Facebook
TwitterThe Critical Path for Alzheimer’s Disease (CPAD) data base contains patient-level data from 12,811 patients across 36 clinical trials of AD and MCI. All data has been remapped to a common data standard (CDISC SDTM v3.1.2) such that all the data can be analyzed across all studies. It is openly available to CPAD members, as well as to external qualified researchers who submit, and are approved for, a request for access. All data are fully de-identified.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The file observation_example.json lists the Observation resource as described in the Demonstrating the clinical study design with FHIR section in json format. (JSON 2 kb)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionA required step for presenting results of clinical studies is the declaration of participants demographic and baseline characteristics as claimed by the FDAAA 801. The common workflow to accomplish this task is to export the clinical data from the used electronic data capture system and import it into statistical software like SAS software or IBM SPSS. This software requires trained users, who have to implement the analysis individually for each item. These expenditures may become an obstacle for small studies. Objective of this work is to design, implement and evaluate an open source application, called ODM Data Analysis, for the semi-automatic analysis of clinical study data.MethodsThe system requires clinical data in the CDISC Operational Data Model format. After uploading the file, its syntax and data type conformity of the collected data is validated. The completeness of the study data is determined and basic statistics, including illustrative charts for each item, are generated. Datasets from four clinical studies have been used to evaluate the application’s performance and functionality.ResultsThe system is implemented as an open source web application (available at https://odmanalysis.uni-muenster.de) and also provided as Docker image which enables an easy distribution and installation on local systems. Study data is only stored in the application as long as the calculations are performed which is compliant with data protection endeavors. Analysis times are below half an hour, even for larger studies with over 6000 subjects.DiscussionMedical experts have ensured the usefulness of this application to grant an overview of their collected study data for monitoring purposes and to generate descriptive statistics without further user interaction. The semi-automatic analysis has its limitations and cannot replace the complex analysis of statisticians, but it can be used as a starting point for their examination and reporting.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Supplementary tables and figures from the research work of harvesting metadata in a clinical enviroment. The tables include a crosswalk between the 4 different data formats FHIR, OMOP, openEHR and CDISC and a prioritization of the metadata items identified. The figures include the visualization of a priority scoring and an example of the prevented data loss by using the proposed convergence format.
Facebook
Twitterhttps://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/
The Data Integration & Imaging Informatics (DI-Cubed) project explored the issue of lack of standardized data capture at the point of data creation, as reflected in the non-image data accompanying 4 TCIA breast cancer collections (Multi-center breast DCE-MRI data and segmentations from patients in the I-SPY 1/ACRIN 6657 trials (ISPY1), BREAST-DIAGNOSIS, Single site breast DCE-MRI data and segmentations from patients undergoing neoadjuvant chemotherapy (Breast-MRI-NACT-Pilot), The Cancer Genome Atlas Breast Invasive Carcinoma Collection (TCGA-BRCA)) and the Ivy Glioblastoma Atlas Project (IvyGAP) brain cancer collection. The work addressed the desire for semantic interoperability between various NCI initiatives by aligning on common clinical metadata elements and supporting use cases that connect clinical, imaging, and genomics data. Accordingly, clinical and measurement data imported into I2B2 were cross-mapped to industry standard concepts for names and values including those derived from BRIDG, CDISC SDTM, DICOM Structured Reporting models and using NCI Thesaurus, SNOMED CT and LOINC controlled terminology. A subset of the standardized data was then exported from I2B2 in SDTM compliant SAS transport files. The SDTM data was derived from data taken from both the curated TCIA spreadsheets as well as tumor measurements and dates from the TCIA Restful API. Due to the nature of the available data not all SDTM conformance rules were applicable or adhered to. These Study Data Tabulation Model format (SDTM) datasets were validated using Pinnacle 21 CDISC validation software. The validation software reviews datasets according to their degree of conformance to rules developed for the purposes of FDA submissions of electronic data. Iterative refinements were made to the datasets based upon group discussions and feedback from the validation tool. Export datasets for the following SDTM domains were generated:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
List of acquired studies using CDISC.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterThe Critical Path for Alzheimer’s Disease (CPAD) data base contains patient-level data from 12,811 patients across 36 clinical trials of AD and MCI. All data has been remapped to a common data standard (CDISC SDTM v3.1.2) such that all the data can be analyzed across all studies. It is openly available to CPAD members, as well as to external qualified researchers who submit, and are approved for, a request for access. All data are fully de-identified.