Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Supplementary tables and figures from the research work of harvesting metadata in a clinical enviroment. The tables include a crosswalk between the 4 different data formats FHIR, OMOP, openEHR and CDISC and a prioritization of the metadata items identified. The figures include the visualization of a priority scoring and an example of the prevented data loss by using the proposed convergence format.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The file observation_example.json lists the Observation resource as described in the Demonstrating the clinical study design with FHIR section in json format. (JSON 2 kb)
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
ABIRISK IBD clinical and ADA data
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
ABIRISK MS clinical and ADA data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ACC/AHA = American College of Cardiology/American Heart Association; ATS = American Thoracic Society; CDISC = Clinical Data Interchange Standards Consortium; NCI = National Cancer Institute; SF-36 = Short-form 36 questionnaire.
The Critical Path for Alzheimer's Disease (CPAD: http://c-path.org/programs/cpad/) CODR data base contains patient-level control arm data (6,500 patients; 24 clinical trials; MCI and AD), fully anonymized and remapped using CDISC SDTM v3.1.2 Standard. The database includes, but is not limited to, demographic information, APOE4 genotype, concomitant medications and cognitive scales (MMSE, ADAS-Cog, CDR-SB). Currently no AD fluid biomarker or imaging data are included.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
APPROACH Month 12 visit
https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/
The Data Integration & Imaging Informatics (DI-Cubed) project explored the issue of lack of standardized data capture at the point of data creation, as reflected in the non-image data accompanying various TCIA breast cancer collections. The work addressed the desire for semantic interoperability between various NCI initiatives by aligning on common clinical metadata elements and supporting use cases that connect clinical, imaging, and genomics data. Accordingly, clinical and measurement data was imported into I2B2 and cross-mapped to industry standard concepts for names and values including those derived from BRIDG, CDISC SDTM, DICOM Structured Reporting models and using NCI Thesaurus, SNOMED CT and LOINC controlled terminology. A subset of the standardized data was then exported from I2B2 to CSV and thence converted to DICOM SR according to the the DICOM Breast Imaging Report template [1] , which supports description of patient characteristics, histopathology, receptor status and clinical findings including measurements. The purpose was not to advocate DICOM SR as an appropriate format for interchange or storage of such information for query purposes, but rather to demonstrate that use of standard concepts harmonized across multiple collections could be transformed into an existing standard report representation. The DICOM SR can be stored and used together with the images in repositories such as TCIA and in image viewers that support rendering of DICOM SR content. During the project, various deficiencies in the DICOM Breast Imaging Report template were identified with respect to describing breast MR studies, laterality of findings versus procedures, more recently developed receptor types, and patient characteristics and status. These were addressed via DICOM CP 1838, finalized in Jan 2019, and this subset reflects those changes. DICOM Breast Imaging Report Templates available from: http://dicom.nema.org/medical/dicom/current/output/chtml/part16/sect_BreastImagingReportTemplates.html
Morbidity and mortality attributable to COVID-19 is devastating global health systems and economies. Bacillus Calmette Guérin (BCG) vaccination has been in use for many decades to prevent severe forms of tuberculosis in children. Studies have also shown a combination of improved long-term innate or trained immunity (through epigenetic reprogramming of myeloid cells) and adaptive responses after BCG vaccination, which leads to non-specific protective effects in adults. Observational studies have shown that countries with routine BCG vaccination programs have significantly less reported cases and deaths of COVID-19, but such studies are prone to significant bias and need confirmation. To date, in the absence of direct evidence, WHO does not recommend BCG for the prevention of COVID-19. This project aims to investigate in a timely manner whether and why BCG-revaccination can reduce infection rate and/or disease severity in health care workers during the SARS-CoV-2 outbreak in South Africa...., This dataset was collected in a clinical randomised control trial under the TASK008-BCG CORONA protocol. The trial was conducted in South Africa. This trial was registered with ClinicalTrials.gov, NCT04379336., , # Data from: Safety and efficacy of BCG re-vaccination in relation to COVID-19 morbidity in healthcare workers: A double-blind, randomised, controlled, phase 3 trial
The TASK008-BCG CORONA SDTM datasets contains all the study data collected under the TASK008-BCG CORONA protocol. The data is in the raw format of information captured onto the electronic Case Report Forms from the source documentation.
Description of the data and file structure
The TASK008-BCG CORONA SDTM datasets contain the study data in the CDISC SDTM format. The following CDISC SDTM domains were reported in the datasets:
AE - Adverse Events
CM - Concomitant Medication
DM - Demographics
DS - Disposition
EX - Exposure
IE - Inclusion and Exclusion Criteria
LB - Laboratory Findings
MH - Medical History
SV - Subject Visits
VS - Vital Signs
File Formats: The datasets are in both .CSV and .sas7bdat (include 1 SAS formats. catalogue) Below is the structure of each domain
| AE (Adverse Events) Domain ...
医療用フォームを作成、分析、共有、再利用するためのメタデータレジストリです。日常的な健康データの記録フォーム(EHR)や臨床試験の症例報告書(CRF)をシステムに依存しない CDISC Operational Data Model (ODM)フォーマットで収録しています。研究者は、PDF、CSV、Excel、SQL、SPSS、Rなど、最も一般的なフォーマットでデータを閲覧、ダウンロードすることが可能です。
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Supplementary tables and figures from the research work of harvesting metadata in a clinical enviroment. The tables include a crosswalk between the 4 different data formats FHIR, OMOP, openEHR and CDISC and a prioritization of the metadata items identified. The figures include the visualization of a priority scoring and an example of the prevented data loss by using the proposed convergence format.