently before 1968, and not at all before 1960. More information on historical data on age-adjusted death rates is available at https://www.cdc.gov/nchs/nvss/mortality/hist293.htm. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.

  4. Weekly United States COVID-19 Hospitalization Metrics by County (Historical)...

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Feb 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Weekly United States COVID-19 Hospitalization Metrics by County (Historical) – ARCHIVED [Dataset]. https://data.virginia.gov/dataset/weekly-united-states-covid-19-hospitalization-metrics-by-county-historical-archived
    Explore at:
    rdf, csv, xsl, jsonAvailable download formats
    Dataset updated
    Feb 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.

    Note: May 3,2024: Due to incomplete or missing hospital data received for the April 21,2024 through April 27, 2024 reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on May 3, 2024.

    This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States as of the initial date of reporting for each weekly metric. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.

    Reporting information:

    • As of December 15, 2022, COVID-19 hospital data are required to be reported to NHSN, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN represent aggregated counts and include metrics capturing information specific to hospital capacity, occupancy, hospitalizations, and admissions. Prior to December 15, 2022, hospitals reported data directly to the U.S. Department of Health and Human Services (HHS) or via a state submission for collection in the HHS Unified Hospital Data Surveillance System (UHDSS).
    • While CDC reviews these data for errors and corrects those found, some reporting errors might still exist within the data. To minimize errors and inconsistencies in data reported, CDC removes outliers before calculating the metrics. CDC and partners work with reporters to correct these errors and update the data in subsequent weeks.
    • Many hospital subtypes, including acute care and critical access hospitals, as well as Veterans Administration, Defense Health Agency, and Indian Health Service hospitals, are included in the metric calculations provided in this report. Psychiatric, rehabilitation, and religious non-medical hospital types are excluded from calculations.
    • Data are aggregated and displayed for hospitals with the same Centers for Medicare and Medicaid Services (CMS) Certification Number (CCN), which are assigned by CMS to counties based on the CMS Provider of Services files.
    • Full details on COVID-19 hospital data reporting guidance can be found here: https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf
    Calculation of county-level hospital metrics:
    • County-level hospital data are derived using calculations performed at the Health Service Area (HSA) level. An HSA is defined by CDC’s National Center for Health Statistics as a geographic area containing at least one county which is self-contained with respect to the population’s provision of routine hospital care. Every county in the United States is assigned to an HSA, and each HSA must contain at least one hospital. Therefore, use of HSAs in the calculation of local hospital metrics allows for more accurate characterization of the relationship between health care utilization and health status at the local level.
    • Data presented at the county-level represent admissions, hosp

  5. COVID-19 Case Surveillance Public Use Data

    • data.cdc.gov
    • data.virginia.gov
    • +6more
    application/rdfxml +5
    Updated Jul 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC Data, Analytics and Visualization Task Force (2024). COVID-19 Case Surveillance Public Use Data [Dataset]. https://data.cdc.gov/widgets/vbim-akqf
    Explore at:
    json, application/rdfxml, csv, xml, tsv, application/rssxmlAvailable download formats
    Dataset updated
    Jul 9, 2024
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC Data, Analytics and Visualization Task Force
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.

    Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.

    This case surveillance public use dataset has 12 elements for all COVID-19 cases shared with CDC and includes demographics, any exposure history, disease severity indicators and outcomes, presence of any underlying medical conditions and risk behaviors, and no geographic data.

    CDC has three COVID-19 case surveillance datasets:

    The following apply to all three datasets:

    Overview

    The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020, to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported voluntarily to CDC.

    For more information: NNDSS Supports the COVID-19 Response | CDC.

    The deidentified data in the “COVID-19 Case Surveillance Public Use Data” include demographic characteristics, any exposure history, disease severity indicators and outcomes, clinical data, laboratory diagnostic test results, and presence of any underlying medical conditions and risk behaviors. All data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf.

    COVID-19 Case Reports

    COVID-19 case reports have been routinely submitted using nationally standardized case reporting forms. On April 5, 2020, CSTE released an Interim Position Statement with national surveillance case definitions for COVID-19 included. Current versions of these case definitions are available here: https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2021/.

    All cases reported on or after were requested to be shared by public health departments to CDC using the standardized case definitions for laboratory-confirmed or probable cases. On May 5, 2020, the standardized case reporting form was revised. Case reporting using this new form is ongoing among U.S. states and territories.

    Data are Considered Provisional

    • The COVID-19 case surveillance data are dynamic; case reports can be modified at any time by the jurisdictions sharing COVID-19 data with CDC. CDC may update prior cases shared with CDC based on any updated information from jurisdictions. For instance, as new information is gathered about previously reported cases, health departments provide updated data to CDC. As more information and data become available, analyses might find changes in surveillance data and trends during a previously reported time window. Data may also be shared late with CDC due to the volume of COVID-19 cases.
    • Annual finalized data: To create the final NNDSS data used in the annual tables, CDC works carefully with the reporting jurisdictions to reconcile the data received during the year until each state or territorial epidemiologist confirms that the data from their area are correct.
    • Access Addressing Gaps in Public Health Reporting of Race and Ethnicity for COVID-19, a report from the Council of State and Territorial Epidemiologists, to better understand the challenges in completing race and ethnicity data for COVID-19 and recommendations for improvement.

    Data Limitations

    To learn more about the limitations in using case surveillance data, visit FAQ: COVID-19 Data and Surveillance.

    Data Quality Assurance Procedures

    CDC’s Case Surveillance Section routinely performs data quality assurance procedures (i.e., ongoing corrections and logic checks to address data errors). To date, the following data cleaning steps have been implemented:

    • Questions that have been left unanswered (blank) on the case report form are reclassified to a Missing value, if applicable to the question. For example, in the question “Was the individual hospitalized?” where the possible answer choices include “Yes,” “No,” or “Unknown,” the blank value is recoded to Missing because the case report form did not include a response to the question.
    • Logic checks are performed for date data. If an illogical date has been provided, CDC reviews the data with the reporting jurisdiction. For example, if a symptom onset date in the future is reported to CDC, this value is set to null until the reporting jurisdiction updates the date appropriately.
    • Additional data quality processing to recode free text data is ongoing. Data on symptoms, race and ethnicity, and healthcare worker status have been prioritized.

    Data Suppression

    To prevent release of data that could be used to identify people, data cells are suppressed for low frequency (<5) records and indirect identifiers (e.g., date of first positive specimen). Suppression includes rare combinations of demographic characteristics (sex, age group, race/ethnicity). Suppressed values are re-coded to the NA answer option; records with data suppression are never removed.

    For questions, please contact Ask SRRG (eocevent394@cdc.gov).

    Additional COVID-19 Data

    COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths by state and by county. These

  6. Trends in COVID-19 Cases and Deaths in the United States, by County-level...

    • healthdata.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Jun 9, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2023). Trends in COVID-19 Cases and Deaths in the United States, by County-level Population Factors - ARCHIVED [Dataset]. https://healthdata.gov/dataset/Trends-in-COVID-19-Cases-and-Deaths-in-the-United-/8dib-ck4f
    Explore at:
    application/rssxml, application/rdfxml, xml, csv, json, tsvAvailable download formats
    Dataset updated
    Jun 9, 2023
    Dataset provided by
    data.cdc.gov
    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implemented these case definitions. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.

    Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported from state and local health departments through a robust process with the following steps:

    • Aggregate county-level counts were obtained indirectly, via automated overnight web collection, or directly, via a data submission process.
    • If more than one official county data source existed, CDC used a comprehensive data selection process comparing each official county data source to retrieve the highest case and death counts, unless otherwise specified by the state.
    • A CDC data team reviewed counts for congruency prior to integration and set up alerts to monitor for discrepancies in the data.
    • CDC routinely compiled these data and post the finalized information on COVID Data Tracker.
    • County level data were aggregated to obtain state- and territory- specific totals.
    • Counting of cases and deaths is based on date of report and not on the date of symptom onset. CDC calculates rates in these data by using population estimates provided by the US Census Bureau Population Estimates Program (2019 Vintage).
    • COVID-19 aggregate case and death data are organized in a time series that includes cumulative number of cases and deaths as reported by a jurisdiction on a given date. New case and death counts are calculated as the week-to-week change in cumulative counts of cases and deaths reported (i.e., newly reported cases and deaths = cumulative number of cases/deaths reported this week minus the cumulative total reported the prior week.

    This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues.

    Description This archived public use dataset focuses on the cumulative and weekly case and death rates per 100,000 persons within various sociodemographic factors across all states and their counties. All resulting data are expressed as rates calculated as the number of cases or deaths per 100,000 persons in counties meeting various classification criteria using the US Census Bureau Population Estimates Program (2019 Vintage).

    Each county within jurisdictions is classified into multiple categories for each factor. All rates in this dataset are based on classification of counties by the characteristics of their population, not individual-level factors. This applies to each of the available factors observed in this dataset. Specific factors and their corresponding categories are detailed below.

    Population-level factors Each unique population factor is detailed below. Please note that the “Classification” column describes each of the 12 factors in the dataset, including a data dict

  7. BRFSS Prevalence And Trends Data: Health Care Access/Coverage for 2011

    • catalog.data.gov
    • healthdata.gov
    • +5more
    Updated Apr 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2021). BRFSS Prevalence And Trends Data: Health Care Access/Coverage for 2011 [Dataset]. https://catalog.data.gov/dataset/brfss-prevalence-and-trends-data-health-care-access-coverage-for-2011
    Explore at:
    Dataset updated
    Apr 30, 2021
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    The 2011 BRFSS data reflects a change in weighting methodology (raking) and the addition of cell phone only respondents. Shifts in observed prevalence from 2010 to 2011 for BRFSS measures will likely reflect the new methods of measuring risk factors, rather than true trends in risk-factor prevalence. A break in trend lines after 2010 is used to reflect this change in methodolgy. Percentages are weighted to population characteristics. Data are not available if it did not meet BRFSS stability requirements. For more information on these requirements, as well as risk factors and calculated variables, see the Technical Documents and Survey Data for a specific year - http://www.cdc.gov/brfss/annual_data/annual_data.htm. Recommended citation: Centers for Disease Control and Prevention (CDC). Behavioral Risk Factor Surveillance System. Atlanta, Georgia: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, [appropriate year].

  8. CDC Behavioral Risk Factor Surveillance System (BRFSS)

    • data.virginia.gov
    • healthdata.gov
    • +4more
    html
    Updated Jul 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention, Department of Health & Human Services (2023). CDC Behavioral Risk Factor Surveillance System (BRFSS) [Dataset]. https://data.virginia.gov/dataset/cdc-behavioral-risk-factor-surveillance-system-brfss
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jul 26, 2023
    Description

    The Behavioral Risk Factor Surveillance System (BRFSS) is a state-based system of health surveys that collects information on health risk behaviors, preventive health practices, and health care access primarily related to chronic disease and injury. For many states, the BRFSS is the only available source of timely, accurate data on health-related behaviors.

  9. D

    NCHS - Age-adjusted Death Rates for Selected Major Causes of Death

    • data.cdc.gov
    • healthdata.gov
    • +5more
    application/rdfxml +5
    Updated Sep 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCHS/DVS (2020). NCHS - Age-adjusted Death Rates for Selected Major Causes of Death [Dataset]. https://data.cdc.gov/w/6rkc-nb2q/tdwk-ruhb?cur=9VZ9DCWoAIL
    Explore at:
    csv, application/rdfxml, xml, json, tsv, application/rssxmlAvailable download formats
    Dataset updated
    Sep 8, 2020
    Dataset authored and provided by
    NCHS/DVS
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This dataset of U.S. mortality trends since 1900 highlights trends in age-adjusted death rates for five selected major causes of death.

    Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below).

    Revisions to the International Classification of Diseases (ICD) over time may result in discontinuities in cause-of-death trends.

    SOURCES

    CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov).

    REFERENCES

    1. National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm.

    2. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm.

    3. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf.

    4. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf.

    5. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.

  10. O

    Selected Trend Table from Health, United States, 2011. Leading causes of...

    • bah.demo.socrata.com
    • data.virginia.gov
    • +5more
    csv, xlsx, xml
    Updated Sep 9, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Selected Trend Table from Health, United States, 2011. Leading causes of death and numbers of deaths, by sex, race, and Hispanic origin: United States, 1980 and 2009 [Dataset]. https://bah.demo.socrata.com/Government/Selected-Trend-Table-from-Health-United-States-201/nqsi-tgkd
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Sep 9, 2016
    Area covered
    United States
    Description

    Health, United States is an annual report on trends in health statistics, find more information at http://www.cdc.gov/nchs/hus.htm.

  11. COVID-19 Trends in Each Country

    • data.amerigeoss.org
    esri rest, html
    Updated Jul 29, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2020). COVID-19 Trends in Each Country [Dataset]. https://data.amerigeoss.org/dataset/covid-19-trends-in-each-country
    Explore at:
    esri rest, htmlAvailable download formats
    Dataset updated
    Jul 29, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Description

    COVID-19 Trends Methodology
    Our goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.


    6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.
    6/22/2020 - Added Executive Summary and Subsequent Outbreaks sections
    Revisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.
    Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.
    Correction on 6/1/2020
    Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020.
    Revisions added on 4/30/2020 are highlighted.
    Revisions added on 4/23/2020 are highlighted.

    Executive Summary
    COVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties.
    The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.

    We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.

    Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.

    Reasons for undertaking this work in March of 2020:
    1. The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.
    2. The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.
    3. The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:
    • U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online.
    • Initial older guidance was also obtained online.
    Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws.
    Thus, the formula used to compute an estimate of active cases is:

    Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths.
    <br

  12. COVID-19 State Profile Report - Alabama

    • datasets.ai
    • healthdata.gov
    • +1more
    33
    Updated Aug 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Health & Human Services (2024). COVID-19 State Profile Report - Alabama [Dataset]. https://datasets.ai/datasets/covid-19-state-profile-report-alabama
    Explore at:
    33Available download formats
    Dataset updated
    Aug 27, 2024
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Authors
    U.S. Department of Health & Human Services
    Area covered
    Alabama
    Description

    After over two years of public reporting, the State Profile Report will no longer be produced and distributed after February 2023. The final release was on February 23, 2023. We want to thank everyone who contributed to the design, production, and review of this report and we hope that it provided insight into the data trends throughout the COVID-19 pandemic. Data about COVID-19 will continue to be updated at CDC’s COVID Data Tracker.

    The State Profile Report (SPR) is generated by the Data Strategy and Execution Workgroup in the Joint Coordination Cell, in collaboration with the White House. It is managed by an interagency team with representatives from multiple agencies and offices (including the United States Department of Health and Human Services (HHS), the Centers for Disease Control and Prevention, the HHS Assistant Secretary for Preparedness and Response, and the Indian Health Service). The SPR provides easily interpretable information on key indicators for each state, down to the county level.

    It is a weekly snapshot in time that:

    • Focuses on recent outcomes in the last seven days and changes relative to the month prior
    • Provides additional contextual information at the county level for each state, and includes national level information
    • Supports rapid visual interpretation of results with color thresholds

  13. Division for Heart Disease and Stroke Prevention: Data Trends & Maps

    • catalog.data.gov
    • data.virginia.gov
    • +6more
    Updated Apr 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2021). Division for Heart Disease and Stroke Prevention: Data Trends & Maps [Dataset]. https://catalog.data.gov/dataset/division-for-heart-disease-and-stroke-prevention-data-trends-maps
    Explore at:
    Dataset updated
    Apr 21, 2021
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    The CDC Division for Heart Disease and Stroke Prevention's Data Trends & Maps online tool allows searching for and view of health indicators related to Heart Disease and Stroke Prevention on the basis of a specific location or a health indicator.

  14. a

    Trends in CDC Lyme Disease Cases by State

    • hub.arcgis.com
    • data-chesbay.opendata.arcgis.com
    • +1more
    Updated Jan 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chesapeake Geoplatform (2020). Trends in CDC Lyme Disease Cases by State [Dataset]. https://hub.arcgis.com/documents/96c06a5c9a684984ba8eb04c13d0cb4e
    Explore at:
    Dataset updated
    Jan 9, 2020
    Dataset authored and provided by
    Chesapeake Geoplatform
    Description

    Access the data here: https://www.epa.gov/climate-indicators/climate-change-indicators-lyme-diseaseMulti-decadal analysis of changes in the incidence of Lyme disease, by state

  15. COVID-19 State Profile Report - Missouri

    • healthdata.gov
    • gimi9.com
    application/rdfxml +5
    Updated Jan 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    White House COVID-19 Team, Joint Coordination Cell, Data Strategy and Execution Workgroup (2021). COVID-19 State Profile Report - Missouri [Dataset]. https://healthdata.gov/Community/COVID-19-State-Profile-Report-Missouri/cq69-gktb
    Explore at:
    xml, application/rdfxml, application/rssxml, tsv, csv, jsonAvailable download formats
    Dataset updated
    Jan 27, 2021
    Dataset authored and provided by
    White House COVID-19 Team, Joint Coordination Cell, Data Strategy and Execution Workgroup
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    Missouri
    Description

    After over two years of public reporting, the State Profile Report will no longer be produced and distributed after February 2023. The final release was on February 23, 2023. We want to thank everyone who contributed to the design, production, and review of this report and we hope that it provided insight into the data trends throughout the COVID-19 pandemic. Data about COVID-19 will continue to be updated at CDC’s COVID Data Tracker.

    The State Profile Report (SPR) is generated by the Data Strategy and Execution Workgroup in the Joint Coordination Cell, in collaboration with the White House. It is managed by an interagency team with representatives from multiple agencies and offices (including the United States Department of Health and Human Services (HHS), the Centers for Disease Control and Prevention, the HHS Assistant Secretary for Preparedness and Response, and the Indian Health Service). The SPR provides easily interpretable information on key indicators for each state, down to the county level.

    It is a weekly snapshot in time that:

    • Focuses on recent outcomes in the last seven days and changes relative to the month prior
    • Provides additional contextual information at the county level for each state, and includes national level information
    • Supports rapid visual interpretation of results with color thresholds

  16. D

    Archive: COVID-19 Vaccination Demographic Trends by Report Date, National

    • data.cdc.gov
    • data.virginia.gov
    • +2more
    application/rdfxml +5
    Updated Nov 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Archive: COVID-19 Vaccination Demographic Trends by Report Date, National [Dataset]. https://data.cdc.gov/Vaccinations/Archive-COVID-19-Vaccination-Demographic-Trends-by/2vpi-n544
    Explore at:
    csv, application/rdfxml, json, application/rssxml, tsv, xmlAvailable download formats
    Dataset updated
    Nov 17, 2021
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This data dictionary provides information about archived demographic trend data for people receiving COVID-19 vaccinations in the United States at the national level. Data represents all vaccine partners including jurisdictional partner clinics, retail pharmacies, long-term care facilities, dialysis centers, Federal Emergency Management Agency and Health Resources and Services Administration partner sites, and federal entity facilities.

    These data have been archived to provide historical demographic trend data for COVID-19 vaccine recipients prior to CDC converting the Vaccination Demographic Trends site to using data based on the date of vaccine administration. Previously, the Vaccination Demographic Trends site presented trend data by the date the vaccination was reported to CDC.

  17. Selected Trend Table from Health, United States, 2011. Health conditions...

    • catalog.data.gov
    • healthdata.gov
    • +5more
    Updated Apr 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2021). Selected Trend Table from Health, United States, 2011. Health conditions among children under 18 years of age, by selected characteristics: United States, average annual, selected years 1997 - 1999 through 2008 - 2010 [Dataset]. https://catalog.data.gov/dataset/selected-trend-table-from-health-united-states-2011-health-conditions-among-children-2008-
    Explore at:
    Dataset updated
    Apr 30, 2021
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Health, United States is an annual report on trends in health statistics, find more information at http://www.cdc.gov/nchs/hus.htm.

  18. Archive: COVID-19 Vaccination and Case Trends by Age Group, United States

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Oct 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2022). Archive: COVID-19 Vaccination and Case Trends by Age Group, United States [Dataset]. https://data.virginia.gov/dataset/archive-covid-19-vaccination-and-case-trends-by-age-group-united-states
    Explore at:
    rdf, csv, json, xslAvailable download formats
    Dataset updated
    Oct 20, 2022
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    After October 13, 2022, this dataset will no longer be updated as the related CDC COVID Data Tracker site was retired on October 13, 2022.

    This dataset contains historical trends in vaccinations and cases by age group, at the US national level. Data is stratified by at least one dose and fully vaccinated. Data also represents all vaccine partners including jurisdictional partner clinics, retail pharmacies, long-term care facilities, dialysis centers, Federal Emergency Management Agency and Health Resources and Services Administration partner sites, and federal entity facilities.

  19. COVID-19 State Profile Report - Texas

    • healthdata.gov
    application/rdfxml +5
    Updated Jan 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    White House COVID-19 Team, Joint Coordination Cell, Data Strategy and Execution Workgroup (2021). COVID-19 State Profile Report - Texas [Dataset]. https://healthdata.gov/Community/COVID-19-State-Profile-Report-Texas/dec4-x7dz
    Explore at:
    csv, xml, json, application/rssxml, tsv, application/rdfxmlAvailable download formats
    Dataset updated
    Jan 27, 2021
    Dataset authored and provided by
    White House COVID-19 Team, Joint Coordination Cell, Data Strategy and Execution Workgroup
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    Texas
    Description

    After over two years of public reporting, the State Profile Report will no longer be produced and distributed after February 2023. The final release was on February 23, 2023. We want to thank everyone who contributed to the design, production, and review of this report and we hope that it provided insight into the data trends throughout the COVID-19 pandemic. Data about COVID-19 will continue to be updated at CDC’s COVID Data Tracker.

    The State Profile Report (SPR) is generated by the Data Strategy and Execution Workgroup in the Joint Coordination Cell, in collaboration with the White House. It is managed by an interagency team with representatives from multiple agencies and offices (including the United States Department of Health and Human Services (HHS), the Centers for Disease Control and Prevention, the HHS Assistant Secretary for Preparedness and Response, and the Indian Health Service). The SPR provides easily interpretable information on key indicators for each state, down to the county level.

    It is a weekly snapshot in time that:

    • Focuses on recent outcomes in the last seven days and changes relative to the month prior
    • Provides additional contextual information at the county level for each state, and includes national level information
    • Supports rapid visual interpretation of results with color thresholds

  20. Excess Deaths Associated with COVID-19

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Sep 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2023). Excess Deaths Associated with COVID-19 [Dataset]. https://catalog.data.gov/dataset/excess-deaths-associated-with-covid-19
    Explore at:
    Dataset updated
    Sep 29, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov. Estimates of excess deaths can provide information about the burden of mortality potentially related to COVID-19, beyond the number of deaths that are directly attributed to COVID-19. Excess deaths are typically defined as the difference between observed numbers of deaths and expected numbers. This visualization provides weekly data on excess deaths by jurisdiction of occurrence. Counts of deaths in more recent weeks are compared with historical trends to determine whether the number of deaths is significantly higher than expected. Estimates of excess deaths can be calculated in a variety of ways, and will vary depending on the methodology and assumptions about how many deaths are expected to occur. Estimates of excess deaths presented in this webpage were calculated using Farrington surveillance algorithms (1). For each jurisdiction, a model is used to generate a set of expected counts, and the upper bound of the 95% Confidence Intervals (95% CI) of these expected counts is used as a threshold to estimate excess deaths. Observed counts are compared to these upper bound estimates to determine whether a significant increase in deaths has occurred. Provisional counts are weighted to account for potential underreporting in the most recent weeks. However, data for the most recent week(s) are still likely to be incomplete. Only about 60% of deaths are reported within 10 days of the date of death, and there is considerable variation by jurisdiction. More detail about the methods, weighting, data, and limitations can be found in the Technical Notes.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). CDC Epidemic Trends and Rt [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/CDC-Epidemic-Trends-and-Rt/5dqz-y4ea

CDC Epidemic Trends and Rt

Explore at:
tsv, csv, application/rssxml, xml, application/rdfxml, jsonAvailable download formats
Dataset updated
Mar 21, 2025
Description

An archive of estimated trend categories, probabilities of epidemic growth, and Rt, updated weekly for COVID-19 and flu. Estimates are based on emergency department visits reported to the National Syndromic Surveillance Program (NSSP), and generated using a model that includes nowcasting to adjust for incomplete reports on the most recent dates. See the visuals supported by these data, and more information about the data, models and methods at https://www.cdc.gov/cfa-modeling-and-forecasting/rt-estimates/index.html, and https://www.cdc.gov/respiratory-viruses/data/activity-levels.html.

For a semi-technical overview of the modeling methods used to generate these estimates see https://www.cdc.gov/cfa-behind-the-model/php/data-research/rt-estimates/index.html.

For the code used to run the models, see https://github.com/CDCgov/cfa-epinow2-pipeline.

Search
Clear search
Close search
Google apps
Main menu