The Detailed Mortality - Underlying Cause of Death data on CDC WONDER are county-level national mortality and population data spanning the years 1999-2009. Data are based on death certificates for U.S. residents. Each death certificate contains a single underlying cause of death, and demographic data. The number of deaths, crude death rates, age-adjusted death rates, standard errors and 95% confidence intervals for death rates can be obtained by place of residence (total U.S., region, state, and county), age group (including infants and single-year-of-age cohorts), race (4 groups), Hispanic ethnicity, sex, year of death, and cause-of-death (4-digit ICD-10 code or group of codes, injury intent and mechanism categories, or drug and alcohol related causes), year, month and week day of death, place of death and whether an autopsy was performed. The data are produced by the National Center for Health Statistics.
The Mortality - Multiple Cause of Death data on CDC WONDER are county-level national mortality and population data spanning the yehttps://healthdata.gov/d/2sz9-6c59ars 1999-2006. These data are available in two separate data sets: one data set for years 1999-2004 with 3 race groups, and another data set for years 2005-2006 with 4 race groups and 3 Hispanic origin categories. Data are based on death certificates for U.S. residents. Each death certificate contains a single underlying cause of death, up to twenty additional multiple causes, and demographic data. The number of deaths, crude death rates, age-adjusted death rates, standard errors and 95% confidence intervals for death rates can be obtained by place of residence (total U.S., state, and county), age group (including infants), race, Hispanic ethnicity (years 2005-2006 only), sex, year of death, and cause-of-death (4-digit ICD-10 code or group of codes). The data are produced by the National Center for Health Statistics.
The CDC WONDER Mortality - Underlying Cause of Death online database is a county-level national mortality and population database spanning the years since 1979. Data are updated annually. The number of deaths, crude death rates, age-adjusted death rates, standard errors and confidence intervals for death rates can be obtained by place of residence (total U.S., Census region, Census division, state, and county), age group (including infant age groups), race (years 1979-1998: White, Black, and Other; years 1999-present: American Indian or Alaska Native, Asian or Pacific Islander, Black or African American, and White), Hispanic origin (years 1979-1998: not available; years 1999-present: Hispanic or Latino, not Hispanic or Latino, Not Stated), gender, year of death, and underlying cause ofdeath (years 1979-1998: 4-digit ICD-9 code and 72 cause-of-death recode; years 1999-present: 4-digit ICD-10 codes and 113 cause-of-death recode, as well as the Injury Mortality matrix classification for Intent and Mechanism), and urbanization level of residence (2006 NCHS urban-rural classification scheme for counties). The data are produced by the National Center for Health Statistics.
This dataset describes drug poisoning deaths at the U.S. and state level by selected demographic characteristics, and includes age-adjusted death rates for drug poisoning.
Deaths are classified using the International Classification of Diseases, Tenth Revision (ICD–10). Drug-poisoning deaths are defined as having ICD–10 underlying cause-of-death codes X40–X44 (unintentional), X60–X64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent).
Estimates are based on the National Vital Statistics System multiple cause-of-death mortality files (1). Age-adjusted death rates (deaths per 100,000 U.S. standard population for 2000) are calculated using the direct method. Populations used for computing death rates for 2011–2016 are postcensal estimates based on the 2010 U.S. census. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published.
Death rates for some states and years may be low due to a high number of unresolved pending cases or misclassification of ICD–10 codes for unintentional poisoning as R99, “Other ill-defined and unspecified causes of mortality” (2). For example, this issue is known to affect New Jersey in 2009 and West Virginia in 2005 and 2009 but also may affect other years and other states. Drug poisoning death rates may be underestimated in those instances.
REFERENCES 1. National Center for Health Statistics. National Vital Statistics System: Mortality data. Available from: http://www.cdc.gov/nchs/deaths.htm.
This dataset presents the age-adjusted death rates for the 10 leading causes of death in the United States beginning in 1999. Data are based on information from all resident death certificates filed in the 50 states and the District of Columbia using demographic and medical characteristics. Age-adjusted death rates (per 100,000 population) are based on the 2000 U.S. standard population. Populations used for computing death rates after 2010 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for non-census years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Causes of death classified by the International Classification of Diseases, Tenth Revision (ICD–10) are ranked according to the number of deaths assigned to rankable causes. Cause of death statistics are based on the underlying cause of death. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Murphy SL, Xu JQ, Kochanek KD, Curtin SC, and Arias E. Deaths: Final data for 2015. National vital statistics reports; vol 66. no. 6. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_06.pdf.
MMWR Surveillance Summary 66 (No. SS-1):1-8 found that nonmetropolitan areas have significant numbers of potentially excess deaths from the five leading causes of death. These figures accompany this report by presenting information on potentially excess deaths in nonmetropolitan and metropolitan areas at the state level. They also add additional years of data and options for selecting different age ranges and benchmarks. Potentially excess deaths are defined in MMWR Surveillance Summary 66(No. SS-1):1-8 as deaths that exceed the numbers that would be expected if the death rates of states with the lowest rates (benchmarks) occurred across all states. They are calculated by subtracting expected deaths for specific benchmarks from observed deaths. Not all potentially excess deaths can be prevented; some areas might have characteristics that predispose them to higher rates of death. However, many potentially excess deaths might represent deaths that could be prevented through improved public health programs that support healthier behaviors and neighborhoods or better access to health care services. Mortality data for U.S. residents come from the National Vital Statistics System. Estimates based on fewer than 10 observed deaths are not shown and shaded yellow on the map. Underlying cause of death is based on the International Classification of Diseases, 10th Revision (ICD-10) Heart disease (I00-I09, I11, I13, and I20–I51) Cancer (C00–C97) Unintentional injury (V01–X59 and Y85–Y86) Chronic lower respiratory disease (J40–J47) Stroke (I60–I69) Locality (nonmetropolitan vs. metropolitan) is based on the Office of Management and Budget’s 2013 county-based classification scheme. Benchmarks are based on the three states with the lowest age and cause-specific mortality rates. Potentially excess deaths for each state are calculated by subtracting deaths at the benchmark rates (expected deaths) from observed deaths. Users can explore three benchmarks: “2010 Fixed” is a fixed benchmark based on the best performing States in 2010. “2005 Fixed” is a fixed benchmark based on the best performing States in 2005. “Floating” is based on the best performing States in each year so change from year to year. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES Moy E, Garcia MC, Bastian B, Rossen LM, Ingram DD, Faul M, Massetti GM, Thomas CC, Hong Y, Yoon PW, Iademarco MF. Leading Causes of Death in Nonmetropolitan and Metropolitan Areas – United States, 1999-2014. MMWR Surveillance Summary 2017; 66(No. SS-1):1-8. Garcia MC, Faul M, Massetti G, Thomas CC, Hong Y, Bauer UE, Iademarco MF. Reducing Potentially Excess Deaths from the Five Leading Causes of Death in the Rural United States. MMWR Surveillance Summary 2017; 66(No. SS-2):1–7.
Effective June 28, 2023, this dataset will no longer be updated. Similar data are accessible from CDC WONDER (https://wonder.cdc.gov/mcd-icd10-provisional.html).
Cumulative deaths involving COVID-19 reported to NCHS by sex and age in years, in the United States.
This dataset describes injury mortality in the United States beginning in 1999. Two concepts are included in the circumstances of an injury death: intent of injury and mechanism of injury. Intent of injury describes whether the injury was inflicted purposefully (intentional injury) and, if purposeful, whether the injury was self-inflicted (suicide or self-harm) or inflicted by another person (homicide). Injuries that were not purposefully inflicted are considered unintentional (accidental) injuries. Mechanism of injury describes the source of the energy transfer that resulted in physical or physiological harm to the body. Examples of mechanisms of injury include falls, motor vehicle traffic crashes, burns, poisonings, and drownings (1,2).
Data are based on information from all resident death certificates filed in the 50 states and the District of Columbia. Age-adjusted death rates (per 100,000 standard population) are based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2015 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for non-census years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published.
Causes of injury death are classified by the International Classification of Diseases, Tenth Revision (ICD–10). Categories of injury intent and injury mechanism generally follow the categories in the external-cause-of-injury mortality matrix (1,2). Cause-of-death statistics are based on the underlying cause of death.
SOURCES
CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov).
REFERENCES
National Center for Health Statistics. ICD–10: External cause of injury mortality matrix.
National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm.
Murphy SL, Xu JQ, Kochanek KD, Curtin SC, and Arias E. Deaths: Final data for 2015. National vital statistics reports; vol 66. no. 6. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_06.pdf.
Miniño AM, Anderson RN, Fingerhut LA, Boudreault MA, Warner M. Deaths: Injuries, 2002. National vital statistics reports; vol 54 no 10. Hyattsville, MD: National Center for Health Statistics. 2006.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Every year the CDC releases the country’s most detailed report on death in the United States under the National Vital Statistics Systems. This mortality dataset is a record of every death in the country for 2005 through 2015, including detailed information about causes of death and the demographic background of the deceased.
It's been said that "statistics are human beings with the tears wiped off." This is especially true with this dataset. Each death record represents somebody's loved one, often connected with a lifetime of memories and sometimes tragically too short.
Putting the sensitive nature of the topic aside, analyzing mortality data is essential to understanding the complex circumstances of death across the country. The US Government uses this data to determine life expectancy and understand how death in the U.S. differs from the rest of the world. Whether you’re looking for macro trends or analyzing unique circumstances, we challenge you to use this dataset to find your own answers to one of life’s great mysteries.
This dataset is a collection of CSV files each containing one year's worth of data and paired JSON files containing the code mappings, plus an ICD 10 code set. The CSVs were reformatted from their original fixed-width file formats using information extracted from the CDC's PDF manuals using this script. Please note that this process may have introduced errors as the text extracted from the pdf is not a perfect match. If you have any questions or find errors in the preparation process, please leave a note in the forums. We hope to publish additional years of data using this method soon.
A more detailed overview of the data can be found here. You'll find that the fields are consistent within this time window, but some of data codes change every few years. For example, the 113_cause_recode entry 069 only covers ICD codes (I10,I12) in 2005, but by 2015 it covers (I10,I12,I15). When I post data from years prior to 2005, expect some of the fields themselves to change as well.
All data comes from the CDC’s National Vital Statistics Systems, with the exception of the Icd10Code, which are sourced from the World Health Organization.
This dataset describes drug poisoning deaths at the U.S. and state level by selected demographic characteristics, and includes age-adjusted death rates for drug poisoning. Deaths are classified using the International Classification of Diseases, Tenth Revision (ICD–10). Drug-poisoning deaths are defined as having ICD–10 underlying cause-of-death codes X40–X44 (unintentional), X60–X64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent). Estimates are based on the National Vital Statistics System multiple cause-of-death mortality files (1). Age-adjusted death rates (deaths per 100,000 U.S. standard population for 2000) are calculated using the direct method. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 U.S. census. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Death rates for some states and years may be low due to a high number of unresolved pending cases or misclassification of ICD–10 codes for unintentional poisoning as R99, “Other ill-defined and unspecified causes of mortality” (2). For example, this issue is known to affect New Jersey in 2009 and West Virginia in 2005 and 2009 but also may affect other years and other states. Drug poisoning death rates may be underestimated in those instances. REFERENCES 1. National Center for Health Statistics. National Vital Statistics System: Mortality data. Available from: http://www.cdc.gov/nchs/deaths.htm. CDC. CDC Wonder: Underlying cause of death 1999–2016. Available from: http://wonder.cdc.gov/wonder/help/ucd.html.
Rate: Firearm-related Deaths per 100,000 Persons (age adjusted)
Definition: Deaths with a firearm-related injury as the underlying cause of death. ICD-10 codes: W32-W34 (unintentional), X72-X74 (suicide), X93-X95 (homicide), Y22-Y24 (undetermined intent), Y35.0 (legal intervention)
Data Sources:
1) Centers for Disease Control and Prevention, National Center for Health Statistics. Compressed Mortality File. CDC WONDER On-line Database accessed at http://wonder.cdc.gov/cmf-icd10.html
2) Death Certificate Database, Office of Vital Statistics and Registry, New Jersey Department of Health
2) Population Estimates, State Data Center, New Jersey Department of Labor and Workforce Development
Effective June 28, 2023, this dataset will no longer be updated. Similar data are accessible from CDC WONDER (https://wonder.cdc.gov/mcd-icd10-provisional.html)
Provisional count of deaths involving COVID-19 by county of occurrence, in the United States, 2020-2023.
Rate: Number of deaths due to all kinds of Cancer per 100,000 Population.
Definition: Number of deaths per 100,000 with malignant neoplasm (cancer) as the underlying cause (ICD-10 codes: C00-C97).
Data Sources:
(1) Centers for Disease Control and Prevention, National Center for Health Statistics. Compressed Mortality File. CDC WONDER On-line Database accessed at http://wonder.cdc.gov/cmf-icd10.html
(2) Death Certificate Database, Office of Vital Statistics and Registry, New Jersey Department of Health
(3) Population Estimates, State Data Center, New Jersey Department of Labor and Workforce Development
http://www.kff.org/cite-and-reprint-kff/http://www.kff.org/cite-and-reprint-kff/
The National Vital Statistics System multiple cause-of-death mortality files were used to identify drug overdose deaths. Drug overdose deaths were classified using the International Classification of Disease, Tenth Revision (ICD-10), based on the ICD-10 underlying cause-of-death codes X40–44 (unintentional), X60–64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent). Among the deaths with drug overdose as the underlying cause, the type of opioid involved is indicated by the following ICD-10 multiple cause-of-death codes: opioids (T40.0, T40.1, T40.2, T40.3, T40.4, or T40.6); natural and semisynthetic opioids (T40.2); methadone (T40.3); synthetic opioids, other than methadone (T40.4); and heroin (T40.1).
Age-adjusted rates cannot be calculated when the data are grouped by Age Group.
Data by age group exclude a small number of individuals of unknown age (10 individuals or less nationally).
Deaths from illegally-made fentanyl cannot be distinguished from pharmaceutical fentanyl in the data source. For this reason, deaths from both legally prescribed and illegally produced fentanyl are included in these data.
Kaiser Family Foundation analysis of Centers for Disease Control and Prevention (CDC), National Center for Health Statistics. Multiple Cause of Death 1999-2015 on CDC WONDER Online Database, released 2016. Data are from the Multiple Cause of Death Files, 1999-2015, as compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program. Accessed at http://wonder.cdc.gov/mcd-icd10.html on March 2, 2017.
NSD: Not sufficient data. Data supressed to ensure confidentiality.
Rate: Number of deaths due to asthma per 100,000 adults age 35-64
Definition: Deaths among adults age 35-64 in which asthma is the underlying cause, CD-10 codes: J45-J46
Data Sources:
1) Centers for Disease Control and Prevention, National Center for Health Statistics. Compressed Mortality File. CDC WONDER On-line Database accessed at http://wonder.cdc.gov/cmf-icd10.html
2) Death Certificate Database, Office of Vital Statistics and Registry, New Jersey Department of Health
3) Population Estimates, State Data Center, New Jersey Department of Labor and Workforce Development
Rate: Number of deaths due to oropharyngeal cancer per 100,000 Population.
Definition: Number of deaths per 100,000 with malignant neoplasm (cancer) of the lip, oral cavity and pharynx as the underlying cause of death (ICD-10 codes: C00-C14).
Data Sources:
(1) Centers for Disease Control and Prevention, National Center for Health Statistics. Compressed Mortality File. CDC WONDER On-line Database accessed at http://wonder.cdc.gov/cmf-icd10.html
(2) Death Certificate Database, Office of Vital Statistics and Registry, New Jersey Department of Health
(3) Population Estimates, State Data Center, New Jersey Department of Labor and Workforce Development
This dataset contains information on the number of deaths and age-adjusted death rates for the five leading causes of death in 1900, 1950, and 2000. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
Effective June 28, 2023, this dataset will no longer be updated. Similar data are accessible from CDC WONDER (https://wonder.cdc.gov/mcd-icd10-provisional.html).
Deaths involving COVID-19 reported to NCHS by sex and age group and week ending date.
The Daily Fine Particulate Matter data available on CDC WONDER are geographically aggregated daily measures of fine particulate matter in the outdoor air, spanning the years 2003-2008. PM2.5 particles are air pollutants with an aerodynamic diameter less than 2.5 micrometers. Reported measures are the daily measure of fine particulate matter in micrograms per cubic meter (PM2.5) (''µg/m''³), the number of observations, minimum and maximum range value, and standard deviation. Data are available by place (combined 48 contiguous states plus the District of Columbia, region, division, state, county), time (year, month, day) and specified fine particulate matter (''µg/m''³)value. County-level and higher data are aggregated from 10 kilometer square spatial resolution grids. In a study funded by the NASA Applied Sciences Program / Public Health Program, scientists at NASA Marshall Space Flight Center / Universities Space Research Association modified the regional surfacing algorithm of Al-Hamdan et al. (2009) and used it to generate continuous spatial surfaces (grids) of daily PM2.5 for the whole conterminous U.S. for 2003-2008. Two sources of environmental data were used as input to the surfacing algorithm, US Environmental Protection Agency (EPA) Air Quality System (AQS) PM2.5 in-situ data and National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth remotely sensed data. They also identified in a Geographic Information System (GIS) the associated geographic locations of the centroids of the gridded PM2.5 dataset in terms of the counties and states they fall into to enable aggregation to different geographic levels in CDC WONDER.
The Detailed Mortality - Underlying Cause of Death data on CDC WONDER are county-level national mortality and population data spanning the years 1999-2009. Data are based on death certificates for U.S. residents. Each death certificate contains a single underlying cause of death, and demographic data. The number of deaths, crude death rates, age-adjusted death rates, standard errors and 95% confidence intervals for death rates can be obtained by place of residence (total U.S., region, state, and county), age group (including infants and single-year-of-age cohorts), race (4 groups), Hispanic ethnicity, sex, year of death, and cause-of-death (4-digit ICD-10 code or group of codes, injury intent and mechanism categories, or drug and alcohol related causes), year, month and week day of death, place of death and whether an autopsy was performed. The data are produced by the National Center for Health Statistics.